Compare commits

...

49 Commits

Author SHA1 Message Date
phdlee
dd6d4555a8 Update ubitx_20.ino 2018-03-25 03:21:31 +09:00
phdlee
8f8850f4da Update ubitx_wspr.cpp 2018-03-25 03:17:04 +09:00
phdlee
bad62ef728 Change Version Name 2018-03-24 21:33:01 +09:00
phdlee
93727e6b22 fixed Cat in IFSifht setup routine 2018-03-21 14:20:09 +09:00
phdlee
31a7f79569 ifshift store, cw mode shift change 2018-03-20 21:41:24 +09:00
phdlee
d7858e35c3 if shift bfo modified 2018-03-20 17:06:28 +09:00
phdlee
ecd104b686 Fixed IF Shift Bug (USB and TX Mode) 2018-03-19 21:35:41 +09:00
phdlee
bd52de59d2 bug fixed (found gereld) Autokey on Rit bug 2018-03-19 10:13:30 +09:00
phdlee
f0409d641d Auto key Bug fixed, LZ1LDO found bug 2018-03-17 11:11:27 +09:00
phdlee
8326b1ade3 bug fixed : cw start delay option 2018-03-15 21:00:42 +09:00
phdlee
94a3e5ca1b Test and some mod about WSPR Calibration 2018-03-13 01:17:06 +09:00
phdlee
a26978f573 Added WSPR and Reduce Program size 2018-03-09 22:02:10 +09:00
phdlee
fb2c9d2cc3 Optimized from Version1.03 2018-03-05 12:51:14 +09:00
phdlee
bf68dd6c26 Change Version Number 2018-02-22 13:27:51 +09:00
phdlee
4a6909f361 Change BFO Cal Step(50 to 5), Change CW Frequency Method 2018-02-22 12:26:18 +09:00
phdlee
e0f9148972 Change RIT tune step (freq tune step) 2018-02-13 19:54:19 +09:00
phdlee
81333e7af4 modified CW Key Logic for AutoKey and reduce cpu use rate, reduce program memory 2018-02-10 15:07:56 +09:00
phdlee
ed767f2e34 CW Start Delay applied New CW Logic 2018-02-10 13:29:30 +09:00
phdlee
1e9576ddc2 fixed cat with cw key (IA, IB) 2018-02-09 01:11:48 +09:00
phdlee
a7684284d2 write eeprom cycle test and reconvery 2018-02-08 12:45:54 +09:00
phdlee
3b4aaa664c version0.35 2018-02-06 16:13:05 +09:00
phdlee
14888bb7d7 change channel name display code 2018-02-05 16:46:37 +09:00
phdlee
57cd385b8a add vfo to channel, channel to vfo 2018-02-05 15:07:25 +09:00
phdlee
60777178a8 TX Check in auto keysend 2018-02-03 17:07:11 +09:00
phdlee
dd68b38454 Optimize codes 2018-02-03 16:35:27 +09:00
phdlee
d229a10092 change tune step size and fixed bug 2018-02-02 20:49:00 +09:00
phdlee
3d019cdd44 change IF Shift Step 1 -> 50Hz 2018-01-31 17:53:20 +09:00
phdlee
4745790dfa fixed Key select bug 2018-01-31 10:44:23 +09:00
phdlee
85832de034 change confirmation key PTT->function key for easy interface 2018-01-30 20:02:49 +09:00
phdlee
4830db78cb change IF Shift setup type 2018-01-30 18:43:08 +09:00
phdlee
5eca64d2a9 vfo changed buf fixed, added BFO feature with Mike 2018-01-30 17:44:15 +09:00
phdlee
0d9ec08bd7 Added CWL, CWU Mode, need test 2018-01-30 13:20:52 +09:00
phdlee
98c26730c6 display test and split TX/RX added 2018-01-30 12:13:52 +09:00
phdlee
3a306429ea display exaam (scroll freq) #2 2018-01-30 00:00:43 +09:00
phdlee
4f634a8277 line2 display example1.1 2018-01-29 23:02:46 +09:00
phdlee
a49d5e85b8 line2 display sample1 2018-01-29 22:49:30 +09:00
phdlee
282c196f63 fixed cw adc range bug 2018-01-29 18:38:48 +09:00
phdlee
ee23827def rename version to 0.30 2018-01-27 18:38:18 +09:00
phdlee
8d4c788e11 1st Test new CW Keyer and add cat message processing 2018-01-27 18:05:08 +09:00
phdlee
cc7dd752e6 add function adjust CW ADC Range 2018-01-27 16:39:54 +09:00
phdlee
4506ff1c1b for Reduce CW Keying error 2018-01-26 21:47:15 +09:00
phdlee
db543c43e1 Add Comment 2018-01-26 18:23:52 +09:00
phdlee
981db341db change defautl key type 2018-01-25 23:31:47 +09:00
phdlee
020b34e504 add menu for new Keyer logic 2018-01-25 23:15:24 +09:00
phdlee
c7be3dcd39 test for new cw keying logic 2018-01-24 21:41:15 +09:00
phdlee
bbb23bf817 default set for new users 2018-01-22 21:16:29 +09:00
phdlee
4d61cf4de9 freq tunes, and set defualt values 2018-01-22 19:46:50 +09:00
phdlee
2fa8247501 v0.29 prepare 2018-01-20 22:05:04 +09:00
phdlee
587d4854c3 change delaytimes via cat 2018-01-17 14:05:20 +09:00
12 changed files with 2312 additions and 484 deletions

View File

@@ -1,11 +1,67 @@
#IMPORTANT INFORMATION
----------------------------------------------------------------------------
- Beta 0.26 and Beta 0.261, Beta 0.262, Beta 0.27 is complete test
- You can download and use it.
#NOTICE
----------------------------------------------------------------------------
I received uBITX a month ago and found that many features are required, and began coding with the idea of implementing minimal functionality as a general hf transceiver rather than an experimental device.
- fixed bugs...
- Diallock for uBITX's sensitive encoders
- built in softare Memory keyer and cw options control for CW communication
- Implementation of CAT communication protocol for Digital Communication (as FT8, JT65, etc)
- Delay Options for external Linear.
- and more...
Most of the basic functions of the HF transceiver I thought were implemented.
The minimum basic specification for uBITX to operate as a radio, I think it is finished.
So I will release the 0.27 version and if I do not see the bug anymore, I will try to change the version name to 1.0.
Now uBITX is an HF radio and will be able to join you in your happy hams life.
Based on this source, you can use it by adding functions.
I am going to do a new project based on this source, linking with WSPR, WSJT-X and so on.
Of course, this repository is still running. If you have any bugs or ideas, please feel free to email me.
http://www.hamskey.com
DE KD8CEC
kd8cec@gmail.com
#uBITX
uBITX firmware, written for the Raduino/Arduino control of uBITX transceivers
This project is based on https://github.com/afarhan/ubitx and all copyright is inherited.
The copyright information of the original is below.
KD8CEC
----------------------------------------------------------------------------
Prepared or finished tasks for the next version
- Most of them are implemented and included in version 0.27.
- User Interface on LCD -> Option by user (not need)
- Include WSPR Beacone function - (implement other new repository)
complete experiment
need solve : Big code size (over 100%, then remove some functions for experment)
need replace Si5351 Library (increase risk and need more beta tester)
W3PM sent me his wonderful source - using BITX, GPS
----------------------------------------------------------------------------
## REVISION RECORD
0.27
(First alpha test version, This will be renamed to the major version 1.0)
- Dual VFO Dial Lock (vfoA Dial lock)
- Support Ham band on uBITX
default Hamband is regeion1 but customize by uBITX Manager Software
- Advanced ham band options (Tx control) for use in all countries. You can adjust it yourself.
- Convenience of band movement
0.26
- only Beta tester released & source code share
- find a bug on none initial eeprom uBITX - Fixed (Check -> initialized & compatible original source code)
- change the version number 0.26 -> 0.27
- Prevent overflow bugs
- bug with linux based Hamlib (raspberry pi), It was perfect for the 0.224 version, but there was a problem for the 0.25 version.
On Windows, ham deluxe, wsjt-x, jt65-hf, and fldigi were successfully run. Problem with Raspberry pi.
0.25
- Beta Version Released
http://www.hamskey.com/2018/01/release-beta-version-of-cat-support.html

View File

@@ -1,4 +1,5 @@
/*************************************************************************
KD8CEC's CAT Library for uBITX and HAM
This source code is written for uBITX, but it can also be used on other radios.
The CAT protocol is used by many radios to provide remote control to comptuers through
@@ -108,7 +109,8 @@ void CatSetFreq(byte fromType)
//#define BCD_LEN 9
//PROTOCOL : 0x03
//Computer <-(frequency)-> TRCV CAT_BUFF
void CatGetFreqMode(unsigned long freq, byte fromType)
//void CatGetFreqMode(unsigned long freq, byte fromType)
void CatGetFreqMode(unsigned long freq) //for remove warning messages
{
int i;
byte tmpValue;
@@ -129,23 +131,40 @@ void CatGetFreqMode(unsigned long freq, byte fromType)
}
//Mode Check
if (isUSB)
CAT_BUFF[4] = CAT_MODE_USB;
if (cwMode == 0)
{
if (isUSB)
CAT_BUFF[4] = CAT_MODE_USB;
else
CAT_BUFF[4] = CAT_MODE_LSB;
}
else if (cwMode == 1)
{
CAT_BUFF[4] = CAT_MODE_CW;
}
else
CAT_BUFF[4] = CAT_MODE_LSB;
{
CAT_BUFF[4] = CAT_MODE_CW;
}
SendCatData(5);
}
void CatSetSplit(boolean isSplit, byte fromType)
//void CatSetSplit(boolean isSplit, byte fromType)
void CatSetSplit(boolean isSplit) //for remove warning messages
{
if (isSplit)
splitOn = 1;
else
splitOn = 0;
Serial.write(ACK);
}
void CatSetPTT(boolean isPTTOn, byte fromType)
{
if (fromType == 2 || fromType == 3) {
//
if ((!inTx) && (fromType == 2 || fromType == 3)) {
Serial.write(ACK);
return;
}
@@ -197,12 +216,18 @@ void CatSetMode(byte tmpMode, byte fromType)
if (!inTx)
{
if (tmpMode == CAT_MODE_USB)
if (tmpMode == CAT_MODE_CW)
{
cwMode = 1;
}
else if (tmpMode == CAT_MODE_USB)
{
cwMode = 0;
isUSB = true;
}
else
{
cwMode = 0;
isUSB = false;
}
@@ -214,7 +239,8 @@ void CatSetMode(byte tmpMode, byte fromType)
}
//Read EEProm by uBITX Manager Software
void ReadEEPRom(byte fromType)
//void ReadEEPRom(byte fromType)
void ReadEEPRom() //for remove warnings.
{
//5BYTES
//CAT_BUFF[0] [1] [2] [3] [4] //4 COMMAND
@@ -237,7 +263,8 @@ void ReadEEPRom(byte fromType)
}
//Write just proecess 1byes
void WriteEEPRom(byte fromType)
//void WriteEEPRom(byte fromType)
void WriteEEPRom(void) //for remove warning
{
//5BYTES
uint16_t eepromStartIndex = CAT_BUFF[0] + CAT_BUFF[1] * 256;
@@ -257,7 +284,8 @@ void WriteEEPRom(byte fromType)
}
}
void ReadEEPRom_FT817(byte fromType)
//void ReadEEPRom_FT817(byte fromType)
void ReadEEPRom_FT817(void) //for remove warnings
{
byte temp0 = CAT_BUFF[0];
byte temp1 = CAT_BUFF[1];
@@ -357,10 +385,21 @@ void ReadEEPRom_FT817(byte fromType)
CAT_BUFF[1] = 0xB2;
break; case 0x69 : //FM Mic (#29) Contains 0-100 (decimal) as displayed
case 0x78 :
if (isUSB)
CAT_BUFF[0] = CAT_MODE_USB;
else
CAT_BUFF[0] = CAT_MODE_LSB;
if (cwMode == 0)
{
if (isUSB)
CAT_BUFF[0] = CAT_MODE_USB;
else
CAT_BUFF[0] = CAT_MODE_LSB;
}
else if (cwMode == 1)
{
CAT_BUFF[0] = CAT_MODE_CW;
}
else if (cwMode == 2)
{
CAT_BUFF[0] = CAT_MODE_CW;
}
if (CAT_BUFF[0] != 0) CAT_BUFF[0] = 1 << 5;
break;
@@ -383,7 +422,7 @@ void ReadEEPRom_FT817(byte fromType)
//7A 6 ? ?
//7A 7 SPL On/Off 0 = Off, 1 = On
CAT_BUFF[0] = (isSplitOn ? 0xFF : 0x7F);
CAT_BUFF[0] = (splitOn ? 0xFF : 0x7F);
break;
case 0xB3 : //
CAT_BUFF[0] = 0x00;
@@ -398,7 +437,7 @@ void ReadEEPRom_FT817(byte fromType)
void WriteEEPRom_FT817(byte fromType)
{
byte temp0 = CAT_BUFF[0];
//byte temp0 = CAT_BUFF[0];
byte temp1 = CAT_BUFF[1];
CAT_BUFF[0] = 0;
@@ -470,8 +509,8 @@ void WriteEEPRom_FT817(byte fromType)
sideTone = (sideTonePitch * 50 + 300) + sideToneSub;
printLineF2(F("Sidetone set! CAT"));
EEPROM.put(CW_SIDETONE, sideTone);
delay(500);
printLine2("");
delay(300); //If timeout errors occur in the calling software, remove them
clearLine2();
}
break;
@@ -482,8 +521,9 @@ void WriteEEPRom_FT817(byte fromType)
sideTone = (sideTonePitch * 50 + 300) + sideToneSub;
printLineF2(F("Sidetone set! CAT"));
EEPROM.put(CW_SIDETONE, sideTone);
delay(500);
printLine2("");
delay(300); //If timeout errors occur in the calling software, remove them
clearLine2();
line2DisplayStatus = 0;
}
break;
@@ -502,8 +542,8 @@ void WriteEEPRom_FT817(byte fromType)
cwDelayTime = CAT_BUFF[2];
printLineF2(F("CW Speed set!"));
EEPROM.put(CW_DELAY, cwDelayTime);
delay(500);
printLine2("");
delay(300);
clearLine2();
break;
case 0x62 : //
//5-0 CW Speed (4-60 WPM) (#21) From 0 to 38 (HEX) with 0 = 4 WPM and 38 = 60 WPM (1 WPM steps)
@@ -511,8 +551,8 @@ void WriteEEPRom_FT817(byte fromType)
cwSpeed = 1200 / ((CAT_BUFF[2] & 0x3F) + 4);
printLineF2(F("CW Speed set!"));
EEPROM.put(CW_SPEED, cwSpeed);
delay(500);
printLine2("");
delay(300);
clearLine2();
break;
/*
@@ -571,7 +611,8 @@ void WriteEEPRom_FT817(byte fromType)
Serial.write(ACK);
}
void CatRxStatus(byte fromType)
//void CatRxStatus(byte fromType)
void CatRxStatus(void) //for remove warning
{
byte sMeterValue = 1;
@@ -591,7 +632,8 @@ void CatRxStatus(byte fromType)
}
void CatTxStatus(byte fromType)
//void CatTxStatus(byte fromType)
void CatTxStatus(void) //for remove warning
{
boolean isHighSWR = false;
boolean isSplitOn = false;
@@ -629,7 +671,6 @@ void Check_Cat(byte fromType)
}
else if (Serial.available() < 5)
{
/*
//First Arrived
if (rxBufferCheckCount == 0)
{
@@ -649,8 +690,6 @@ void Check_Cat(byte fromType)
rxBufferCheckCount = Serial.available();
rxBufferArriveTime = millis() + CAT_RECEIVE_TIMEOUT; //Set time for timeout
}
*/
return;
}
@@ -695,11 +734,11 @@ void Check_Cat(byte fromType)
case 0x02 : //Split On
case 0x82: //Split Off
CatSetSplit(CAT_BUFF[4] == 0x02, fromType);
CatSetSplit(CAT_BUFF[4] == 0x02);
break;
case 0x03 : //Read Frequency and mode
CatGetFreqMode(frequency, fromType);
CatGetFreqMode(frequency);
break;
case 0x07 : //Set Operating Mode
@@ -716,24 +755,24 @@ void Check_Cat(byte fromType)
break;
case 0xDB: //Read uBITX EEPROM Data
ReadEEPRom(fromType); //Call by uBITX Manager Program
ReadEEPRom(); //Call by uBITX Manager Program
break;
case 0xBB: //Read FT-817 EEPROM Data (for comfirtable)
ReadEEPRom_FT817(fromType);
ReadEEPRom_FT817();
break;
case 0xDC: //Write uBITX EEPROM Data
WriteEEPRom(fromType); //Call by uBITX Manager Program
WriteEEPRom(); //Call by uBITX Manager Program
break;
case 0xBC: //Write FT-817 EEPROM Data (for comfirtable)
WriteEEPRom_FT817(fromType);
break;
case 0xE7 : //Read RX Status
CatRxStatus(fromType);
CatRxStatus();
break;
case 0xF7: //Read TX Status
CatTxStatus(fromType);
CatTxStatus();
break;
default:
/*

View File

@@ -1,4 +1,6 @@
/*************************************************************************
KD8CEC's Memory Keyer for HAM
This source code is written for All amateur radio operator,
I have not had amateur radio communication for a long time. CW has been
around for a long time, and I do not know what kind of keyer and keying
@@ -13,6 +15,7 @@
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -33,7 +36,7 @@
//27 + 10 + 18 + 1(SPACE) = //56
const PROGMEM uint8_t cwAZTable[27] = {0b00100100 , 0b01001000 , 0b01001010 , 0b00111000 , 0b00010000, 0b01000010, 0b00111100, 0b01000000 , //A ~ H
0b00100000, 0b01000111 ,0b00111010, 0b01000100, 0b00101100, 0b00101000 , 0b00111110, 0b01000110, 0b01001101, 0b00110100, //I ~ R
0b00110000, 0b00011000, 0b00110010, 0b01000001, 0b00110110, 0b01001001, 0b01001011, 0b00111000}; //S ~ Z
0b00110000, 0b00011000, 0b00110010, 0b01000001, 0b00110110, 0b01001001, 0b01001011, 0b01001100}; //S ~ Z
PGM_P pCwAZTable = reinterpret_cast<PGM_P>(cwAZTable);
const PROGMEM uint8_t cw09Table[27] = {0b00011111, 0b00001111, 0b00000111, 0b00000011, 0b00000001, 0b00000000, 0b00010000, 0b00011000, 0b00011100, 0b00011110};
@@ -208,10 +211,14 @@ void sendCWChar(char cwKeyChar)
charLength = ((tmpChar >> 6) & 0x03) + 3;
for (j = 0; j < charLength; j++)
sendBuff[j] = (tmpChar << j + 2) & 0x80;
sendBuff[j] = (tmpChar << (j + 2)) & 0x80;
break;
}
else
{
charLength = 0;
}
}
}
@@ -257,7 +264,7 @@ unsigned long scrollDispayTime = 0;
#define scrollSpeed 500
byte displayScrolStep = 0;
int controlAutoCW(){
void controlAutoCW(){
int knob = 0;
byte i;
@@ -290,9 +297,13 @@ int controlAutoCW(){
displayScrolStep = 0;
}
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ);
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ, 0);
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
lcd.setCursor(0,0);
lcd.setCursor(0, diplayAutoCWLine);
lcd.write(byteToChar(selectedCWTextIndex));
lcd.write(':');
isNeedScroll = (cwEndIndex - cwStartIndex) > 14 ? 1 : 0;
@@ -354,6 +365,11 @@ int controlAutoCW(){
//check interval time, if you want adjust interval between chars, modify below
if (isAutoCWHold == 0 && (millis() - autoCWbeforeTime > cwSpeed * 3))
{
if (!inTx){ //if not TX Status, change RX -> TX
keyDown = 0;
startTx(TX_CW, 0); //disable updateDisplay Command for reduce latency time
}
sendCWChar(EEPROM.read(CW_AUTO_DATA + autoCWSendCharIndex++));
if (autoCWSendCharIndex > autoCWSendCharEndIndex) { //finish auto cw send

80
ubitx_20/ubitx.h Normal file
View File

@@ -0,0 +1,80 @@
/*************************************************************************
header file for C++ by KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#define WSPR_COUNT 443 //WSPR_MESSAGE_COUNT
#define WSPR_MESSAGE1 444 //
#define WSPR_MESSAGE2 490 //
#define WSPR_MESSAGE3 536 //
#define WSPR_MESSAGE4 582 //
#define WSPR_BAND_COUNT 3
#define TX_SSB 0
#define TX_CW 1
extern void printLine1(const char *c);
extern void printLine2(const char *c);
extern void printLineF(char linenmbr, const __FlashStringHelper *c);
extern void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetType);
extern byte delay_background(unsigned delayTime, byte fromType);
extern int btnDown(void);
extern char c[30];
extern char b[30];
extern unsigned long frequency;
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
/**
* The second set of 16 pins on the Raduino's bottom connector are have the three clock outputs and the digital lines to control the rig.
* This assignment is as follows :
* Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
* GND +5V CLK0 GND GND CLK1 GND GND CLK2 GND D2 D3 D4 D5 D6 D7
* These too are flexible with what you may do with them, for the Raduino, we use them to :
* - TX_RX line : Switches between Transmit and Receive after sensing the PTT or the morse keyer
* - CW_KEY line : turns on the carrier for CW
*/
#define TX_RX (7)
#define CW_TONE (6)
#define TX_LPF_A (5)
#define TX_LPF_B (4)
#define TX_LPF_C (3)
#define CW_KEY (2)
//we directly generate the CW by programmin the Si5351 to the cw tx frequency, hence, both are different modes
//these are the parameter passed to startTx
#define TX_SSB 0
#define TX_CW 1
extern void si5351bx_init(void);
extern void si5351bx_setfreq(uint8_t clknum, uint32_t fout);
extern void si5351_set_calibration(int32_t cal);
extern void initOscillators(void);
extern void Set_WSPR_Param(void);
extern void TXSubFreq(unsigned long P2);
extern void startTx(byte txMode, byte isDisplayUpdate);
extern void stopTx(void);
extern void setTXFilters(unsigned long freq);
extern void SendWSPRManage(void);
extern byte WsprMSGCount;

View File

@@ -1,4 +1,10 @@
/**
Since KD8CEC Version 0.29, most of the original code is no longer available.
Most features(TX, Frequency Range, Ham Band, TX Control, CW delay, start Delay... more) have been added by KD8CEC.
However, the license rules are subject to the original source rules.
DE Ian KD8CEC
Original source comment -------------------------------------------------------------
* This source file is under General Public License version 3.
*
* This verision uses a built-in Si5351 library
@@ -32,6 +38,7 @@
*/
#include <Wire.h>
#include <EEPROM.h>
#include "ubitx.h"
/**
The main chip which generates upto three oscillators of various frequencies in the
@@ -78,6 +85,7 @@
#define PTT (A3)
#define ANALOG_KEYER (A6)
#define ANALOG_SPARE (A7)
#define ANALOG_SMETER (A7) //by KD8CEC
/**
* The Raduino board is the size of a standard 16x2 LCD panel. It has three connectors:
@@ -144,14 +152,48 @@ int count = 0; //to generally count ticks, loops, etc
#define CW_SPEED 28
//AT328 has 1KBytes EEPROM
#define CW_CAL 252
#define VFO_A_MODE 256
#define VFO_B_MODE 257
#define CW_DELAY 258
#define CW_START 259
#define HAM_BAND_COUNT 260 //
#define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define HAM_BAND_COUNT 260 //
#define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) //1STEP :
//for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
#define CW_ADC_ST_FROM 349 //CW ADC Range STRAIGHT KEY from (Lower 8 bit)
#define CW_ADC_ST_TO 350 //CW ADC Range STRAIGHT KEY to (Lower 8 bit)
#define CW_ADC_DOT_FROM 351 //CW ADC Range DOT from (Lower 8 bit)
#define CW_ADC_DOT_TO 352 //CW ADC Range DOT to (Lower 8 bit)
#define CW_ADC_MOST_BIT2 353 //most 2bits of BOTH_TO, BOTH_FROM, DASH_TO, DASH_FROM
#define CW_ADC_DASH_FROM 354 //CW ADC Range DASH from (Lower 8 bit)
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
#define CW_KEY_TYPE 358
#define CW_DISPLAY_SHIFT 359 //Transmits on CWL, CWU Mode, LCD Frequency shifts Sidetone Frequency.
//(7:Enable / Disable //0: enable, 1:disable, (default is applied shift)
//6 : 0 : Adjust Pulus, 1 : Adjust Minus
//0~5: Adjust Value : * 10 = Adjust Value (0~300)
#define COMMON_OPTION0 360 //0: Confirm : CW Frequency Shift
//1 : IF Shift Save
//
//
//
#define IF_SHIFTVALUE 363
#define DISPLAY_OPTION1 361 //Display Option1
#define DISPLAY_OPTION2 362 //Display Option2
#define CHANNEL_FREQ 630 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define CHANNEL_DESC 710 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define RESERVE3 770 //Reserve3 between Channel and Firmware id check
//Check Firmware type and version
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
@@ -207,11 +249,11 @@ int count = 0; //to generally count ticks, loops, etc
char ritOn = 0;
char vfoActive = VFO_A;
int8_t meter_reading = 0; // a -1 on meter makes it invisible
unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier;
unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier, cwmCarrier;
unsigned long vfoA_eeprom, vfoB_eeprom; //for protect eeprom life
unsigned long frequency, ritRxFrequency, ritTxFrequency; //frequency is the current frequency on the dial
int cwSpeed = 100; //this is actuall the dot period in milliseconds
unsigned int cwSpeed = 100; //this is actuall the dot period in milliseconds
extern int32_t calibration;
//for store the mode in eeprom
@@ -224,7 +266,6 @@ byte saveIntervalSec = 10; //second
unsigned long saveCheckTime = 0;
unsigned long saveCheckFreq = 0;
bool isSplitOn = false;
byte cwDelayTime = 60;
byte delayBeforeCWStartTime = 50;
@@ -235,7 +276,29 @@ byte sideToneSub = 0;
//DialLock
byte isDialLock = 0; //000000[0]vfoB [0]vfoA 0Bit : A, 1Bit : B
byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop]
long arTuneStep[5];
byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user
byte commonOption0 = 0;
byte displayOption1 = 0;
byte displayOption2 = 0;
//CW ADC Range
int cwAdcSTFrom = 0;
int cwAdcSTTo = 0;
int cwAdcDotFrom = 0;
int cwAdcDotTo = 0;
int cwAdcDashFrom = 0;
int cwAdcDashTo = 0;
int cwAdcBothFrom = 0;
int cwAdcBothTo = 0;
byte cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
bool Iambic_Key = true;
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
unsigned char keyerControl = IAMBICB;
byte isShiftDisplayCWFreq = 1; //Display Frequency
int shiftDisplayAdjustVal = 0; //
//Variables for auto cw mode
byte isCWAutoMode = 0; //0 : none, 1 : CW_AutoMode_Menu_Selection, 2 : CW_AutoMode Sending
@@ -255,9 +318,13 @@ byte userCallsignLength = 0; //7 : display callsign at system startup, 6~0 :
*/
boolean txCAT = false; //turned on if the transmitting due to a CAT command
char inTx = 0; //it is set to 1 if in transmit mode (whatever the reason : cw, ptt or cat)
char splitOn = 0; //working split, uses VFO B as the transmit frequency, (NOT IMPLEMENTED YET)
char splitOn = 0; //working split, uses VFO B as the transmit frequency
char keyDown = 0; //in cw mode, denotes the carrier is being transmitted
char isUSB = 0; //upper sideband was selected, this is reset to the default for the
char cwMode = 0; //compatible original source, and extend mode //if cwMode == 0, mode check : isUSB, cwMode > 0, mode Check : cwMode
//iscwMode = 0 : ssbmode, 1 :cwl, 2 : cwu, 3 : cwn (none tx)
//frequency when it crosses the frequency border of 10 MHz
byte menuOn = 0; //set to 1 when the menu is being displayed, if a menu item sets it to zero, the menu is exited
unsigned long cwTimeout = 0; //milliseconds to go before the cw transmit line is released and the radio goes back to rx mode
@@ -265,6 +332,14 @@ unsigned long dbgCount = 0; //not used now
unsigned char txFilter = 0; //which of the four transmit filters are in use
boolean modeCalibrate = false;//this mode of menus shows extended menus to calibrate the oscillators and choose the proper
//beat frequency
unsigned long beforeIdle_ProcessTime = 0; //for check Idle time
byte line2DisplayStatus = 0; //0:Clear, 1 : menu, 1: DisplayFrom Idle,
char lcdMeter[17];
byte isIFShift = 0; //1 = ifShift, 2 extend
int ifShiftValue = 0; //
/**
* Below are the basic functions that control the uBitx. Understanding the functions before
* you start hacking around
@@ -317,34 +392,35 @@ void setNextHamBandFreq(unsigned long f, char moveDirection)
EEPROM.get(HAM_BAND_FREQS + 4 * findedIndex, resultFreq);
loadMode = (byte)(resultFreq >> 30);
resultFreq = resultFreq & 0x3FFFFFFF;
//loadMode = (byte)(resultFreq >> 30);
//resultFreq = resultFreq & 0x3FFFFFFF;
loadMode = (byte)(resultFreq >> 29);
resultFreq = resultFreq & 0x1FFFFFFF;
if ((resultFreq / 1000) < hamBandRange[findedIndex][0] || (resultFreq / 1000) > hamBandRange[findedIndex][1])
resultFreq = (unsigned long)(hamBandRange[findedIndex][0]) * 1000;
if ((resultFreq / 1000) < hamBandRange[(unsigned char)findedIndex][0] || (resultFreq / 1000) > hamBandRange[(unsigned char)findedIndex][1])
resultFreq = (unsigned long)(hamBandRange[(unsigned char)findedIndex][0]) * 1000;
setFrequency(resultFreq);
byteWithFreqToMode(loadMode);
byteToMode(loadMode, 1);
}
void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) {
if (bandIndex >= 0)
EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x3FFFFFFF) | (mode << 30) );
//EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x3FFFFFFF) | (mode << 30) );
EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x1FFFFFFF) | (mode << 29) );
}
/*
KD8CEC
When using the basic delay of the Arduino, the program freezes.
When the delay is used, the program will generate an error because it is not communicating,
so Create a new delay function that can do background processing.
*/
unsigned long delayBeforeTime = 0;
byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWKey -> Check Paddle
delayBeforeTime = millis();
while (millis() <= delayBeforeTime + delayTime) {
while (millis() - delayBeforeTime <= delayTime) {
if (fromType == 4)
{
@@ -422,20 +498,32 @@ void setTXFilters(unsigned long freq){
*/
void setFrequency(unsigned long f){
uint64_t osc_f;
//1 digits discarded
f = (f / 50) * 50;
f = (f / arTuneStep[tuneStepIndex -1]) * arTuneStep[tuneStepIndex -1];
setTXFilters(f);
if (isUSB){
si5351bx_setfreq(2, SECOND_OSC_USB - usbCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
if (cwMode == 0)
{
if (isUSB){
si5351bx_setfreq(2, SECOND_OSC_USB - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
}
else{
si5351bx_setfreq(2, SECOND_OSC_LSB + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
}
}
else{
si5351bx_setfreq(2, SECOND_OSC_LSB + usbCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
else
{
if (cwMode == 1){ //CWL
si5351bx_setfreq(2, SECOND_OSC_LSB + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
}
else{ //CWU
si5351bx_setfreq(2, SECOND_OSC_USB - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
}
}
frequency = f;
@@ -446,10 +534,7 @@ void setFrequency(unsigned long f){
* put the uBitx in tx mode. It takes care of rit settings, sideband settings
* Note: In cw mode, doesnt key the radio, only puts it in tx mode
*/
void startTx(byte txMode, byte isDisplayUpdate){
unsigned long tx_freq = 0;
//Check Hamband only TX //Not found Hamband index by now frequency
if (tuneTXType >= 100 && getIndexHambanBbyFreq(ritOn ? ritTxFrequency : frequency) == -1) {
//no message
@@ -466,6 +551,25 @@ void startTx(byte txMode, byte isDisplayUpdate){
ritRxFrequency = frequency;
setFrequency(ritTxFrequency);
}
else
{
if (splitOn == 1) {
if (vfoActive == VFO_B) {
vfoActive = VFO_A;
frequency = vfoA;
byteToMode(vfoA_mode, 0);
}
else if (vfoActive == VFO_A){
vfoActive = VFO_B;
frequency = vfoB;
byteToMode(vfoB_mode, 0);
}
}
setFrequency(frequency);
} //end of else
SetCarrierFreq();
if (txMode == TX_CW){
//turn off the second local oscillator and the bfo
@@ -475,10 +579,22 @@ void startTx(byte txMode, byte isDisplayUpdate){
//shif the first oscillator to the tx frequency directly
//the key up and key down will toggle the carrier unbalancing
//the exact cw frequency is the tuned frequency + sidetone
if (isUSB)
si5351bx_setfreq(2, frequency + sideTone);
else
si5351bx_setfreq(2, frequency - sideTone);
if (cwMode == 0)
{
if (isUSB)
si5351bx_setfreq(2, frequency + sideTone);
else
si5351bx_setfreq(2, frequency - sideTone);
}
else if (cwMode == 1) //CWL
{
si5351bx_setfreq(2, frequency - sideTone);
}
else //CWU
{
si5351bx_setfreq(2, frequency + sideTone);
}
}
//reduce latency time when begin of CW mode
@@ -486,16 +602,39 @@ void startTx(byte txMode, byte isDisplayUpdate){
updateDisplay();
}
void stopTx(){
void stopTx(void){
inTx = 0;
digitalWrite(TX_RX, 0); //turn off the tx
si5351bx_setfreq(0, usbCarrier); //set back the carrier oscillator anyway, cw tx switches it off
/*
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
*/
SetCarrierFreq();
if (ritOn)
setFrequency(ritRxFrequency);
else
{
if (splitOn == 1) {
//vfo Change
if (vfoActive == VFO_B){
vfoActive = VFO_A;
frequency = vfoA;
byteToMode(vfoA_mode, 0);
}
else if (vfoActive == VFO_A){
vfoActive = VFO_B;
frequency = vfoB;
byteToMode(vfoB_mode, 0);
}
}
setFrequency(frequency);
} //end of else
updateDisplay();
}
@@ -545,8 +684,6 @@ void checkPTT(){
}
void checkButton(){
int i, t1, t2, knob, new_knob;
//only if the button is pressed
if (!btnDown())
return;
@@ -561,84 +698,85 @@ void checkButton(){
delay(10);
Check_Cat(0);
}
delay(50);//debounce
//delay(50);//debounce
}
/**
* The tuning jumps by 50 Hz on each step when you tune slowly
* As you spin the encoder faster, the jump size also increases
* This way, you can quickly move to another band by just spinning the
* tuning knob
*/
/************************************
Replace function by KD8CEC
prevent error controls
applied Threshold for reduct errors, dial Lock, dynamic Step
*************************************/
byte threshold = 2; //noe action for count
unsigned long lastEncInputtime = 0;
int encodedSumValue = 0;
unsigned long lastTunetime = 0; //if continous moving, skip threshold processing
byte lastMovedirection = 0; //0 : stop, 1 : cw, 2 : ccw
void doTuning(){
//#define skipThresholdTime 70
#define encodeTimeOut 1000
void doTuningWithThresHold(){
int s = 0;
unsigned long prev_freq;
int incdecValue = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02)))
return;
if (isCWAutoMode == 0 || cwAutoDialType == 1)
s = enc_read();
s = enc_read();
if (s){
prev_freq = frequency;
if (s > 10)
incdecValue = 200000l;
if (s > 7)
incdecValue = 10000l;
else if (s > 4)
incdecValue = 1000l;
else if (s > 2)
incdecValue = 500;
else if (s > 0)
incdecValue = 50l;
else if (s > -2)
incdecValue = -50l;
else if (s > -4)
incdecValue = -500l;
else if (s > -7)
incdecValue = -1000l;
else if (s > -9)
incdecValue = -10000l;
else
incdecValue = -200000l;
//if time is exceeded, it is recognized as an error,
//ignore exists values, because of errors
if (s == 0) {
if (encodedSumValue != 0 && (millis() - encodeTimeOut) > lastEncInputtime)
encodedSumValue = 0;
if (incdecValue > 0 && frequency + incdecValue > HIGHEST_FREQ_DIAL)
frequency = HIGHEST_FREQ_DIAL;
else if (incdecValue < 0 && frequency < -incdecValue + LOWEST_FREQ_DIAL) //for compute and compare based integer type.
frequency = LOWEST_FREQ_DIAL;
else
frequency += incdecValue;
if (prev_freq < 10000000l && frequency > 10000000l)
isUSB = true;
if (prev_freq > 10000000l && frequency < 10000000l)
isUSB = false;
setFrequency(frequency);
updateDisplay();
lastMovedirection = 0;
return;
}
lastEncInputtime = millis();
//for check moving direction
encodedSumValue += (s > 0 ? 1 : -1);
//check threshold and operator actions (hold dial speed = continous moving, skip threshold check)
//not use continues changing by Threshold
//if ((lastTunetime < (millis() - skipThresholdTime)) && ((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
if (((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
return;
lastTunetime = millis();
//Valid Action without noise
encodedSumValue = 0;
prev_freq = frequency;
//incdecValue = tuningStep * s;
//frequency += (arTuneStep[tuneStepIndex -1] * s * (s * s < 10 ? 1 : 3)); //appield weight (s is speed)
frequency += (arTuneStep[tuneStepIndex -1] * s); //appield weight (s is speed) //if want need more increase size, change step size
if (prev_freq < 10000000l && frequency > 10000000l)
isUSB = true;
if (prev_freq > 10000000l && frequency < 10000000l)
isUSB = false;
setFrequency(frequency);
updateDisplay();
}
/**
* RIT only steps back and forth by 100 hz at a time
*/
void doRIT(){
unsigned long newFreq;
int knob = enc_read();
unsigned long old_freq = frequency;
if (knob < 0)
frequency -= 100l;
frequency -= (arTuneStep[tuneStepIndex -1]); //
else if (knob > 0)
frequency += 100;
frequency += (arTuneStep[tuneStepIndex -1]); //
if (old_freq != frequency){
setFrequency(frequency);
@@ -646,8 +784,8 @@ void doRIT(){
}
}
/**
save Frequency and mode to eeprom
/*
save Frequency and mode to eeprom for Auto Save with protected eeprom cycle, by kd8cec
*/
void storeFrequencyAndMode(byte saveType)
{
@@ -679,6 +817,22 @@ void storeFrequencyAndMode(byte saveType)
}
}
//calculate step size from 1 byte, compatible uBITX Manager, by KD8CEC
unsigned int byteToSteps(byte srcByte) {
byte powerVal = (byte)(srcByte >> 6);
unsigned int baseVal = srcByte & 0x3F;
if (powerVal == 1)
return baseVal * 10;
else if (powerVal == 2)
return baseVal * 100;
else if (powerVal == 3)
return baseVal * 1000;
else
return baseVal;
}
/**
* The settings are read from EEPROM. The first time around, the values may not be
* present or out of range, in this case, some intelligent defaults are copied into the
@@ -694,7 +848,10 @@ void initSettings(){
EEPROM.get(VFO_B, vfoB);
EEPROM.get(CW_SIDETONE, sideTone);
EEPROM.get(CW_SPEED, cwSpeed);
//End of original code
//----------------------------------------------------------------
//Add Lines by KD8CEC
//for custom source Section =============================
//ID & Version Check from EEProm
//if found different firmware, erase eeprom (32
@@ -718,6 +875,7 @@ void initSettings(){
if (EEPROM.read(VERSION_ADDRESS) != VERSION_NUM)
EEPROM.write(VERSION_ADDRESS, VERSION_NUM);
EEPROM.get(CW_CAL, cwmCarrier);
//for Save VFO_A_MODE to eeprom
//0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM
@@ -729,6 +887,25 @@ void initSettings(){
//CW interval between TX and CW Start
EEPROM.get(CW_START, delayBeforeCWStartTime);
EEPROM.get(CW_KEY_TYPE, cwKeyType);
if (cwKeyType > 2)
cwKeyType = 0;
if (cwKeyType == 0)
Iambic_Key = false;
else
{
Iambic_Key = true;
if (cwKeyType == 1)
keyerControl &= ~IAMBICB;
else
keyerControl |= IAMBICB;
}
EEPROM.get(COMMON_OPTION0, commonOption0);
EEPROM.get(DISPLAY_OPTION1, displayOption1);
EEPROM.get(DISPLAY_OPTION2, displayOption2);
//User callsign information
if (EEPROM.read(USER_CALLSIGN_KEY) == 0x59)
@@ -738,18 +915,130 @@ void initSettings(){
EEPROM.get(HAM_BAND_COUNT, useHamBandCount);
EEPROM.get(TX_TUNE_TYPE, tuneTXType);
if ((3 < tuneTXType && tuneTXType < 100) || 103 < tuneTXType || useHamBandCount < 1)
tuneTXType = 0;
byte findedValidValueCount = 0;
//Read band Information
for (byte i = 0; i < useHamBandCount; i++) {
unsigned int tmpReadValue = 0;
EEPROM.get(HAM_BAND_RANGE + 4 * i, tmpReadValue);
hamBandRange[i][0] = tmpReadValue;
if (tmpReadValue > 1 && tmpReadValue < 55000)
findedValidValueCount++;
EEPROM.get(HAM_BAND_RANGE + 4 * i + 2, tmpReadValue);
hamBandRange[i][1] = tmpReadValue;
}
//Check Value Range and default Set for new users
if ((3 < tuneTXType && tuneTXType < 100) || 103 < tuneTXType || useHamBandCount < 1 || findedValidValueCount < 5)
{
tuneTXType = 2;
//if empty band Information, auto insert default region 2 frequency range
//This part is made temporary for people who have difficulty setting up, so can remove it when you run out of memory.
useHamBandCount = 10;
hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000;
hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800;
hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367;
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7300; //region 2
hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150;
hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350;
hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168;
hamBandRange[7][0] = 21000; hamBandRange[7][1] = 21450;
hamBandRange[8][0] = 24890; hamBandRange[8][1] = 24990;
hamBandRange[9][0] = 28000; hamBandRange[9][1] = 29700;
}
//Read Tuning Step Index, and steps
findedValidValueCount = 0;
EEPROM.get(TUNING_STEP, tuneStepIndex);
for (byte i = 0; i < 5; i++) {
arTuneStep[i] = byteToSteps(EEPROM.read(TUNING_STEP + i + 1));
if (arTuneStep[i] >= 1 && arTuneStep[i] <= 60000) //Maximum 650 for check valid Value
findedValidValueCount++;
}
//Check Value Range and default Set for new users
if (findedValidValueCount < 5)
{
//Default Setting
arTuneStep[0] = 10;
arTuneStep[1] = 20;
arTuneStep[2] = 50;
arTuneStep[3] = 100;
arTuneStep[4] = 200;
}
if (tuneStepIndex == 0) //New User
tuneStepIndex = 3;
//CW Key ADC Range ======= adjust set value for reduce cw keying error
//by KD8CEC
unsigned int tmpMostBits = 0;
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT1);
cwAdcSTFrom = EEPROM.read(CW_ADC_ST_FROM) | ((tmpMostBits & 0x03) << 8);
cwAdcSTTo = EEPROM.read(CW_ADC_ST_TO) | ((tmpMostBits & 0x0C) << 6);
cwAdcDotFrom = EEPROM.read(CW_ADC_DOT_FROM) | ((tmpMostBits & 0x30) << 4);
cwAdcDotTo = EEPROM.read(CW_ADC_DOT_TO) | ((tmpMostBits & 0xC0) << 2);
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT2);
cwAdcDashFrom = EEPROM.read(CW_ADC_DASH_FROM) | ((tmpMostBits & 0x03) << 8);
cwAdcDashTo = EEPROM.read(CW_ADC_DASH_TO) | ((tmpMostBits & 0x0C) << 6);
cwAdcBothFrom = EEPROM.read(CW_ADC_BOTH_FROM) | ((tmpMostBits & 0x30) << 4);
cwAdcBothTo = EEPROM.read(CW_ADC_BOTH_TO) | ((tmpMostBits & 0xC0) << 2);
//Display Type for CW mode
isShiftDisplayCWFreq = EEPROM.read(CW_DISPLAY_SHIFT);
//Enable / Diable Check for CW Display Cofiguration Group
if ((commonOption0 & 0x80) != 0x00)
{
//Adjust CW Mode Freq
shiftDisplayAdjustVal = (isShiftDisplayCWFreq & 0x3F) * 10;
//check Minus
if ((isShiftDisplayCWFreq & 0x40) == 0x40)
shiftDisplayAdjustVal = shiftDisplayAdjustVal * -1;
//Shift Display Check (Default : 0)
if ((isShiftDisplayCWFreq & 0x80) == 0) //Enabled
isShiftDisplayCWFreq = 1;
else //Disabled
isShiftDisplayCWFreq = 0;
}
//Stored IF Shift Option
if ((commonOption0 & 0x40) != 0x00)
{
EEPROM.get(IF_SHIFTVALUE, ifShiftValue);
isIFShift = ifShiftValue != 0;
}
//default Value (for original hardware)
if (cwAdcSTFrom >= cwAdcSTTo)
{
cwAdcSTFrom = 0;
cwAdcSTTo = 50;
}
if (cwAdcBothFrom >= cwAdcBothTo)
{
cwAdcBothFrom = 51;
cwAdcBothTo = 300;
}
if (cwAdcDotFrom >= cwAdcDotTo)
{
cwAdcDotFrom = 301;
cwAdcDotTo = 600;
}
if (cwAdcDashFrom >= cwAdcDashTo)
{
cwAdcDashFrom = 601;
cwAdcDashTo = 800;
}
//end of CW Keying Variables
if (cwDelayTime < 1 || cwDelayTime > 250)
cwDelayTime = 60;
@@ -760,20 +1049,25 @@ void initSettings(){
if (vfoB_mode < 2)
vfoB_mode = 3;
//original code with modified by kd8cec
if (usbCarrier > 12010000l || usbCarrier < 11990000l)
usbCarrier = 11995000l;
usbCarrier = 11997000l;
if (cwmCarrier > 12010000l || cwmCarrier < 11990000l)
cwmCarrier = 11997000l;
if (vfoA > 35000000l || 3500000l > vfoA) {
vfoA = 7150000l;
vfoA_mode = 2;
vfoA_mode = 2; //LSB
}
if (vfoB > 35000000l || 3500000l > vfoB) {
vfoB = 14150000l;
vfoB_mode = 3;
vfoB_mode = 3; //USB
}
//end of original code section
//for protect eeprom life
//for protect eeprom life by KD8CEC
vfoA_eeprom = vfoA;
vfoB_eeprom = vfoB;
vfoA_mode_eeprom = vfoA_mode;
@@ -795,7 +1089,6 @@ void initSettings(){
}
void initPorts(){
analogReference(DEFAULT);
//??
@@ -809,6 +1102,7 @@ void initPorts(){
pinMode(PTT, INPUT_PULLUP);
pinMode(ANALOG_KEYER, INPUT_PULLUP);
pinMode(ANALOG_SMETER, INPUT); //by KD8CEC
pinMode(CW_TONE, OUTPUT);
digitalWrite(CW_TONE, 0);
@@ -844,7 +1138,7 @@ void setup()
//Serial.begin(9600);
lcd.begin(16, 2);
printLineF(1, F("CECBT v0.27"));
printLineF(1, F("CE v1.061"));
Init_Cat(38400, SERIAL_8N1);
initMeter(); //not used in this build
@@ -852,21 +1146,22 @@ void setup()
if (userCallsignLength > 0 && ((userCallsignLength & 0x80) == 0x80)) {
userCallsignLength = userCallsignLength & 0x7F;
printLineFromEEPRom(0, 0, 0, userCallsignLength -1); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
printLineFromEEPRom(0, 0, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
delay(500);
}
else {
printLineF(0, F("uBITX v0.20"));
delay(500);
printLine2("");
clearLine2();
}
initPorts();
byteToMode(vfoA_mode, 0);
initOscillators();
frequency = vfoA;
saveCheckFreq = frequency; //for auto save frequency
byteToMode(vfoA_mode);
setFrequency(vfoA);
updateDisplay();
@@ -874,14 +1169,7 @@ void setup()
factory_alignment();
}
/**
* The loop checks for keydown, ptt, function button and tuning.
*/
//for debug
int dbgCnt = 0;
byte flasher = 0;
//Auto save Frequency and Mode with Protected eeprom life by KD8CEC
void checkAutoSaveFreqMode()
{
//when tx or ritOn, disable auto save
@@ -899,18 +1187,8 @@ void checkAutoSaveFreqMode()
//check time for Frequency auto save
if (millis() - saveCheckTime > saveIntervalSec * 1000)
{
if (vfoActive == VFO_A)
{
vfoA = frequency;
vfoA_mode = modeToByte();
storeFrequencyAndMode(1);
}
else
{
vfoB = frequency;
vfoB_mode = modeToByte();
storeFrequencyAndMode(2);
}
FrequencyToVFO(1);
saveCheckTime = 0; //for reduce cpu use rate
}
}
}
@@ -928,13 +1206,21 @@ void loop(){
//tune only when not tranmsitting
if (!inTx){
if (ritOn)
doRIT();
else
doTuning();
}
if (isCWAutoMode == 0 || cwAutoDialType == 1)
{
if (ritOn)
doRIT();
else
doTuningWithThresHold();
}
if (isCWAutoMode == 0 && beforeIdle_ProcessTime < millis() - 250) {
idle_process();
checkAutoSaveFreqMode(); //move here form out scope for reduce cpu use rate
beforeIdle_ProcessTime = millis();
}
} //end of check TX Status
//we check CAT after the encoder as it might put the radio into TX
Check_Cat(inTx? 1 : 0);
checkAutoSaveFreqMode();
}

View File

@@ -14,6 +14,7 @@ void btnWaitForClick(){
void factory_alignment(){
factoryCalibration(1);
line2DisplayStatus = 1;
if (calibration == 0){
printLine2("Setup Aborted");
@@ -36,6 +37,7 @@ void factory_alignment(){
printLine2("#3:Test 3.5MHz");
cwMode = 0;
isUSB = false;
setFrequency(3500000l);
updateDisplay();
@@ -58,6 +60,7 @@ void factory_alignment(){
btnWaitForClick();
printLine2("#5:Test 14MHz");
cwMode = 0;
isUSB = true;
setFrequency(14000000l);
updateDisplay();
@@ -79,6 +82,7 @@ void factory_alignment(){
printLine2("Alignment done");
delay(1000);
cwMode = 0;
isUSB = false;
setFrequency(7150000l);
updateDisplay();

254
ubitx_20/ubitx_idle.ino Normal file
View File

@@ -0,0 +1,254 @@
/*************************************************************************
KD8CEC's uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
char line2Buffer[16];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
void updateLine2Buffer(char isDirectCall)
{
unsigned long tmpFreq = 0;
if (isDirectCall == 0)
{
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//======================================================
//other VFO display
//======================================================
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'k';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'k';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
} //check direct call by encoder
if (isIFShift)
{
if (isDirectCall == 1)
for (int i = 0; i < 16; i++)
line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
//if (ifShiftValue == 0)
//{
/*
line2Buffer[10] = 'S';
line2Buffer[11] = ':';
line2Buffer[12] = 'O';
line2Buffer[13] = 'F';
line2Buffer[14] = 'F';
*/
//}
//else
//{
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
//}
if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step display
{
if (isDirectCall != 0)
return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
//if (isStepKhz == 1)
// line2Buffer[10] = 'k';
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//if (
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue); //call original source code
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
lcd.setCursor(drawPosition, lineNumber);
for (int i = 0; i < 6; i++) //meter 5 + +db 1 = 6
lcd.write(lcdMeter[i]);
}
}
byte testValue = 0;
char checkCount = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 7);
if (testValue > 30)
testValue = 0;
*/
}
}
}

View File

@@ -1,6 +1,9 @@
/**
* CW Keyer
*
CW Keyer
CW Key logic change with ron's code (ubitx_keyer.cpp)
Ron's logic has been modified to work with the original uBITX by KD8CEC
Original Comment ----------------------------------------------------------------------------
* The CW keyer handles either a straight key or an iambic / paddle key.
* They all use just one analog input line. This is how it works.
* The analog line has the internal pull-up resistor enabled.
@@ -34,7 +37,6 @@
//when both are simultaneously pressed
char lastPaddle = 0;
//reads the analog keyer pin and reports the paddle
byte getPaddle(){
int paddle = analogRead(ANALOG_KEYER);
@@ -81,13 +83,201 @@ void cwKeyUp(){
cwTimeout = millis() + cwDelayTime * 10;
}
//Variables for Ron's new logic
#define DIT_L 0x01 // DIT latch
#define DAH_L 0x02 // DAH latch
#define DIT_PROC 0x04 // DIT is being processed
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
static unsigned long ktimer;
unsigned char keyerState = IDLE;
//Below is a test to reduce the keying error. do not delete lines
//create by KD8CEC for compatible with new CW Logic
char update_PaddleLatch(byte isUpdateKeyState) {
unsigned char tmpKeyerControl = 0;
int paddle = analogRead(ANALOG_KEYER);
if (paddle >= cwAdcDashFrom && paddle <= cwAdcDashTo)
tmpKeyerControl |= DAH_L;
else if (paddle >= cwAdcDotFrom && paddle <= cwAdcDotTo)
tmpKeyerControl |= DIT_L;
else if (paddle >= cwAdcBothFrom && paddle <= cwAdcBothTo)
tmpKeyerControl |= (DAH_L | DIT_L) ;
else
{
if (Iambic_Key)
tmpKeyerControl = 0 ;
else if (paddle >= cwAdcSTFrom && paddle <= cwAdcSTTo)
tmpKeyerControl = DIT_L ;
else
tmpKeyerControl = 0 ;
}
if (isUpdateKeyState == 1)
keyerControl |= tmpKeyerControl;
return tmpKeyerControl;
}
/*****************************************************************************
// New logic, by RON
// modified by KD8CEC
******************************************************************************/
void cwKeyer(void){
lastPaddle = 0;
bool continue_loop = true;
unsigned tmpKeyControl = 0;
if( Iambic_Key ) {
while(continue_loop) {
switch (keyerState) {
case IDLE:
tmpKeyControl = update_PaddleLatch(0);
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
update_PaddleLatch(1);
keyerState = CHK_DIT;
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
stopTx();
}
continue_loop = false;
}
break;
case CHK_DIT:
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = cwSpeed;
keyerState = KEYED_PREP;
}else{
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
ktimer = cwSpeed*3;
keyerState = KEYED_PREP;
}else{
keyerState = IDLE;
}
break;
case KEYED_PREP:
//modified KD8CEC
/*
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
*/
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
cwKeydown();
break;
case KEYED:
if (millis() > ktimer) { // are we at end of key down ?
cwKeyUp();
ktimer = millis() + cwSpeed; // inter-element time
keyerState = INTER_ELEMENT; // next state
}else if (keyerControl & IAMBICB) {
update_PaddleLatch(1); // early paddle latch in Iambic B mode
}
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(1); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
}else{
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
}
break;
}
Check_Cat(2);
} //end of while
}
else{
while(1){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
cwKeydown();
while ( update_PaddleLatch(0) == DIT_L )
delay_background(1, 3);
cwKeyUp();
}
else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
stopTx();
}
//if (!cwTimeout) //removed by KD8CEC
// return;
// got back to the beginning of the loop, if no further activity happens on straight key
// we will time out, and return out of this routine
//delay(5);
//delay_background(5, 3); //removed by KD8CEC
//continue; //removed by KD8CEC
return; //Tx stop control by Main Loop
}
Check_Cat(2);
} //end of while
} //end of elese
}
//=======================================================================================
//Before logic
//by Farhan and modified by KD8CEC
//======================================================================================
/**
* The keyer handles the straight key as well as the iambic key
* This module keeps looping until the user stops sending cw
* if the cwTimeout is set to 0, then it means, we have to exit the keyer loop
* Each time the key is hit the cwTimeout is pushed to a time in the future by cwKeyDown()
*/
/*
void cwKeyer(){
byte paddle;
lastPaddle = 0;
@@ -111,17 +301,7 @@ void cwKeyer(){
if (!cwTimeout)
return;
//if a paddle was used (not a straight key) we should extend the space to be a full dash
//by adding two more dots long space (one has already been added at the end of the dot or dash)
/*
if (cwTimeout > 0 && lastPaddle != PADDLE_STRAIGHT)
delay_background(cwSpeed * 2, 3);
//delay(cwSpeed * 2);
// got back to the begining of the loop, if no further activity happens on the paddle or the straight key
// we will time out, and return out of this routine
delay(5);
*/
Check_Cat(2); //for uBITX on Raspberry pi, when straight keying, disconnect / test complete
continue;
}
@@ -184,3 +364,6 @@ void cwKeyer(){
delay(cwSpeed);
}
}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -1,3 +1,19 @@
/************************************************************************************
* KD8CEC
* kd8cec@gmail.com http://www.hamskey.com
*
* Merge two SI5351 Librarys
* KE7ER's fixed vco and variable Clocks Configure values
* G3ZIL's fixed Clock Configure Value and variable VCO
* * I have combined the two libraries above. All licenses follow the above library.
*
* PLL-A is generated by fixing 850Mhz clock. All output clocks use PLL-A to
* generate the frequency. This is the method used in QRP radios such as uBITX.
* When switching to WSPR transmission mode, PLL-B operates for the base frequency to transmit WSPR.
* The output clock channel that controls the frequency is connected to the PLL-B.
* The WSPR protocol is generated by changing the clock of the PLL-B.
************************************************************************************/
// ************* SI5315 routines - tks Jerry Gaffke, KE7ER ***********************
// An minimalist standalone set of Si5351 routines.
@@ -60,19 +76,22 @@ void i2cWriten(uint8_t reg, uint8_t *vals, uint8_t vcnt) { // write array
Wire.endTransmission();
}
uint8_t si5351Val[8] = {0, 1, 0, 0, 0, 0, 0, 0}; //for reduce program memory size
void si5351bx_init() { // Call once at power-up, start PLLA
uint8_t reg; uint32_t msxp1;
uint32_t msxp1;
Wire.begin();
i2cWrite(149, 0); // SpreadSpectrum off
i2cWrite(3, si5351bx_clken); // Disable all CLK output drivers
i2cWrite(183, SI5351BX_XTALPF << 6); // Set 25mhz crystal load capacitance
msxp1 = 128 * SI5351BX_MSA - 512; // and msxp2=0, msxp3=1, not fractional
uint8_t vals[8] = {0, 1, BB2(msxp1), BB1(msxp1), BB0(msxp1), 0, 0, 0};
i2cWriten(26, vals, 8); // Write to 8 PLLA msynth regs
//uint8_t vals[8] = {0, 1, BB2(msxp1), BB1(msxp1), BB0(msxp1), 0, 0, 0};
si5351Val[2] = BB2(msxp1);
si5351Val[3] = BB1(msxp1);
si5351Val[4] = BB0(msxp1);
i2cWriten(26, si5351Val, 8); // Write to 8 PLLA msynth regs
i2cWrite(177, 0x20); // Reset PLLA (0x80 resets PLLB)
// for (reg=16; reg<=23; reg++) i2cWrite(reg, 0x80); // Powerdown CLK's
// i2cWrite(187, 0); // No fannout of clkin, xtal, ms0, ms4
}
void si5351bx_setfreq(uint8_t clknum, uint32_t fout) { // Set a CLK to fout Hz
@@ -105,11 +124,48 @@ void si5351_set_calibration(int32_t cal){
si5351bx_setfreq(0, usbCarrier);
}
void SetCarrierFreq()
{
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
si5351bx_setfreq(0, appliedCarrier);
/*
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0));
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0));
*/
}
void initOscillators(){
//initialize the SI5351
si5351bx_init();
si5351bx_vcoa = (SI5351BX_XTAL * SI5351BX_MSA) + calibration; // apply the calibration correction factor
si5351bx_setfreq(0, usbCarrier);
SetCarrierFreq();
}
//============================================================
// ADD FUNCTIONS by KD8CEC
//============================================================
uint8_t Wspr_Reg1[8] = {0xFF,0xFE, 0x00, 0, 0, 0, 0, 0}; //3, 4, 5, 6, 7
uint8_t Wspr_Reg2[8] = {0, 1, 0, 0, 0, 0, 0, 0}; //2, 3, 4
void Set_WSPR_Param(void)
{
i2cWrite(18, 128);
i2cWriten(34, Wspr_Reg1, 8);
i2cWriten(58, Wspr_Reg2, 8);
i2cWrite(177, 128);
i2cWrite(18, 111);
si5351bx_clken &= ~(1 << 2);
i2cWrite(3, si5351bx_clken);
}
void TXSubFreq(unsigned long P2)
{
i2cWrite(40, (P2 & 65280) >> 8);
i2cWrite(41, P2 & 255);
}

View File

@@ -9,7 +9,7 @@
//#define printLineF2(x) (printLineF(0, x))
//returns true if the button is pressed
int btnDown(){
int btnDown(void){
if (digitalRead(FBUTTON) == HIGH)
return 0;
else
@@ -25,8 +25,8 @@ int btnDown(){
* The current reading of the meter is assembled in the string called meter
*/
//char meter[17];
/*
const PROGMEM uint8_t s_meter_bitmap[] = {
B00000,B00000,B00000,B00000,B00000,B00100,B00100,B11011,
B10000,B10000,B10000,B10000,B10100,B10100,B10100,B11011,
@@ -35,7 +35,18 @@ const PROGMEM uint8_t s_meter_bitmap[] = {
B00010,B00010,B00010,B00010,B00110,B00110,B00110,B11011,
B00001,B00001,B00001,B00001,B00101,B00101,B00101,B11011
};
PGM_P ps_meter_bitmap = reinterpret_cast<PGM_P>(s_meter_bitmap);
*/
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100 , //custom 3
B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110 , //custom 4
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
};
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = {
0b01110,
@@ -60,38 +71,54 @@ void initMeter(){
lcd.createChar(0, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
lcd.createChar(1, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 8);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
lcd.createChar(2, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 16);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
lcd.createChar(3, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 24);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
lcd.createChar(4, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 28);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
lcd.createChar(5, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 32);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
lcd.createChar(6, tmpbytes);
}
/**
* The meter is drawn with special characters.
* character 1 is used to simple draw the blocks of the scale of the meter
* characters 2 to 6 are used to draw the needle in positions 1 to within the block
* This displays a meter from 0 to 100, -1 displays nothing
*/
//by KD8CEC
//0 ~ 25 : 30 over : + 10
void drawMeter(int needle) {
//5Char + O over
int i;
/*
for (i = 0; i < 5; i++) {
if (needle >= 5)
lcdMeter[i] = 5; //full
else if (needle > 0)
lcdMeter[i] = needle; //full
else //0
lcdMeter[i] = 0x20;
needle -= 5;
}
if (needle > 0)
lcdMeter[5] = 6;
else
lcdMeter[5] = 0x20;
}
/*
void drawMeter(int8_t needle){
int16_t best, i, s;
@@ -101,21 +128,23 @@ void drawMeter(int8_t needle){
s = (needle * 4)/10;
for (i = 0; i < 8; i++){
if (s >= 5)
meter[i] = 1;
lcdMeter[i] = 1;
else if (s >= 0)
meter[i] = 2 + s;
lcdMeter[i] = 2 + s;
else
meter[i] = 1;
lcdMeter[i] = 1;
s = s - 5;
}
if (needle >= 40)
meter[i-1] = 6;
meter[i] = 0;
lcdMeter[i-1] = 6;
lcdMeter[i] = 0;
}
*/
// The generic routine to display one line on the LCD
void printLine(char linenmbr, char *c) {
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
lcd.print(c);
@@ -144,13 +173,16 @@ void printLineF(char linenmbr, const __FlashStringHelper *c)
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex) {
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
lcd.setCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
lcd.write(EEPROM.read(USER_CALLSIGN_DAT + i));
lcd.write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
@@ -160,14 +192,20 @@ void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, b
}
// short cut to print to the first line
void printLine1(char *c){
void printLine1(const char *c){
printLine(1,c);
}
// short cut to print to the first line
void printLine2(char *c){
void printLine2(const char *c){
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
@@ -179,6 +217,7 @@ void printLine2Clear(){
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
@@ -194,7 +233,6 @@ char byteToChar(byte srcByte){
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
@@ -221,10 +259,21 @@ void updateDisplay() {
if (ritOn)
strcpy(c, "RIT ");
else {
if (isUSB)
strcpy(c, "USB ");
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
strcpy(c, "LSB ");
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
@@ -232,6 +281,15 @@ void updateDisplay() {
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
@@ -251,36 +309,24 @@ void updateDisplay() {
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
lcd.setCursor(5,1);
lcd.setCursor(5,diplayVFOLine);
lcd.write((uint8_t)0);
}
else if (isCWAutoMode == 2){
lcd.setCursor(5,1);
lcd.setCursor(5,diplayVFOLine);
lcd.write(0x7E);
}
else
{
lcd.setCursor(5,1);
lcd.setCursor(5,diplayVFOLine);
lcd.write(":");
}
/*
//now, the second line
memset(c, 0, sizeof(c));
memset(b, 0, sizeof(b));
if (inTx)
strcat(c, "TX ");
else if (ritOn)
strcpy(c, "RIT");
strcpy(c, " \xff");
drawMeter(meter_reading);
strcat(c, meter);
strcat(c, "\xff");
printLine2(c);*/
}
int enc_prev_state = 3;
@@ -312,9 +358,9 @@ int enc_read(void) {
byte newState;
int enc_speed = 0;
long stop_by = millis() + 50;
unsigned long start_at = millis();
while (millis() < stop_by) { // check if the previous state was stable
while (millis() - start_at < 50) { // check if the previous state was stable
newState = enc_state(); // Get current state
if (newState != enc_prev_state)

193
ubitx_20/ubitx_wspr.cpp Normal file
View File

@@ -0,0 +1,193 @@
/**********************************************************************************
WSPR SENDER for uBITX by KD8CEC
Some of the code that sends WSPR referenced the code in G3ZIL.
Thanks to G3ZIL for sharing great code.
Due to the limited memory of uBITX, I have implemented at least only a few of the codes in uBITX.
Thanks for testing
Beta Tester :
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************************/
#include <arduino.h>
#include <EEPROM.h>
#include "ubitx.h"
//begin of test
byte WsprToneCode[164];
long lastTime=0;
unsigned long TX_MSNB_P2; // Si5351 register MSNB_P2 PLLB for Tx
unsigned long TX_P2; // Variable values for MSNB_P2 which defines the frequencies for the data
extern int enc_read(void);
byte WsprMSGCount = 0;
#define PTT (A3)
#define WSPR_BAND1 401
extern uint8_t Wspr_Reg1[8]; //3, 4, 5, 6, 7
extern uint8_t Wspr_Reg2[8]; //2, 3, 4
void SendWSPRManage()
{
int knob = 0;
byte knobPosition = 0;
char isNeedDisplayInfo = 0;
char nowSelectedIndex = 0;
char nowWsprStep = 0; //0 : select Message, 1 : select band, 2 : send
char selectedWsprMessageIndex = -1;
char selectedWsprBandIndex = -1;
unsigned long WsprTXFreq = 0;
unsigned int WsprMultiChan = 0;
unsigned long prevFreq;
char loopIndex;
delay_background(500, 0);
//Readed WsprMSGCount, WsprTone
while(1)
{
knob = enc_read();
if (knobPosition > 0 && knob < 0)
knobPosition--;
else if (knob > 0 && (knobPosition <= (nowWsprStep == 0 ? WsprMSGCount : WSPR_BAND_COUNT) * 10 -2))
knobPosition++;
nowSelectedIndex = knobPosition / 10;
if (nowWsprStep == 0) //select Message status
{
printLineF2(F("WSPR:"));
if (selectedWsprMessageIndex != nowSelectedIndex)
{
selectedWsprMessageIndex = nowSelectedIndex;
int wsprMessageBuffIndex = selectedWsprMessageIndex * 46;
//Display WSPR Name tag
printLineFromEEPRom(0, 6, wsprMessageBuffIndex, wsprMessageBuffIndex + 4, 1);
//Load WSPR Tonecode
//Read Tone Code
for (int i = 0; i < 41; i++)
{
byte readData = EEPROM.read(WSPR_MESSAGE1 + 5 + (wsprMessageBuffIndex) + i); //NAME TAG 5, MESSAGE 41 = 46
WsprToneCode[i * 4 + 0] = readData & 3;
WsprToneCode[i * 4 + 1] = (readData >> 2) & 3;
WsprToneCode[i * 4 + 2] = (readData >> 4) & 3;
WsprToneCode[i * 4 + 3] = (readData >> 6) & 3;
}
}
else if (btnDown())
{
nowWsprStep = 1; //Change Status to Select Band
knobPosition = 0;
nowSelectedIndex = 0;
delay_background(500, 0);
}
}
else if (nowWsprStep == 1)
{
//printLineF2(F("Select Band"));
if (selectedWsprBandIndex != nowSelectedIndex)
{
selectedWsprBandIndex = nowSelectedIndex;
int bandBuffIndex = WSPR_BAND1 + selectedWsprBandIndex * 14;
EEPROM.get(bandBuffIndex, WsprTXFreq);
EEPROM.get(bandBuffIndex + 4, WsprMultiChan);
/*
//3, 4, 5, 6, 7
Wspr_Reg1[3] = EEPROM.read(bandBuffIndex + 6);
Wspr_Reg1[4] = EEPROM.read(bandBuffIndex + 7);
Wspr_Reg1[5] = EEPROM.read(bandBuffIndex + 8);
Wspr_Reg1[6] = EEPROM.read(bandBuffIndex + 9);
Wspr_Reg1[7] = EEPROM.read(bandBuffIndex + 10);
*/
for (loopIndex = 3; loopIndex < 8; loopIndex++)
Wspr_Reg1[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 3);
/*
Wspr_Reg2[2] = EEPROM.read(bandBuffIndex + 11);
Wspr_Reg2[3] = EEPROM.read(bandBuffIndex + 12);
Wspr_Reg2[4] = EEPROM.read(bandBuffIndex + 13);
*/
//2, 3, 4
for (loopIndex = 2; loopIndex < 5; loopIndex++)
Wspr_Reg2[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 9);
TX_MSNB_P2 = ((unsigned long)Wspr_Reg1[5] & 0x0F) << 16 | ((unsigned long)Wspr_Reg1[6]) << 8 | Wspr_Reg1[7];
}
ltoa(WsprTXFreq, b, DEC);
if (digitalRead(PTT) == 0)
strcpy(c, "SEND:");
else
strcpy(c, "PTT->");
strcat(c, b);
printLine1(c);
if (digitalRead(PTT) == 0)
{
//printLineF1(F("Transmitting"));
//SEND WSPR
//If you need to consider the Rit and Sprite modes, uncomment them below.
//remark = To reduce the size of the program
//prevFreq = frequency;
//frequency = WsprTXFreq;
startTx(TX_CW, 0);
setTXFilters(WsprTXFreq);
//Start WSPR
Set_WSPR_Param();
digitalWrite(CW_KEY, 1);
for (int i = 0; i < 162; i++)
{ // Now this is the message loop
lastTime = millis(); // Store away the time when the last message symbol was sent
TX_P2 = TX_MSNB_P2 + WsprMultiChan * WsprToneCode[i]; // This represents the 1.46 Hz shift and is correct only for the bands specified in the array
TXSubFreq(TX_P2); // TX at the appropriate channel frequency for....
//if (btnDown())
// break;
while (millis() < lastTime + 683){} // .... 0,683 seconds
}
digitalWrite(CW_KEY, 0);
stopTx(); //call setFrequency -> recovery TX Filter
//frequency = prevFreq;
selectedWsprBandIndex = -1;
} //end of PTT Check
else if (btnDown())
{
return;
}
} //end of status check
//delay_background(50, 1);
} //end of while
}