Compare commits

...

12 Commits

Author SHA1 Message Date
phdlee
ee23827def rename version to 0.30 2018-01-27 18:38:18 +09:00
phdlee
8d4c788e11 1st Test new CW Keyer and add cat message processing 2018-01-27 18:05:08 +09:00
phdlee
cc7dd752e6 add function adjust CW ADC Range 2018-01-27 16:39:54 +09:00
phdlee
4506ff1c1b for Reduce CW Keying error 2018-01-26 21:47:15 +09:00
phdlee
db543c43e1 Add Comment 2018-01-26 18:23:52 +09:00
phdlee
981db341db change defautl key type 2018-01-25 23:31:47 +09:00
phdlee
020b34e504 add menu for new Keyer logic 2018-01-25 23:15:24 +09:00
phdlee
c7be3dcd39 test for new cw keying logic 2018-01-24 21:41:15 +09:00
phdlee
bbb23bf817 default set for new users 2018-01-22 21:16:29 +09:00
phdlee
4d61cf4de9 freq tunes, and set defualt values 2018-01-22 19:46:50 +09:00
phdlee
2fa8247501 v0.29 prepare 2018-01-20 22:05:04 +09:00
phdlee
587d4854c3 change delaytimes via cat 2018-01-17 14:05:20 +09:00
8 changed files with 658 additions and 141 deletions

View File

@@ -1,11 +1,67 @@
#IMPORTANT INFORMATION
----------------------------------------------------------------------------
- Beta 0.26 and Beta 0.261, Beta 0.262, Beta 0.27 is complete test
- You can download and use it.
#NOTICE
----------------------------------------------------------------------------
I received uBITX a month ago and found that many features are required, and began coding with the idea of implementing minimal functionality as a general hf transceiver rather than an experimental device.
- fixed bugs...
- Diallock for uBITX's sensitive encoders
- built in softare Memory keyer and cw options control for CW communication
- Implementation of CAT communication protocol for Digital Communication (as FT8, JT65, etc)
- Delay Options for external Linear.
- and more...
Most of the basic functions of the HF transceiver I thought were implemented.
The minimum basic specification for uBITX to operate as a radio, I think it is finished.
So I will release the 0.27 version and if I do not see the bug anymore, I will try to change the version name to 1.0.
Now uBITX is an HF radio and will be able to join you in your happy hams life.
Based on this source, you can use it by adding functions.
I am going to do a new project based on this source, linking with WSPR, WSJT-X and so on.
Of course, this repository is still running. If you have any bugs or ideas, please feel free to email me.
http://www.hamskey.com
DE KD8CEC
kd8cec@gmail.com
#uBITX
uBITX firmware, written for the Raduino/Arduino control of uBITX transceivers
This project is based on https://github.com/afarhan/ubitx and all copyright is inherited.
The copyright information of the original is below.
KD8CEC
----------------------------------------------------------------------------
Prepared or finished tasks for the next version
- Most of them are implemented and included in version 0.27.
- User Interface on LCD -> Option by user (not need)
- Include WSPR Beacone function - (implement other new repository)
complete experiment
need solve : Big code size (over 100%, then remove some functions for experment)
need replace Si5351 Library (increase risk and need more beta tester)
W3PM sent me his wonderful source - using BITX, GPS
----------------------------------------------------------------------------
## REVISION RECORD
0.27
(First alpha test version, This will be renamed to the major version 1.0)
- Dual VFO Dial Lock (vfoA Dial lock)
- Support Ham band on uBITX
default Hamband is regeion1 but customize by uBITX Manager Software
- Advanced ham band options (Tx control) for use in all countries. You can adjust it yourself.
- Convenience of band movement
0.26
- only Beta tester released & source code share
- find a bug on none initial eeprom uBITX - Fixed (Check -> initialized & compatible original source code)
- change the version number 0.26 -> 0.27
- Prevent overflow bugs
- bug with linux based Hamlib (raspberry pi), It was perfect for the 0.224 version, but there was a problem for the 0.25 version.
On Windows, ham deluxe, wsjt-x, jt65-hf, and fldigi were successfully run. Problem with Raspberry pi.
0.25
- Beta Version Released
http://www.hamskey.com/2018/01/release-beta-version-of-cat-support.html

View File

@@ -1,4 +1,5 @@
/*************************************************************************
KD8CEC's CAT Library for uBITX and HAM
This source code is written for uBITX, but it can also be used on other radios.
The CAT protocol is used by many radios to provide remote control to comptuers through
@@ -181,7 +182,7 @@ void CatSetPTT(boolean isPTTOn, byte fromType)
void CatVFOToggle(boolean isSendACK, byte fromType)
{
if (fromType != 2 && fromType != 3) {
menuVfoToggle(1);
menuVfoToggle(1, 0);
}
if (isSendACK)
@@ -398,7 +399,7 @@ void ReadEEPRom_FT817(byte fromType)
void WriteEEPRom_FT817(byte fromType)
{
byte temp0 = CAT_BUFF[0];
//byte temp0 = CAT_BUFF[0];
byte temp1 = CAT_BUFF[1];
CAT_BUFF[0] = 0;
@@ -470,8 +471,8 @@ void WriteEEPRom_FT817(byte fromType)
sideTone = (sideTonePitch * 50 + 300) + sideToneSub;
printLineF2(F("Sidetone set! CAT"));
EEPROM.put(CW_SIDETONE, sideTone);
delay(500);
printLine2("");
delay(300); //If timeout errors occur in the calling software, remove them
printLine2(""); //Ham radio deluxe is the only one that supports this feature yet. and ham radio deluxe has wait time as greater than 500ms
}
break;
@@ -482,8 +483,8 @@ void WriteEEPRom_FT817(byte fromType)
sideTone = (sideTonePitch * 50 + 300) + sideToneSub;
printLineF2(F("Sidetone set! CAT"));
EEPROM.put(CW_SIDETONE, sideTone);
delay(500);
printLine2("");
delay(300); //If timeout errors occur in the calling software, remove them
printLine2(""); //Ham radio deluxe is the only one that supports this feature yet. and ham radio deluxe has wait time as greater than 500ms
}
break;
@@ -502,7 +503,7 @@ void WriteEEPRom_FT817(byte fromType)
cwDelayTime = CAT_BUFF[2];
printLineF2(F("CW Speed set!"));
EEPROM.put(CW_DELAY, cwDelayTime);
delay(500);
delay(300);
printLine2("");
break;
case 0x62 : //
@@ -511,7 +512,7 @@ void WriteEEPRom_FT817(byte fromType)
cwSpeed = 1200 / ((CAT_BUFF[2] & 0x3F) + 4);
printLineF2(F("CW Speed set!"));
EEPROM.put(CW_SPEED, cwSpeed);
delay(500);
delay(300);
printLine2("");
break;
@@ -629,7 +630,6 @@ void Check_Cat(byte fromType)
}
else if (Serial.available() < 5)
{
/*
//First Arrived
if (rxBufferCheckCount == 0)
{
@@ -649,8 +649,6 @@ void Check_Cat(byte fromType)
rxBufferCheckCount = Serial.available();
rxBufferArriveTime = millis() + CAT_RECEIVE_TIMEOUT; //Set time for timeout
}
*/
return;
}

View File

@@ -1,4 +1,6 @@
/*************************************************************************
KD8CEC's Memory Keyer for HAM
This source code is written for All amateur radio operator,
I have not had amateur radio communication for a long time. CW has been
around for a long time, and I do not know what kind of keyer and keying
@@ -13,6 +15,7 @@
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -208,10 +211,14 @@ void sendCWChar(char cwKeyChar)
charLength = ((tmpChar >> 6) & 0x03) + 3;
for (j = 0; j < charLength; j++)
sendBuff[j] = (tmpChar << j + 2) & 0x80;
sendBuff[j] = (tmpChar << (j + 2)) & 0x80;
break;
}
else
{
charLength = 0;
}
}
}
@@ -257,7 +264,7 @@ unsigned long scrollDispayTime = 0;
#define scrollSpeed 500
byte displayScrolStep = 0;
int controlAutoCW(){
void controlAutoCW(){
int knob = 0;
byte i;

View File

@@ -1,4 +1,10 @@
/**
Since KD8CEC Version 0.29, most of the original code is no longer available.
Most features(TX, Frequency Range, Ham Band, TX Control, CW delay, start Delay... more) have been added by KD8CEC.
However, the license rules are subject to the original source rules.
DE Ian KD8CEC
Original source comment -------------------------------------------------------------
* This source file is under General Public License version 3.
*
* This verision uses a built-in Si5351 library
@@ -152,6 +158,20 @@ int count = 0; //to generally count ticks, loops, etc
#define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5)
//for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
#define CW_ADC_ST_FROM 349 //CW ADC Range STRAIGHT KEY from (Lower 8 bit)
#define CW_ADC_ST_TO 350 //CW ADC Range STRAIGHT KEY to (Lower 8 bit)
#define CW_ADC_DOT_FROM 351 //CW ADC Range DOT from (Lower 8 bit)
#define CW_ADC_DOT_TO 352 //CW ADC Range DOT to (Lower 8 bit)
#define CW_ADC_MOST_BIT2 353 //most 2bits of BOTH_TO, BOTH_FROM, DASH_TO, DASH_FROM
#define CW_ADC_DASH_FROM 354 //CW ADC Range DASH from (Lower 8 bit)
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
//Check Firmware type and version
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
@@ -211,7 +231,7 @@ unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier;
unsigned long vfoA_eeprom, vfoB_eeprom; //for protect eeprom life
unsigned long frequency, ritRxFrequency, ritTxFrequency; //frequency is the current frequency on the dial
int cwSpeed = 100; //this is actuall the dot period in milliseconds
unsigned int cwSpeed = 100; //this is actuall the dot period in milliseconds
extern int32_t calibration;
//for store the mode in eeprom
@@ -235,7 +255,18 @@ byte sideToneSub = 0;
//DialLock
byte isDialLock = 0; //000000[0]vfoB [0]vfoA 0Bit : A, 1Bit : B
byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop]
byte arTuneStep[5];
byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user
//CW ADC Range
int cwAdcSTFrom = 0;
int cwAdcSTTo = 0;
int cwAdcDotFrom = 0;
int cwAdcDotTo = 0;
int cwAdcDashFrom = 0;
int cwAdcDashTo = 0;
int cwAdcBothFrom = 0;
int cwAdcBothTo = 0;
//Variables for auto cw mode
byte isCWAutoMode = 0; //0 : none, 1 : CW_AutoMode_Menu_Selection, 2 : CW_AutoMode Sending
@@ -320,8 +351,8 @@ void setNextHamBandFreq(unsigned long f, char moveDirection)
loadMode = (byte)(resultFreq >> 30);
resultFreq = resultFreq & 0x3FFFFFFF;
if ((resultFreq / 1000) < hamBandRange[findedIndex][0] || (resultFreq / 1000) > hamBandRange[findedIndex][1])
resultFreq = (unsigned long)(hamBandRange[findedIndex][0]) * 1000;
if ((resultFreq / 1000) < hamBandRange[(unsigned char)findedIndex][0] || (resultFreq / 1000) > hamBandRange[(unsigned char)findedIndex][1])
resultFreq = (unsigned long)(hamBandRange[(unsigned char)findedIndex][0]) * 1000;
setFrequency(resultFreq);
byteWithFreqToMode(loadMode);
@@ -344,7 +375,7 @@ unsigned long delayBeforeTime = 0;
byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWKey -> Check Paddle
delayBeforeTime = millis();
while (millis() <= delayBeforeTime + delayTime) {
while (millis() - delayBeforeTime <= delayTime) {
if (fromType == 4)
{
@@ -422,10 +453,7 @@ void setTXFilters(unsigned long freq){
*/
void setFrequency(unsigned long f){
uint64_t osc_f;
//1 digits discarded
f = (f / 50) * 50;
f = (f / arTuneStep[tuneStepIndex -1]) * arTuneStep[tuneStepIndex -1];
setTXFilters(f);
@@ -448,8 +476,6 @@ void setFrequency(unsigned long f){
*/
void startTx(byte txMode, byte isDisplayUpdate){
unsigned long tx_freq = 0;
//Check Hamband only TX //Not found Hamband index by now frequency
if (tuneTXType >= 100 && getIndexHambanBbyFreq(ritOn ? ritTxFrequency : frequency) == -1) {
//no message
@@ -545,8 +571,6 @@ void checkPTT(){
}
void checkButton(){
int i, t1, t2, knob, new_knob;
//only if the button is pressed
if (!btnDown())
return;
@@ -565,17 +589,24 @@ void checkButton(){
}
/**
* The tuning jumps by 50 Hz on each step when you tune slowly
* As you spin the encoder faster, the jump size also increases
* This way, you can quickly move to another band by just spinning the
* tuning knob
*/
/************************************
Replace function by KD8CEC
prevent error controls
applied Threshold for reduct errors, dial Lock, dynamic Step
*************************************/
byte threshold = 2; //noe action for count
unsigned long lastEncInputtime = 0;
int encodedSumValue = 0;
unsigned long lastTunetime = 0; //if continous moving, skip threshold processing
byte lastMovedirection = 0; //0 : stop, 1 : cw, 2 : ccw
void doTuning(){
#define skipThresholdTime 100
#define encodeTimeOut 1000
void doTuningWithThresHold(){
int s = 0;
unsigned long prev_freq;
int incdecValue = 0;
long incdecValue = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02)))
@@ -584,54 +615,47 @@ void doTuning(){
if (isCWAutoMode == 0 || cwAutoDialType == 1)
s = enc_read();
if (s){
prev_freq = frequency;
if (s > 10)
incdecValue = 200000l;
if (s > 7)
incdecValue = 10000l;
else if (s > 4)
incdecValue = 1000l;
else if (s > 2)
incdecValue = 500;
else if (s > 0)
incdecValue = 50l;
else if (s > -2)
incdecValue = -50l;
else if (s > -4)
incdecValue = -500l;
else if (s > -7)
incdecValue = -1000l;
else if (s > -9)
incdecValue = -10000l;
else
incdecValue = -200000l;
//if time is exceeded, it is recognized as an error,
//ignore exists values, because of errors
if (s == 0) {
if (encodedSumValue != 0 && (millis() - encodeTimeOut) > lastEncInputtime)
encodedSumValue = 0;
if (incdecValue > 0 && frequency + incdecValue > HIGHEST_FREQ_DIAL)
frequency = HIGHEST_FREQ_DIAL;
else if (incdecValue < 0 && frequency < -incdecValue + LOWEST_FREQ_DIAL) //for compute and compare based integer type.
frequency = LOWEST_FREQ_DIAL;
else
frequency += incdecValue;
if (prev_freq < 10000000l && frequency > 10000000l)
isUSB = true;
if (prev_freq > 10000000l && frequency < 10000000l)
isUSB = false;
setFrequency(frequency);
updateDisplay();
lastMovedirection = 0;
return;
}
lastEncInputtime = millis();
//for check moving direction
encodedSumValue += (s > 0 ? 1 : -1);
//check threshold and operator actions (hold dial speed = continous moving, skip threshold check)
if ((lastTunetime < millis() - skipThresholdTime) && ((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
return;
lastTunetime = millis();
//Valid Action without noise
encodedSumValue = 0;
prev_freq = frequency;
//incdecValue = tuningStep * s;
frequency += (arTuneStep[tuneStepIndex -1] * s * (s * s < 10 ? 1 : 3)); //appield weight (s is speed)
if (prev_freq < 10000000l && frequency > 10000000l)
isUSB = true;
if (prev_freq > 10000000l && frequency < 10000000l)
isUSB = false;
setFrequency(frequency);
updateDisplay();
}
/**
* RIT only steps back and forth by 100 hz at a time
*/
void doRIT(){
unsigned long newFreq;
int knob = enc_read();
unsigned long old_freq = frequency;
@@ -694,7 +718,10 @@ void initSettings(){
EEPROM.get(VFO_B, vfoB);
EEPROM.get(CW_SIDETONE, sideTone);
EEPROM.get(CW_SPEED, cwSpeed);
//End of original code
//----------------------------------------------------------------
//Add Lines by KD8CEC
//for custom source Section =============================
//ID & Version Check from EEProm
//if found different firmware, erase eeprom (32
@@ -738,18 +765,103 @@ void initSettings(){
EEPROM.get(HAM_BAND_COUNT, useHamBandCount);
EEPROM.get(TX_TUNE_TYPE, tuneTXType);
if ((3 < tuneTXType && tuneTXType < 100) || 103 < tuneTXType || useHamBandCount < 1)
tuneTXType = 0;
byte findedValidValueCount = 0;
//Read band Information
for (byte i = 0; i < useHamBandCount; i++) {
unsigned int tmpReadValue = 0;
EEPROM.get(HAM_BAND_RANGE + 4 * i, tmpReadValue);
hamBandRange[i][0] = tmpReadValue;
if (tmpReadValue > 1 && tmpReadValue < 55000)
findedValidValueCount++;
EEPROM.get(HAM_BAND_RANGE + 4 * i + 2, tmpReadValue);
hamBandRange[i][1] = tmpReadValue;
}
//Check Value Range and default Set for new users
if ((3 < tuneTXType && tuneTXType < 100) || 103 < tuneTXType || useHamBandCount < 1 || findedValidValueCount < 5)
{
tuneTXType = 2;
//if empty band Information, auto insert default region 1 frequency range
//This part is made temporary for people who have difficulty setting up, so can remove it when you run out of memory.
useHamBandCount = 10;
hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000;
hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800;
hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367;
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7200;
hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150;
hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350;
hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168;
hamBandRange[7][0] = 21000; hamBandRange[7][1] = 21450;
hamBandRange[8][0] = 24890; hamBandRange[8][1] = 24990;
hamBandRange[9][0] = 28000; hamBandRange[9][1] = 29700;
}
//Read Tuning Step Index, and steps
findedValidValueCount = 0;
EEPROM.get(TUNING_STEP, tuneStepIndex);
for (byte i = 0; i < 5; i++) {
arTuneStep[i] = EEPROM.read(TUNING_STEP + i + 1);
if (arTuneStep[i] >= 1 && arTuneStep[i] < 251) //Maximum 250 for check valid Value
findedValidValueCount++;
}
//Check Value Range and default Set for new users
if (findedValidValueCount < 5)
{
//Default Setting
arTuneStep[0] = 10;
arTuneStep[1] = 20;
arTuneStep[2] = 50;
arTuneStep[3] = 100;
arTuneStep[4] = 200;
}
if (tuneStepIndex == 0) //New User
tuneStepIndex = 3;
//CW Key ADC Range ======= adjust set value for reduce cw keying error
//by KD8CEC
unsigned int tmpMostBits = 0;
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT1);
cwAdcSTFrom = EEPROM.read(CW_ADC_ST_FROM) | ((tmpMostBits & 0x03) << 8);
cwAdcSTTo = EEPROM.read(CW_ADC_ST_TO) | ((tmpMostBits & 0x0C) << 6);
cwAdcDotFrom = EEPROM.read(CW_ADC_DOT_FROM) | ((tmpMostBits & 0x30) << 4);
cwAdcDotTo = EEPROM.read(CW_ADC_DOT_TO) | ((tmpMostBits & 0xC0) << 2);
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT2);
cwAdcDashFrom = EEPROM.read(CW_ADC_DASH_FROM) | ((tmpMostBits & 0x03) << 8);
cwAdcDashTo = EEPROM.read(CW_ADC_DASH_TO) | ((tmpMostBits & 0x0C) << 6);
cwAdcBothFrom = EEPROM.read(CW_ADC_BOTH_FROM) | ((tmpMostBits & 0x30) << 4);
cwAdcBothTo = EEPROM.read(CW_ADC_BOTH_TO) | ((tmpMostBits & 0xC0) << 2);
//default Value (for original hardware)
if (cwAdcSTFrom >= cwAdcSTTo)
{
cwAdcSTFrom = 0;
cwAdcSTTo = 50;
}
if (cwAdcBothFrom >= cwAdcBothTo)
{
cwAdcBothFrom = 51;
cwAdcBothTo = 300;
}
if (cwAdcDotFrom >= cwAdcDotTo)
{
cwAdcDotFrom = 301;
cwAdcDotTo = 600;
}
if (cwAdcDashFrom >= cwAdcDashTo)
{
cwAdcDashFrom = 601;
cwAdcDashTo = 800;
}
//end of CW Keying Variables
if (cwDelayTime < 1 || cwDelayTime > 250)
cwDelayTime = 60;
@@ -760,6 +872,7 @@ void initSettings(){
if (vfoB_mode < 2)
vfoB_mode = 3;
//original code with modified by kd8cec
if (usbCarrier > 12010000l || usbCarrier < 11990000l)
usbCarrier = 11995000l;
@@ -772,8 +885,9 @@ void initSettings(){
vfoB = 14150000l;
vfoB_mode = 3;
}
//end of original code section
//for protect eeprom life
//for protect eeprom life by KD8CEC
vfoA_eeprom = vfoA;
vfoB_eeprom = vfoB;
vfoA_mode_eeprom = vfoA_mode;
@@ -844,7 +958,7 @@ void setup()
//Serial.begin(9600);
lcd.begin(16, 2);
printLineF(1, F("CECBT v0.27"));
printLineF(1, F("CECBT v0.30"));
Init_Cat(38400, SERIAL_8N1);
initMeter(); //not used in this build
@@ -931,7 +1045,7 @@ void loop(){
if (ritOn)
doRIT();
else
doTuning();
doTuningWithThresHold();
}
//we check CAT after the encoder as it might put the radio into TX

View File

@@ -1,6 +1,9 @@
/**
* CW Keyer
*
CW Keyer
CW Key logic change with ron's code (ubitx_keyer.cpp)
Ron's logic has been modified to work with the original uBITX by KD8CEC
Original Comment ----------------------------------------------------------------------------
* The CW keyer handles either a straight key or an iambic / paddle key.
* They all use just one analog input line. This is how it works.
* The analog line has the internal pull-up resistor enabled.
@@ -34,7 +37,6 @@
//when both are simultaneously pressed
char lastPaddle = 0;
//reads the analog keyer pin and reports the paddle
byte getPaddle(){
int paddle = analogRead(ANALOG_KEYER);
@@ -81,13 +83,183 @@ void cwKeyUp(){
cwTimeout = millis() + cwDelayTime * 10;
}
//Variables for Ron's new logic
#define DIT_L 0x01 // DIT latch
#define DAH_L 0x02 // DAH latch
#define DIT_PROC 0x04 // DIT is being processed
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
static long ktimer;
bool Iambic_Key = true;
unsigned char keyerControl = IAMBICB;
unsigned char keyerState = IDLE;
//Below is a test to reduce the keying error. do not delete lines
//create by KD8CEC for compatible with new CW Logic
char update_PaddleLatch(byte isUpdateKeyState) {
unsigned char tmpKeyerControl;
int paddle = analogRead(ANALOG_KEYER);
if (paddle > cwAdcDashFrom && paddle < cwAdcDashTo)
tmpKeyerControl |= DAH_L;
else if (paddle > cwAdcDotFrom && paddle < cwAdcDotTo)
tmpKeyerControl |= DIT_L;
else if (paddle > cwAdcBothFrom && paddle < cwAdcBothTo)
tmpKeyerControl |= (DAH_L | DIT_L) ;
else
{
if (Iambic_Key)
tmpKeyerControl = 0 ;
else if (paddle > cwAdcSTFrom && paddle < cwAdcSTTo)
tmpKeyerControl = DIT_L ;
else
tmpKeyerControl = 0 ;
}
if (isUpdateKeyState == 1)
keyerControl |= tmpKeyerControl;
return tmpKeyerControl;
}
/*****************************************************************************
// New logic, by RON
// modified by KD8CEC
******************************************************************************/
void cwKeyer(void){
byte paddle;
lastPaddle = 0;
int dot,dash;
bool continue_loop = true;
unsigned tmpKeyControl = 0;
if( Iambic_Key ) {
while(continue_loop) {
switch (keyerState) {
case IDLE:
tmpKeyControl = update_PaddleLatch(0);
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
update_PaddleLatch(1);
keyerState = CHK_DIT;
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
stopTx();
}
continue_loop = false;
}
break;
case CHK_DIT:
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = cwSpeed;
keyerState = KEYED_PREP;
}else{
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
ktimer = cwSpeed*3;
keyerState = KEYED_PREP;
}else{
keyerState = IDLE;
}
break;
case KEYED_PREP:
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
cwKeydown();
break;
case KEYED:
if (millis() > ktimer) { // are we at end of key down ?
cwKeyUp();
ktimer = millis() + cwSpeed; // inter-element time
keyerState = INTER_ELEMENT; // next state
}else if (keyerControl & IAMBICB) {
update_PaddleLatch(1); // early paddle latch in Iambic B mode
}
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(1); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
}else{
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
}
break;
}
Check_Cat(3);
} //end of while
}
else{
while(1){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
cwKeydown();
while ( update_PaddleLatch(0) == DIT_L )
delay_background(1, 3);
cwKeyUp();
}
else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
stopTx();
}
if (!cwTimeout)
return;
// got back to the beginning of the loop, if no further activity happens on straight key
// we will time out, and return out of this routine
//delay(5);
delay_background(5, 3);
continue;
}
Check_Cat(2);
} //end of while
} //end of elese
}
//=======================================================================================
//Before logic
//by Farhan and modified by KD8CEC
//======================================================================================
/**
* The keyer handles the straight key as well as the iambic key
* This module keeps looping until the user stops sending cw
* if the cwTimeout is set to 0, then it means, we have to exit the keyer loop
* Each time the key is hit the cwTimeout is pushed to a time in the future by cwKeyDown()
*/
/*
void cwKeyer(){
byte paddle;
lastPaddle = 0;
@@ -111,17 +283,7 @@ void cwKeyer(){
if (!cwTimeout)
return;
//if a paddle was used (not a straight key) we should extend the space to be a full dash
//by adding two more dots long space (one has already been added at the end of the dot or dash)
/*
if (cwTimeout > 0 && lastPaddle != PADDLE_STRAIGHT)
delay_background(cwSpeed * 2, 3);
//delay(cwSpeed * 2);
// got back to the begining of the loop, if no further activity happens on the paddle or the straight key
// we will time out, and return out of this routine
delay(5);
*/
Check_Cat(2); //for uBITX on Raspberry pi, when straight keying, disconnect / test complete
continue;
}
@@ -184,3 +346,6 @@ void cwKeyer(){
delay(cwSpeed);
}
}
*/

View File

@@ -13,7 +13,8 @@
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
int menuBand(int btn){
//Ham band move by KD8CEC
void menuBand(int btn){
int knob = 0;
int stepChangeCount = 0;
byte btnPressCount = 0;
@@ -36,21 +37,6 @@ int menuBand(int btn){
}
else {
tuneTXType = 2;
//if empty band Information, auto insert default region 1 frequency range
//This part is made temporary for people who have difficulty setting up, so can remove it when you run out of memory.
if (useHamBandCount < 1) {
useHamBandCount = 10;
hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000;
hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800;
hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367;
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7200;
hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150;
hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350;
hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168;
hamBandRange[7][0] = 21000; hamBandRange[7][1] = 21450;
hamBandRange[8][0] = 24890; hamBandRange[8][1] = 24990;
hamBandRange[9][0] = 28000; hamBandRange[9][1] = 29700;
}
printLineF2(F("Ham band mode"));
}
delay_background(1000, 0);
@@ -132,6 +118,7 @@ int menuBand(int btn){
menuOn = 0;
}
//Convert Mode, Number by KD8CEC
//0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM
byte modeToByte(){
if (isUSB)
@@ -140,12 +127,15 @@ byte modeToByte(){
return 2;
}
//Convert Number to Mode by KD8CEC
void byteToMode(byte modeValue){
if (modeValue == 3)
isUSB = 1;
else
isUSB = 0;
}
//Convert Number to Mode by KD8CEC
void byteWithFreqToMode(byte modeValue){
if (modeValue == 3)
isUSB = 1;
@@ -155,7 +145,8 @@ void byteWithFreqToMode(byte modeValue){
isUSB = 0;
}
void menuVfoToggle(int btn)
//VFO Toggle and save VFO Information, modified by KD8CEC
void menuVfoToggle(int btn, char isUseDelayTime)
{
if (!btn){
if (vfoActive == VFO_A)
@@ -189,8 +180,9 @@ void menuVfoToggle(int btn)
ritDisable();
//updateDisplay();
delay_background(500, 0);
if (isUseDelayTime == 1) //Found Issue in wsjt-x Linux 32bit
delay_background(500, 0);
printLine2ClearAndUpdate();
//exit the menu
menuOn = 0;
@@ -243,6 +235,123 @@ void menuSidebandToggle(int btn){
}
}
//Select CW Key Type by KD8CEC
void menuSetupKeyType(int btn){
if (!btn && digitalRead(PTT) == HIGH){
if (Iambic_Key)
printLineF2(F("Key: Straight?"));
else
printLineF2(F("Key: Fn=A, PTT=B"));
}
else {
if (Iambic_Key)
{
printLineF2(F("Straight Key!"));
Iambic_Key = false;
}
else
{
Iambic_Key = true;
if (btn)
{
keyerControl &= ~IAMBICB;
printLineF2(F("IAMBICA Key!"));
}
else
{
keyerControl |= IAMBICB;
printLineF2(F("IAMBICB Key!"));
}
}
delay_background(500, 0);
printLine2ClearAndUpdate();
menuOn = 0;
}
}
//Analog pin monitoring with CW Key and function keys connected.
//by KD8CEC
void menuADCMonitor(int btn){
int adcPinA0 = 0; //A0(BLACK, EncoderA)
int adcPinA1 = 0; //A1(BROWN, EncoderB)
int adcPinA2 = 0; //A2(RED, Function Key)
int adcPinA3 = 0; //A3(ORANGE, CW Key)
int adcPinA6 = 0; //A6(BLUE, Ptt)
int adcPinA7 = 0; //A7(VIOLET, Spare)
unsigned long pressKeyTime = 0;
if (!btn){
printLineF2(F("ADC Line Monitor"));
return;
}
printLineF2(F("Exit:Long PTT"));
delay_background(2000, 0);
printLineF1(F("A0 A1 A2"));
printLineF2(F("A3 A6 A7"));
delay_background(3000, 0);
while (true) {
adcPinA0 = analogRead(A0); //A0(BLACK, EncoderA)
adcPinA1 = analogRead(A1); //A1(BROWN, EncoderB)
adcPinA2 = analogRead(A2); //A2(RED, Function Key)
adcPinA3 = analogRead(A3); //A3(ORANGE, CW Key)
adcPinA6 = analogRead(A6); //A6(BLUE, Ptt)
adcPinA7 = analogRead(A7); //A7(VIOLET, Spare)
/*
sprintf(c, "%4d %4d %4d", adcPinA0, adcPinA1, adcPinA2);
printLine1(c);
sprintf(c, "%4d %4d %4d", adcPinA3, adcPinA6, adcPinA7);
printLine2(c);
*/
if (adcPinA6 < 10) {
if (pressKeyTime == 0)
pressKeyTime = millis();
else if (pressKeyTime < (millis() - 3000))
break;
}
else
pressKeyTime = 0;
ltoa(adcPinA0, c, 10);
//strcat(b, c);
strcpy(b, c);
strcat(b, ", ");
ltoa(adcPinA1, c, 10);
strcat(b, c);
strcat(b, ", ");
ltoa(adcPinA2, c, 10);
strcat(b, c);
printLine1(b);
//strcpy(b, " ");
ltoa(adcPinA3, c, 10);
strcpy(b, c);
strcat(b, ", ");
ltoa(adcPinA6, c, 10);
strcat(b, c);
strcat(b, ", ");
ltoa(adcPinA7, c, 10);
strcat(b, c);
printLine2(b);
delay_background(200, 0);
} //end of while
printLine2ClearAndUpdate();
menuOn = 0;
}
//Function to disbled transmission
//by KD8CEC
void menuTxOnOff(int btn, byte optionType){
if (!btn){
if ((isTxType & optionType) == 0)
@@ -301,7 +410,7 @@ void menuExit(int btn){
}
}
int menuCWSpeed(int btn){
void menuCWSpeed(int btn){
int knob = 0;
int wpm;
@@ -356,7 +465,8 @@ int menuCWSpeed(int btn){
menuOn = 0;
}
int menuCWAutoKey(int btn){
//Builtin CW Keyer Logic by KD8CEC
void menuCWAutoKey(int btn){
if (!btn){
printLineF2(F("CW AutoKey Mode?"));
return;
@@ -379,7 +489,8 @@ int menuCWAutoKey(int btn){
menuOn = 0;
}
int menuSetupCwDelay(int btn){
//Modified by KD8CEC
void menuSetupCwDelay(int btn){
int knob = 0;
int tmpCWDelay = cwDelayTime * 10;
@@ -427,7 +538,8 @@ int menuSetupCwDelay(int btn){
menuOn = 0;
}
int menuSetupTXCWInterval(int btn){
//CW Time delay by KD8CEC
void menuSetupTXCWInterval(int btn){
int knob = 0;
int tmpTXCWInterval = delayBeforeCWStartTime * 2;
@@ -490,10 +602,8 @@ int menuSetupTXCWInterval(int btn){
extern int32_t calibration;
extern uint32_t si5351bx_vcoa;
int factoryCalibration(int btn){
void factoryCalibration(int btn){
int knob = 0;
int32_t prev_calibration;
//keep clear of any previous button press
while (btnDown())
@@ -502,10 +612,9 @@ int factoryCalibration(int btn){
if (!btn){
printLineF2(F("Set Calibration?"));
return 0;
return;
}
prev_calibration = calibration;
calibration = 0;
isUSB = true;
@@ -560,13 +669,13 @@ int factoryCalibration(int btn){
delay(100);
}
int menuSetupCalibration(int btn){
void menuSetupCalibration(int btn){
int knob = 0;
int32_t prev_calibration;
if (!btn){
printLineF2(F("Set Calibration?"));
return 0;
return;
}
printLineF1(F("Set to Zero-beat,"));
@@ -641,6 +750,7 @@ void printCarrierFreq(unsigned long freq){
printLine2(c);
}
//modified by KD8CEC (just 1 line remarked //usbCarrier = ...
void menuSetupCarrier(int btn){
int knob = 0;
unsigned long prevCarrier;
@@ -655,7 +765,8 @@ void menuSetupCarrier(int btn){
printLineF1(F("PTT to confirm. "));
delay_background(1000, 0);
usbCarrier = 11995000l;
//usbCarrier = 11995000l; //Remarked by KD8CEC, Suggest from many user, if entry routine factoryrest
si5351bx_setfreq(0, usbCarrier);
printCarrierFreq(usbCarrier);
@@ -693,6 +804,7 @@ void menuSetupCarrier(int btn){
menuOn = 0;
}
//Modified by KD8CEC
void menuSetupCwTone(int btn){
int knob = 0;
int prev_sideTone;
@@ -741,6 +853,7 @@ void menuSetupCwTone(int btn){
menuOn = 0;
}
//Lock Dial move by KD8CEC
void setDialLock(byte tmpLock, byte fromMode) {
if (tmpLock == 1)
isDialLock |= (vfoActive == VFO_A ? 0x01 : 0x02);
@@ -758,22 +871,30 @@ void setDialLock(byte tmpLock, byte fromMode) {
printLine2ClearAndUpdate();
}
int btnDownTimeCount;
unsigned int btnDownTimeCount;
#define PRESS_ADJUST_TUNE 1000
#define PRESS_LOCK_CONTROL 2000
//Modified by KD8CEC
void doMenu(){
int select=0, i,btnState;
char isNeedDisplay = 0;
//for DialLock On/Off function
btnDownTimeCount = 0;
//wait for the button to be raised up
//Appened Lines by KD8CEC for Adjust Tune step and Set Dial lock
while(btnDown()){
delay(50);
Check_Cat(0); //To prevent disconnections
//btnDownTimeCount++;
//check long time Down Button -> 3 Second
if (btnDownTimeCount++ > (2000 / 50)) {
if (btnDownTimeCount++ == (PRESS_ADJUST_TUNE / 50)) { //Set Tune Step
printLineF2(F("Set Tune Step?"));
}
else if (btnDownTimeCount > (PRESS_LOCK_CONTROL / 50)) { //check long time Down Button -> 2.5 Second => Lock
if (vfoActive == VFO_A)
setDialLock((isDialLock & 0x01) == 0x01 ? 0 : 1, 0); //Reverse Dial lock
else
@@ -783,6 +904,55 @@ void doMenu(){
}
delay(50); //debounce
//ADJUST TUNE STEP
if (btnDownTimeCount > (PRESS_ADJUST_TUNE / 50))
{
printLineF1(F("Press Key to set"));
isNeedDisplay = 1; //check to need display for display current value
while (digitalRead(PTT) == HIGH && !btnDown())
{
Check_Cat(0); //To prevent disconnections
delay(50); //debounce
if (isNeedDisplay) {
strcpy(b, "Tune Step:");
itoa(arTuneStep[tuneStepIndex -1], c, 10);
strcat(b, c);
printLine2(b);
isNeedDisplay = 0;
}
i = enc_read();
if (i != 0) {
select += (i > 0 ? 1 : -1);
if (select * select >= 25) { //Threshold 5 * 5 = 25
if (select < 0) {
if (tuneStepIndex > 1)
tuneStepIndex--;
}
else {
if (tuneStepIndex < 5)
tuneStepIndex++;
}
select = 0;
isNeedDisplay = 1;
}
}
} //end of while
printLineF2(F("Changed Step!"));
//SAVE EEPROM
EEPROM.put(TUNING_STEP, tuneStepIndex);
delay_background(500, 0);
printLine2ClearAndUpdate();
return;
} //set tune step
//Below codes are origial code with modified by KD8CEC
//Select menu
menuOn = 2;
while (menuOn){
@@ -790,20 +960,23 @@ void doMenu(){
btnState = btnDown();
if (i > 0){
if (modeCalibrate && select + i < 150)
if (modeCalibrate && select + i < 170)
select += i;
if (!modeCalibrate && select + i < 80)
select += i;
}
if (i < 0 && select - i >= 0)
//if (i < 0 && select - i >= 0)
if (i < 0 && select - i >= -10)
select += i; //caught ya, i is already -ve here, so you add it
if (select < 10)
if (select < -5)
menuExit(btnState);
else if (select < 10)
menuBand(btnState);
else if (select < 20)
menuRitToggle(btnState);
else if (select < 30)
menuVfoToggle(btnState);
menuVfoToggle(btnState, 1);
else if (select < 40)
menuSidebandToggle(btnState);
else if (select < 50)
@@ -825,8 +998,12 @@ void doMenu(){
else if (select < 130 && modeCalibrate)
menuSetupTXCWInterval(btnState);
else if (select < 140 && modeCalibrate)
menuTxOnOff(btnState, 0x01); //TX OFF / ON
menuSetupKeyType(btnState);
else if (select < 150 && modeCalibrate)
menuADCMonitor(btnState);
else if (select < 160 && modeCalibrate)
menuTxOnOff(btnState, 0x01); //TX OFF / ON
else if (select < 170 && modeCalibrate)
menuExit(btnState);
Check_Cat(0); //To prevent disconnections

View File

@@ -62,7 +62,7 @@ void i2cWriten(uint8_t reg, uint8_t *vals, uint8_t vcnt) { // write array
void si5351bx_init() { // Call once at power-up, start PLLA
uint8_t reg; uint32_t msxp1;
uint32_t msxp1;
Wire.begin();
i2cWrite(149, 0); // SpreadSpectrum off
i2cWrite(3, si5351bx_clken); // Disable all CLK output drivers

View File

@@ -115,7 +115,7 @@ void drawMeter(int8_t needle){
*/
// The generic routine to display one line on the LCD
void printLine(char linenmbr, char *c) {
void printLine(unsigned char linenmbr, const char *c) {
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
lcd.print(c);
@@ -160,11 +160,11 @@ void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, b
}
// short cut to print to the first line
void printLine1(char *c){
void printLine1(const char *c){
printLine(1,c);
}
// short cut to print to the first line
void printLine2(char *c){
void printLine2(const char *c){
printLine(0,c);
}
@@ -312,9 +312,9 @@ int enc_read(void) {
byte newState;
int enc_speed = 0;
long stop_by = millis() + 50;
unsigned long start_at = millis();
while (millis() < stop_by) { // check if the previous state was stable
while (millis() - start_at < 50) { // check if the previous state was stable
newState = enc_state(); // Get current state
if (newState != enc_prev_state)