Compare commits
9 Commits
version0.2
...
version0.3
Author | SHA1 | Date | |
---|---|---|---|
|
a49d5e85b8 | ||
|
282c196f63 | ||
|
ee23827def | ||
|
8d4c788e11 | ||
|
cc7dd752e6 | ||
|
4506ff1c1b | ||
|
db543c43e1 | ||
|
981db341db | ||
|
020b34e504 |
@@ -1,4 +1,5 @@
|
||||
/*************************************************************************
|
||||
KD8CEC's CAT Library for uBITX and HAM
|
||||
This source code is written for uBITX, but it can also be used on other radios.
|
||||
|
||||
The CAT protocol is used by many radios to provide remote control to comptuers through
|
||||
@@ -471,7 +472,7 @@ void WriteEEPRom_FT817(byte fromType)
|
||||
printLineF2(F("Sidetone set! CAT"));
|
||||
EEPROM.put(CW_SIDETONE, sideTone);
|
||||
delay(300); //If timeout errors occur in the calling software, remove them
|
||||
printLine2(""); //Ham radio deluxe is the only one that supports this feature yet. and ham radio deluxe has wait time as greater than 500ms
|
||||
clearLine2();
|
||||
}
|
||||
break;
|
||||
|
||||
@@ -483,7 +484,8 @@ void WriteEEPRom_FT817(byte fromType)
|
||||
printLineF2(F("Sidetone set! CAT"));
|
||||
EEPROM.put(CW_SIDETONE, sideTone);
|
||||
delay(300); //If timeout errors occur in the calling software, remove them
|
||||
printLine2(""); //Ham radio deluxe is the only one that supports this feature yet. and ham radio deluxe has wait time as greater than 500ms
|
||||
clearLine2();
|
||||
line2DisplayStatus = 0;
|
||||
}
|
||||
break;
|
||||
|
||||
@@ -503,7 +505,7 @@ void WriteEEPRom_FT817(byte fromType)
|
||||
printLineF2(F("CW Speed set!"));
|
||||
EEPROM.put(CW_DELAY, cwDelayTime);
|
||||
delay(300);
|
||||
printLine2("");
|
||||
clearLine2();
|
||||
break;
|
||||
case 0x62 : //
|
||||
//5-0 CW Speed (4-60 WPM) (#21) From 0 to 38 (HEX) with 0 = 4 WPM and 38 = 60 WPM (1 WPM steps)
|
||||
@@ -512,7 +514,7 @@ void WriteEEPRom_FT817(byte fromType)
|
||||
printLineF2(F("CW Speed set!"));
|
||||
EEPROM.put(CW_SPEED, cwSpeed);
|
||||
delay(300);
|
||||
printLine2("");
|
||||
clearLine2();
|
||||
|
||||
break;
|
||||
/*
|
||||
|
@@ -1,4 +1,6 @@
|
||||
/*************************************************************************
|
||||
KD8CEC's Memory Keyer for HAM
|
||||
|
||||
This source code is written for All amateur radio operator,
|
||||
I have not had amateur radio communication for a long time. CW has been
|
||||
around for a long time, and I do not know what kind of keyer and keying
|
||||
@@ -13,6 +15,7 @@
|
||||
I wrote this code myself, so there is no license restriction.
|
||||
So this code allows anyone to write with confidence.
|
||||
But keep it as long as the original author of the code.
|
||||
DE Ian KD8CEC
|
||||
-----------------------------------------------------------------------------
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -295,8 +298,12 @@ void controlAutoCW(){
|
||||
}
|
||||
|
||||
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ);
|
||||
|
||||
byte diplayAutoCWLine = 0;
|
||||
if ((displayOption1 & 0x01) == 0x01)
|
||||
diplayAutoCWLine = 1;
|
||||
|
||||
lcd.setCursor(0,0);
|
||||
lcd.setCursor(0, diplayAutoCWLine);
|
||||
lcd.write(byteToChar(selectedCWTextIndex));
|
||||
lcd.write(':');
|
||||
isNeedScroll = (cwEndIndex - cwStartIndex) > 14 ? 1 : 0;
|
||||
|
@@ -1,4 +1,10 @@
|
||||
/**
|
||||
Since KD8CEC Version 0.29, most of the original code is no longer available.
|
||||
Most features(TX, Frequency Range, Ham Band, TX Control, CW delay, start Delay... more) have been added by KD8CEC.
|
||||
However, the license rules are subject to the original source rules.
|
||||
DE Ian KD8CEC
|
||||
|
||||
Original source comment -------------------------------------------------------------
|
||||
* This source file is under General Public License version 3.
|
||||
*
|
||||
* This verision uses a built-in Si5351 library
|
||||
@@ -78,6 +84,7 @@
|
||||
#define PTT (A3)
|
||||
#define ANALOG_KEYER (A6)
|
||||
#define ANALOG_SPARE (A7)
|
||||
#define ANALOG_SMETER (A7) //by KD8CEC
|
||||
|
||||
/**
|
||||
* The Raduino board is the size of a standard 16x2 LCD panel. It has three connectors:
|
||||
@@ -152,7 +159,24 @@ int count = 0; //to generally count ticks, loops, etc
|
||||
#define TX_TUNE_TYPE 261 //
|
||||
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
|
||||
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
|
||||
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5)
|
||||
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5)
|
||||
|
||||
//for reduce cw key error, eeprom address
|
||||
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
|
||||
#define CW_ADC_ST_FROM 349 //CW ADC Range STRAIGHT KEY from (Lower 8 bit)
|
||||
#define CW_ADC_ST_TO 350 //CW ADC Range STRAIGHT KEY to (Lower 8 bit)
|
||||
#define CW_ADC_DOT_FROM 351 //CW ADC Range DOT from (Lower 8 bit)
|
||||
#define CW_ADC_DOT_TO 352 //CW ADC Range DOT to (Lower 8 bit)
|
||||
|
||||
#define CW_ADC_MOST_BIT2 353 //most 2bits of BOTH_TO, BOTH_FROM, DASH_TO, DASH_FROM
|
||||
#define CW_ADC_DASH_FROM 354 //CW ADC Range DASH from (Lower 8 bit)
|
||||
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
|
||||
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
|
||||
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
|
||||
#define CW_KEY_TYPE 358
|
||||
|
||||
#define DISPLAY_OPTION1 361 //Display Option1
|
||||
#define DISPLAY_OPTION2 362 //Display Option2
|
||||
|
||||
//Check Firmware type and version
|
||||
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
|
||||
@@ -239,6 +263,23 @@ byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop]
|
||||
byte arTuneStep[5];
|
||||
byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user
|
||||
|
||||
byte displayOption1 = 0;
|
||||
byte displayOption2 = 0;
|
||||
|
||||
//CW ADC Range
|
||||
int cwAdcSTFrom = 0;
|
||||
int cwAdcSTTo = 0;
|
||||
int cwAdcDotFrom = 0;
|
||||
int cwAdcDotTo = 0;
|
||||
int cwAdcDashFrom = 0;
|
||||
int cwAdcDashTo = 0;
|
||||
int cwAdcBothFrom = 0;
|
||||
int cwAdcBothTo = 0;
|
||||
byte cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
|
||||
bool Iambic_Key = true;
|
||||
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
|
||||
unsigned char keyerControl = IAMBICB;
|
||||
|
||||
//Variables for auto cw mode
|
||||
byte isCWAutoMode = 0; //0 : none, 1 : CW_AutoMode_Menu_Selection, 2 : CW_AutoMode Sending
|
||||
byte cwAutoTextCount = 0; //cwAutoText Count
|
||||
@@ -267,6 +308,10 @@ unsigned long dbgCount = 0; //not used now
|
||||
unsigned char txFilter = 0; //which of the four transmit filters are in use
|
||||
boolean modeCalibrate = false;//this mode of menus shows extended menus to calibrate the oscillators and choose the proper
|
||||
//beat frequency
|
||||
|
||||
unsigned long beforeIdle_ProcessTime = 0; //for check Idle time
|
||||
byte line2DisplayStatus = 0; //0:Clear, 1 : menu, 1: DisplayFrom Idle,
|
||||
|
||||
/**
|
||||
* Below are the basic functions that control the uBitx. Understanding the functions before
|
||||
* you start hacking around
|
||||
@@ -334,7 +379,6 @@ void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) {
|
||||
EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x3FFFFFFF) | (mode << 30) );
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
KD8CEC
|
||||
When using the basic delay of the Arduino, the program freezes.
|
||||
@@ -568,8 +612,13 @@ applied Threshold for reduct errors, dial Lock, dynamic Step
|
||||
byte threshold = 2; //noe action for count
|
||||
unsigned long lastEncInputtime = 0;
|
||||
int encodedSumValue = 0;
|
||||
unsigned long lastTunetime = 0; //if continous moving, skip threshold processing
|
||||
byte lastMovedirection = 0; //0 : stop, 1 : cw, 2 : ccw
|
||||
|
||||
#define skipThresholdTime 100
|
||||
#define encodeTimeOut 1000
|
||||
void doTuning(){
|
||||
|
||||
void doTuningWithThresHold(){
|
||||
int s = 0;
|
||||
unsigned long prev_freq;
|
||||
long incdecValue = 0;
|
||||
@@ -586,6 +635,8 @@ void doTuning(){
|
||||
if (s == 0) {
|
||||
if (encodedSumValue != 0 && (millis() - encodeTimeOut) > lastEncInputtime)
|
||||
encodedSumValue = 0;
|
||||
|
||||
lastMovedirection = 0;
|
||||
return;
|
||||
}
|
||||
lastEncInputtime = millis();
|
||||
@@ -593,23 +644,25 @@ void doTuning(){
|
||||
//for check moving direction
|
||||
encodedSumValue += (s > 0 ? 1 : -1);
|
||||
|
||||
//check threshold
|
||||
if ((encodedSumValue * encodedSumValue) <= (threshold * threshold))
|
||||
//check threshold and operator actions (hold dial speed = continous moving, skip threshold check)
|
||||
if ((lastTunetime < millis() - skipThresholdTime) && ((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
|
||||
return;
|
||||
|
||||
lastTunetime = millis();
|
||||
|
||||
//Valid Action without noise
|
||||
encodedSumValue = 0;
|
||||
|
||||
prev_freq = frequency;
|
||||
//incdecValue = tuningStep * s;
|
||||
frequency += (arTuneStep[tuneStepIndex -1] * s);
|
||||
frequency += (arTuneStep[tuneStepIndex -1] * s * (s * s < 10 ? 1 : 3)); //appield weight (s is speed)
|
||||
|
||||
if (prev_freq < 10000000l && frequency > 10000000l)
|
||||
isUSB = true;
|
||||
|
||||
if (prev_freq > 10000000l && frequency < 10000000l)
|
||||
isUSB = false;
|
||||
|
||||
|
||||
setFrequency(frequency);
|
||||
updateDisplay();
|
||||
}
|
||||
@@ -680,7 +733,10 @@ void initSettings(){
|
||||
EEPROM.get(VFO_B, vfoB);
|
||||
EEPROM.get(CW_SIDETONE, sideTone);
|
||||
EEPROM.get(CW_SPEED, cwSpeed);
|
||||
|
||||
//End of original code
|
||||
|
||||
//----------------------------------------------------------------
|
||||
//Add Lines by KD8CEC
|
||||
//for custom source Section =============================
|
||||
//ID & Version Check from EEProm
|
||||
//if found different firmware, erase eeprom (32
|
||||
@@ -715,6 +771,24 @@ void initSettings(){
|
||||
|
||||
//CW interval between TX and CW Start
|
||||
EEPROM.get(CW_START, delayBeforeCWStartTime);
|
||||
EEPROM.get(CW_KEY_TYPE, cwKeyType);
|
||||
if (cwKeyType > 2)
|
||||
cwKeyType = 0;
|
||||
|
||||
if (cwKeyType == 0)
|
||||
Iambic_Key = false;
|
||||
else
|
||||
{
|
||||
Iambic_Key = true;
|
||||
if (cwKeyType = 1)
|
||||
keyerControl &= ~IAMBICB;
|
||||
else
|
||||
keyerControl |= IAMBICB;
|
||||
}
|
||||
|
||||
|
||||
EEPROM.get(DISPLAY_OPTION1, displayOption1);
|
||||
EEPROM.get(DISPLAY_OPTION2, displayOption2);
|
||||
|
||||
//User callsign information
|
||||
if (EEPROM.read(USER_CALLSIGN_KEY) == 0x59)
|
||||
@@ -749,7 +823,7 @@ void initSettings(){
|
||||
hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000;
|
||||
hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800;
|
||||
hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367;
|
||||
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7200;
|
||||
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7300; //region 1
|
||||
hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150;
|
||||
hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350;
|
||||
hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168;
|
||||
@@ -781,8 +855,47 @@ void initSettings(){
|
||||
|
||||
if (tuneStepIndex == 0) //New User
|
||||
tuneStepIndex = 3;
|
||||
|
||||
|
||||
//CW Key ADC Range ======= adjust set value for reduce cw keying error
|
||||
//by KD8CEC
|
||||
unsigned int tmpMostBits = 0;
|
||||
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT1);
|
||||
cwAdcSTFrom = EEPROM.read(CW_ADC_ST_FROM) | ((tmpMostBits & 0x03) << 8);
|
||||
cwAdcSTTo = EEPROM.read(CW_ADC_ST_TO) | ((tmpMostBits & 0x0C) << 6);
|
||||
cwAdcDotFrom = EEPROM.read(CW_ADC_DOT_FROM) | ((tmpMostBits & 0x30) << 4);
|
||||
cwAdcDotTo = EEPROM.read(CW_ADC_DOT_TO) | ((tmpMostBits & 0xC0) << 2);
|
||||
|
||||
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT2);
|
||||
cwAdcDashFrom = EEPROM.read(CW_ADC_DASH_FROM) | ((tmpMostBits & 0x03) << 8);
|
||||
cwAdcDashTo = EEPROM.read(CW_ADC_DASH_TO) | ((tmpMostBits & 0x0C) << 6);
|
||||
cwAdcBothFrom = EEPROM.read(CW_ADC_BOTH_FROM) | ((tmpMostBits & 0x30) << 4);
|
||||
cwAdcBothTo = EEPROM.read(CW_ADC_BOTH_TO) | ((tmpMostBits & 0xC0) << 2);
|
||||
|
||||
//default Value (for original hardware)
|
||||
if (cwAdcSTFrom >= cwAdcSTTo)
|
||||
{
|
||||
cwAdcSTFrom = 0;
|
||||
cwAdcSTTo = 50;
|
||||
}
|
||||
|
||||
if (cwAdcBothFrom >= cwAdcBothTo)
|
||||
{
|
||||
cwAdcBothFrom = 51;
|
||||
cwAdcBothTo = 300;
|
||||
}
|
||||
|
||||
if (cwAdcDotFrom >= cwAdcDotTo)
|
||||
{
|
||||
cwAdcDotFrom = 301;
|
||||
cwAdcDotTo = 600;
|
||||
}
|
||||
if (cwAdcDashFrom >= cwAdcDashTo)
|
||||
{
|
||||
cwAdcDashFrom = 601;
|
||||
cwAdcDashTo = 800;
|
||||
}
|
||||
//end of CW Keying Variables
|
||||
|
||||
if (cwDelayTime < 1 || cwDelayTime > 250)
|
||||
cwDelayTime = 60;
|
||||
|
||||
@@ -792,6 +905,7 @@ void initSettings(){
|
||||
if (vfoB_mode < 2)
|
||||
vfoB_mode = 3;
|
||||
|
||||
//original code with modified by kd8cec
|
||||
if (usbCarrier > 12010000l || usbCarrier < 11990000l)
|
||||
usbCarrier = 11995000l;
|
||||
|
||||
@@ -804,8 +918,9 @@ void initSettings(){
|
||||
vfoB = 14150000l;
|
||||
vfoB_mode = 3;
|
||||
}
|
||||
//end of original code section
|
||||
|
||||
//for protect eeprom life
|
||||
//for protect eeprom life by KD8CEC
|
||||
vfoA_eeprom = vfoA;
|
||||
vfoB_eeprom = vfoB;
|
||||
vfoA_mode_eeprom = vfoA_mode;
|
||||
@@ -841,6 +956,7 @@ void initPorts(){
|
||||
|
||||
pinMode(PTT, INPUT_PULLUP);
|
||||
pinMode(ANALOG_KEYER, INPUT_PULLUP);
|
||||
pinMode(ANALOG_SMETER, INPUT); //by KD8CEC
|
||||
|
||||
pinMode(CW_TONE, OUTPUT);
|
||||
digitalWrite(CW_TONE, 0);
|
||||
@@ -876,7 +992,7 @@ void setup()
|
||||
|
||||
//Serial.begin(9600);
|
||||
lcd.begin(16, 2);
|
||||
printLineF(1, F("CECBT v0.27"));
|
||||
printLineF(1, F("CECBT v0.31"));
|
||||
|
||||
Init_Cat(38400, SERIAL_8N1);
|
||||
initMeter(); //not used in this build
|
||||
@@ -890,7 +1006,7 @@ void setup()
|
||||
else {
|
||||
printLineF(0, F("uBITX v0.20"));
|
||||
delay(500);
|
||||
printLine2("");
|
||||
clearLine2();
|
||||
}
|
||||
|
||||
initPorts();
|
||||
@@ -963,8 +1079,13 @@ void loop(){
|
||||
if (ritOn)
|
||||
doRIT();
|
||||
else
|
||||
doTuning();
|
||||
}
|
||||
doTuningWithThresHold();
|
||||
|
||||
if (isCWAutoMode == 0 && beforeIdle_ProcessTime < millis() - 500) {
|
||||
idle_process();
|
||||
beforeIdle_ProcessTime = millis();
|
||||
}
|
||||
} //end of check TX Status
|
||||
|
||||
//we check CAT after the encoder as it might put the radio into TX
|
||||
Check_Cat(inTx? 1 : 0);
|
||||
|
@@ -14,6 +14,7 @@ void btnWaitForClick(){
|
||||
void factory_alignment(){
|
||||
|
||||
factoryCalibration(1);
|
||||
line2DisplayStatus = 1;
|
||||
|
||||
if (calibration == 0){
|
||||
printLine2("Setup Aborted");
|
||||
|
131
ubitx_20/ubitx_idle.ino
Normal file
131
ubitx_20/ubitx_idle.ino
Normal file
@@ -0,0 +1,131 @@
|
||||
/*************************************************************************
|
||||
KD8CEC's uBITX Idle time Processing
|
||||
Functions that run at times that do not affect TX, CW, and CAT
|
||||
It is called in 1/10 time unit.
|
||||
-----------------------------------------------------------------------------
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
**************************************************************************/
|
||||
byte line2Buffer[17];
|
||||
//KD8CEC 200Hz ST
|
||||
//L14.150 200Hz ST
|
||||
//U14.150 +150khz
|
||||
|
||||
//Example Line2 Optinal Display
|
||||
void updateLine2Buffer()
|
||||
{
|
||||
unsigned long tmpFreq = 0;
|
||||
|
||||
if (ritOn)
|
||||
{
|
||||
line2Buffer[0] = 'R';
|
||||
line2Buffer[1] = 'i';
|
||||
line2Buffer[2] = 't';
|
||||
line2Buffer[3] = 'T';
|
||||
line2Buffer[4] = 'X';
|
||||
line2Buffer[5] = ':';
|
||||
|
||||
//display frequency
|
||||
tmpFreq = ritTxFrequency;
|
||||
for (int i = 15; i >= 6; i--) {
|
||||
if (tmpFreq > 0) {
|
||||
if (i == 12 || i == 8) line2Buffer[i] = '.';
|
||||
else {
|
||||
line2Buffer[i] = tmpFreq % 10 + 0x30;
|
||||
tmpFreq /= 10;
|
||||
}
|
||||
}
|
||||
else
|
||||
line2Buffer[i] = ' ';
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if (vfoActive == VFO_B)
|
||||
{
|
||||
tmpFreq = vfoA;
|
||||
//line2Buffer[0] = 'A';
|
||||
}
|
||||
else
|
||||
{
|
||||
tmpFreq = vfoB;
|
||||
//line2Buffer[0] = 'B';
|
||||
}
|
||||
|
||||
//U14.150.100
|
||||
//display frequency
|
||||
for (int i = 9; i >= 0; i--) {
|
||||
if (tmpFreq > 0) {
|
||||
if (i == 2 || i == 6) line2Buffer[i] = '.';
|
||||
else {
|
||||
line2Buffer[i] = tmpFreq % 10 + 0x30;
|
||||
tmpFreq /= 10;
|
||||
}
|
||||
}
|
||||
else
|
||||
line2Buffer[i] = ' ';
|
||||
}
|
||||
|
||||
line2Buffer[6] = 'k';
|
||||
|
||||
line2Buffer[7] = ' ';
|
||||
|
||||
//Step
|
||||
byte tmpStep = arTuneStep[tuneStepIndex -1];
|
||||
for (int i = 10; i >= 8; i--) {
|
||||
if (tmpStep > 0) {
|
||||
line2Buffer[i] = tmpStep % 10 + 0x30;
|
||||
tmpStep /= 10;
|
||||
}
|
||||
else
|
||||
line2Buffer[i] = ' ';
|
||||
}
|
||||
line2Buffer[11] = 'H';
|
||||
line2Buffer[12] = 'z';
|
||||
|
||||
line2Buffer[13] = ' ';
|
||||
//if (
|
||||
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
|
||||
if (cwKeyType == 0)
|
||||
{
|
||||
line2Buffer[14] = 'S';
|
||||
line2Buffer[15] = 'T';
|
||||
}
|
||||
else if (cwKeyType == 1)
|
||||
{
|
||||
line2Buffer[14] = 'I';
|
||||
line2Buffer[15] = 'A';
|
||||
}
|
||||
else
|
||||
{
|
||||
line2Buffer[14] = 'I';
|
||||
line2Buffer[15] = 'B';
|
||||
}
|
||||
}
|
||||
|
||||
void idle_process()
|
||||
{
|
||||
//space for user graphic display
|
||||
if (menuOn == 0)
|
||||
{
|
||||
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
|
||||
//if (line2DisplayStatus == 0) {
|
||||
updateLine2Buffer();
|
||||
printLine2(line2Buffer);
|
||||
line2DisplayStatus = 2;
|
||||
//}
|
||||
}
|
||||
}
|
||||
|
@@ -1,8 +1,9 @@
|
||||
/**
|
||||
* CW Keyer
|
||||
* CW Key logic change with ron's code (ubitx_keyer.cpp) <=== **********************************
|
||||
* The file you are working on. The code only applies and is still in testing. <==== ***********
|
||||
*
|
||||
CW Keyer
|
||||
CW Key logic change with ron's code (ubitx_keyer.cpp)
|
||||
Ron's logic has been modified to work with the original uBITX by KD8CEC
|
||||
|
||||
Original Comment ----------------------------------------------------------------------------
|
||||
* The CW keyer handles either a straight key or an iambic / paddle key.
|
||||
* They all use just one analog input line. This is how it works.
|
||||
* The analog line has the internal pull-up resistor enabled.
|
||||
@@ -82,204 +83,167 @@ void cwKeyUp(){
|
||||
cwTimeout = millis() + cwDelayTime * 10;
|
||||
}
|
||||
|
||||
/*****************************************************************************
|
||||
// New logic, by RON
|
||||
// modified by KD8CEC
|
||||
******************************************************************************/
|
||||
//Variables for Ron's new logic
|
||||
#define DIT_L 0x01 // DIT latch
|
||||
#define DAH_L 0x02 // DAH latch
|
||||
#define DIT_PROC 0x04 // DIT is being processed
|
||||
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
|
||||
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
|
||||
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
|
||||
|
||||
static long ktimer;
|
||||
|
||||
bool Iambic_Key = true;
|
||||
unsigned char keyerControl = IAMBICB;
|
||||
unsigned char keyerState = IDLE;
|
||||
|
||||
//Below is a test to reduce the keying error.
|
||||
/*
|
||||
char update_PaddleLatch(byte isUpdateKeyState) {
|
||||
int paddle = analogRead(ANALOG_KEYER);
|
||||
unsigned char tmpKeyerControl;
|
||||
|
||||
if (paddle > 800) // above 4v is up
|
||||
tmpKeyerControl = 0;
|
||||
//else if (paddle > 600) // 4-3v is DASH
|
||||
else if (paddle > 693 && paddle < 700) // 4-3v is DASH
|
||||
tmpKeyerControl |= DAH_L;
|
||||
//else if (paddle > 300) //1-2v is DOT
|
||||
else if (paddle > 323 && paddle < 328) //1-2v is DOT
|
||||
tmpKeyerControl |= DIT_L;
|
||||
//else if (paddle > 50)
|
||||
else if (paddle > 280 && paddle < 290)
|
||||
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
|
||||
else
|
||||
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
|
||||
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
|
||||
|
||||
if (isUpdateKeyState == 1) {
|
||||
keyerControl |= tmpKeyerControl;
|
||||
}
|
||||
|
||||
byte buff[17];
|
||||
sprintf(buff, "Key : %d", paddle);
|
||||
if (tmpKeyerControl > 0)
|
||||
printLine2(buff);
|
||||
|
||||
return tmpKeyerControl;
|
||||
|
||||
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
|
||||
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
|
||||
}
|
||||
*/
|
||||
|
||||
//Below is a test to reduce the keying error. do not delete lines
|
||||
//create by KD8CEC for compatible with new CW Logic
|
||||
char update_PaddleLatch(byte isUpdateKeyState) {
|
||||
int paddle = analogRead(ANALOG_KEYER);
|
||||
unsigned char tmpKeyerControl;
|
||||
int paddle = analogRead(ANALOG_KEYER);
|
||||
|
||||
if (paddle > 800) // above 4v is up
|
||||
tmpKeyerControl = 0;
|
||||
else if (paddle > 600) // 4-3v is DASH
|
||||
if (paddle >= cwAdcDashFrom && paddle <= cwAdcDashTo)
|
||||
tmpKeyerControl |= DAH_L;
|
||||
else if (paddle > 300) //1-2v is DOT
|
||||
else if (paddle >= cwAdcDotFrom && paddle <= cwAdcDotTo)
|
||||
tmpKeyerControl |= DIT_L;
|
||||
else if (paddle > 50)
|
||||
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
|
||||
else
|
||||
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
|
||||
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
|
||||
|
||||
if (isUpdateKeyState == 1) {
|
||||
keyerControl |= tmpKeyerControl;
|
||||
else if (paddle >= cwAdcBothFrom && paddle <= cwAdcBothTo)
|
||||
tmpKeyerControl |= (DAH_L | DIT_L) ;
|
||||
else
|
||||
{
|
||||
if (Iambic_Key)
|
||||
tmpKeyerControl = 0 ;
|
||||
else if (paddle >= cwAdcSTFrom && paddle <= cwAdcSTTo)
|
||||
tmpKeyerControl = DIT_L ;
|
||||
else
|
||||
tmpKeyerControl = 0 ;
|
||||
}
|
||||
|
||||
if (isUpdateKeyState == 1)
|
||||
keyerControl |= tmpKeyerControl;
|
||||
|
||||
return tmpKeyerControl;
|
||||
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
|
||||
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
|
||||
}
|
||||
|
||||
/*****************************************************************************
|
||||
// New logic, by RON
|
||||
// modified by KD8CEC
|
||||
******************************************************************************/
|
||||
void cwKeyer(void){
|
||||
byte paddle;
|
||||
lastPaddle = 0;
|
||||
int dot,dash;
|
||||
bool continue_loop = true;
|
||||
unsigned tmpKeyControl = 0;
|
||||
if( Iambic_Key ){
|
||||
|
||||
while(continue_loop){
|
||||
switch (keyerState) {
|
||||
case IDLE:
|
||||
tmpKeyControl = update_PaddleLatch(0);
|
||||
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
|
||||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
|
||||
//DIT or DASH or current state DIT & DASH
|
||||
//(analogRead(ANALOG_DOT) < 600) || //DIT
|
||||
//(analogRead(ANALOG_DASH) < 600) || //DIT
|
||||
// (keyerControl & 0x03)) {
|
||||
update_PaddleLatch(1);
|
||||
keyerState = CHK_DIT;
|
||||
}else{
|
||||
|
||||
if( Iambic_Key ) {
|
||||
while(continue_loop) {
|
||||
switch (keyerState) {
|
||||
case IDLE:
|
||||
tmpKeyControl = update_PaddleLatch(0);
|
||||
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
|
||||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
|
||||
update_PaddleLatch(1);
|
||||
keyerState = CHK_DIT;
|
||||
}else{
|
||||
if (0 < cwTimeout && cwTimeout < millis()){
|
||||
cwTimeout = 0;
|
||||
stopTx();
|
||||
}
|
||||
continue_loop = false;
|
||||
}
|
||||
break;
|
||||
|
||||
case CHK_DIT:
|
||||
if (keyerControl & DIT_L) {
|
||||
keyerControl |= DIT_PROC;
|
||||
ktimer = cwSpeed;
|
||||
keyerState = KEYED_PREP;
|
||||
}else{
|
||||
keyerState = CHK_DAH;
|
||||
}
|
||||
break;
|
||||
|
||||
case CHK_DAH:
|
||||
if (keyerControl & DAH_L) {
|
||||
ktimer = cwSpeed*3;
|
||||
keyerState = KEYED_PREP;
|
||||
}else{
|
||||
keyerState = IDLE;
|
||||
}
|
||||
break;
|
||||
|
||||
case KEYED_PREP:
|
||||
ktimer += millis(); // set ktimer to interval end time
|
||||
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
|
||||
keyerState = KEYED; // next state
|
||||
if (!inTx){
|
||||
keyDown = 0;
|
||||
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
||||
startTx(TX_CW, 1);
|
||||
}
|
||||
cwKeydown();
|
||||
break;
|
||||
|
||||
case KEYED:
|
||||
if (millis() > ktimer) { // are we at end of key down ?
|
||||
cwKeyUp();
|
||||
ktimer = millis() + cwSpeed; // inter-element time
|
||||
keyerState = INTER_ELEMENT; // next state
|
||||
}else if (keyerControl & IAMBICB) {
|
||||
update_PaddleLatch(1); // early paddle latch in Iambic B mode
|
||||
}
|
||||
break;
|
||||
|
||||
case INTER_ELEMENT:
|
||||
// Insert time between dits/dahs
|
||||
update_PaddleLatch(1); // latch paddle state
|
||||
if (millis() > ktimer) { // are we at end of inter-space ?
|
||||
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
|
||||
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
|
||||
keyerState = CHK_DAH; // dit done, check for dah
|
||||
}else{
|
||||
keyerControl &= ~(DAH_L); // clear dah latch
|
||||
keyerState = IDLE; // go idle
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
Check_Cat(3);
|
||||
} //end of while
|
||||
}
|
||||
else{
|
||||
while(1){
|
||||
if (update_PaddleLatch(0) == DIT_L) {
|
||||
// if we are here, it is only because the key is pressed
|
||||
if (!inTx){
|
||||
keyDown = 0;
|
||||
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
||||
startTx(TX_CW, 1);
|
||||
}
|
||||
cwKeydown();
|
||||
|
||||
while ( update_PaddleLatch(0) == DIT_L )
|
||||
delay_background(1, 3);
|
||||
|
||||
cwKeyUp();
|
||||
}
|
||||
else{
|
||||
if (0 < cwTimeout && cwTimeout < millis()){
|
||||
cwTimeout = 0;
|
||||
keyDown = 0;
|
||||
stopTx();
|
||||
}
|
||||
continue_loop = false;
|
||||
if (!cwTimeout)
|
||||
return;
|
||||
// got back to the beginning of the loop, if no further activity happens on straight key
|
||||
// we will time out, and return out of this routine
|
||||
//delay(5);
|
||||
delay_background(5, 3);
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
|
||||
case CHK_DIT:
|
||||
if (keyerControl & DIT_L) {
|
||||
keyerControl |= DIT_PROC;
|
||||
ktimer = cwSpeed;
|
||||
keyerState = KEYED_PREP;
|
||||
}else{
|
||||
keyerState = CHK_DAH;
|
||||
}
|
||||
break;
|
||||
|
||||
case CHK_DAH:
|
||||
if (keyerControl & DAH_L) {
|
||||
ktimer = cwSpeed*3;
|
||||
keyerState = KEYED_PREP;
|
||||
}else{
|
||||
keyerState = IDLE;
|
||||
}
|
||||
break;
|
||||
|
||||
case KEYED_PREP:
|
||||
ktimer += millis(); // set ktimer to interval end time
|
||||
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
|
||||
keyerState = KEYED; // next state
|
||||
if (!inTx){
|
||||
keyDown = 0;
|
||||
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
||||
startTx(TX_CW, 0);
|
||||
}
|
||||
cwKeydown();
|
||||
break;
|
||||
|
||||
case KEYED:
|
||||
if (millis() > ktimer) { // are we at end of key down ?
|
||||
cwKeyUp();
|
||||
ktimer = millis() + cwSpeed; // inter-element time
|
||||
keyerState = INTER_ELEMENT; // next state
|
||||
}else if (keyerControl & IAMBICB) {
|
||||
update_PaddleLatch(1); // early paddle latch in Iambic B mode
|
||||
}
|
||||
break;
|
||||
|
||||
case INTER_ELEMENT:
|
||||
// Insert time between dits/dahs
|
||||
update_PaddleLatch(1); // latch paddle state
|
||||
if (millis() > ktimer) { // are we at end of inter-space ?
|
||||
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
|
||||
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
|
||||
keyerState = CHK_DAH; // dit done, check for dah
|
||||
}else{
|
||||
keyerControl &= ~(DAH_L); // clear dah latch
|
||||
keyerState = IDLE; // go idle
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
} //end of while
|
||||
|
||||
}else{
|
||||
while(1){
|
||||
//if (analogRead(ANALOG_DOT) < 600){
|
||||
if (update_PaddleLatch(0) == DIT_L) {
|
||||
// if we are here, it is only because the key is pressed
|
||||
if (!inTx){
|
||||
keyDown = 0;
|
||||
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
||||
startTx(TX_CW, 0);
|
||||
}
|
||||
// start the transmission)
|
||||
cwKeydown();
|
||||
//while ( analogRead(ANALOG_DOT) < 600 ) delay(1);
|
||||
while ( update_PaddleLatch(0) == DIT_L ) delay(1);
|
||||
cwKeyUp();
|
||||
}else{
|
||||
if (0 < cwTimeout && cwTimeout < millis()){
|
||||
cwTimeout = 0;
|
||||
keyDown = 0;
|
||||
stopTx();
|
||||
}
|
||||
if (!cwTimeout)
|
||||
return;
|
||||
// got back to the beginning of the loop, if no further activity happens on straight key
|
||||
// we will time out, and return out of this routine
|
||||
delay(5);
|
||||
continue;
|
||||
}
|
||||
} //end of else
|
||||
Check_Cat(2);
|
||||
} //end of while
|
||||
} //end of elese
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//=======================================================================================
|
||||
|
@@ -13,6 +13,7 @@
|
||||
#define printLineF1(x) (printLineF(1, x))
|
||||
#define printLineF2(x) (printLineF(0, x))
|
||||
|
||||
//Ham band move by KD8CEC
|
||||
void menuBand(int btn){
|
||||
int knob = 0;
|
||||
int stepChangeCount = 0;
|
||||
@@ -117,6 +118,7 @@ void menuBand(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
//Convert Mode, Number by KD8CEC
|
||||
//0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM
|
||||
byte modeToByte(){
|
||||
if (isUSB)
|
||||
@@ -125,12 +127,15 @@ byte modeToByte(){
|
||||
return 2;
|
||||
}
|
||||
|
||||
//Convert Number to Mode by KD8CEC
|
||||
void byteToMode(byte modeValue){
|
||||
if (modeValue == 3)
|
||||
isUSB = 1;
|
||||
else
|
||||
isUSB = 0;
|
||||
}
|
||||
|
||||
//Convert Number to Mode by KD8CEC
|
||||
void byteWithFreqToMode(byte modeValue){
|
||||
if (modeValue == 3)
|
||||
isUSB = 1;
|
||||
@@ -140,6 +145,7 @@ void byteWithFreqToMode(byte modeValue){
|
||||
isUSB = 0;
|
||||
}
|
||||
|
||||
//VFO Toggle and save VFO Information, modified by KD8CEC
|
||||
void menuVfoToggle(int btn, char isUseDelayTime)
|
||||
{
|
||||
if (!btn){
|
||||
@@ -229,6 +235,189 @@ void menuSidebandToggle(int btn){
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
//Select CW Key Type by KD8CEC
|
||||
void menuSetupKeyType(int btn){
|
||||
if (!btn && digitalRead(PTT) == HIGH){
|
||||
if (Iambic_Key)
|
||||
printLineF2(F("Key: Straight?"));
|
||||
else
|
||||
printLineF2(F("Key: Fn=A, PTT=B"));
|
||||
}
|
||||
else {
|
||||
if (Iambic_Key)
|
||||
{
|
||||
printLineF2(F("Straight Key!"));
|
||||
Iambic_Key = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
Iambic_Key = true;
|
||||
if (btn)
|
||||
{
|
||||
keyerControl &= ~IAMBICB;
|
||||
printLineF2(F("IAMBICA Key!"));
|
||||
}
|
||||
else
|
||||
{
|
||||
keyerControl |= IAMBICB;
|
||||
printLineF2(F("IAMBICB Key!"));
|
||||
}
|
||||
}
|
||||
|
||||
delay_background(500, 0);
|
||||
printLine2ClearAndUpdate();
|
||||
menuOn = 0;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
//Select CW Key Type by KD8CEC
|
||||
void menuSetupKeyType(int btn){
|
||||
int knob = 0;
|
||||
int selectedKeyType = 0;
|
||||
int moveStep = 0;
|
||||
if (!btn && digitalRead(PTT) == HIGH){
|
||||
printLineF2(F("Change Key Type?"));
|
||||
}
|
||||
else {
|
||||
printLineF2(F("Press PTT to set"));
|
||||
delay_background(500, 0);
|
||||
selectedKeyType = cwKeyType;
|
||||
while(!btnDown() && digitalRead(PTT) == HIGH){
|
||||
|
||||
//Display Key Type
|
||||
if (selectedKeyType == 0)
|
||||
printLineF1(F("Straight"));
|
||||
else if (selectedKeyType == 1)
|
||||
printLineF1(F("IAMBICA"));
|
||||
else if (selectedKeyType == 2)
|
||||
printLineF1(F("IAMBICB"));
|
||||
|
||||
knob = enc_read();
|
||||
|
||||
if (knob != 0)
|
||||
{
|
||||
moveStep += (knob > 0 ? 1 : -1);
|
||||
if (selectedKeyType > 0 && moveStep < -3) {
|
||||
selectedKeyType--;
|
||||
moveStep = 0;
|
||||
}
|
||||
else if (selectedKeyType < 2 && moveStep > 3) {
|
||||
selectedKeyType++;
|
||||
moveStep = 0;
|
||||
}
|
||||
}
|
||||
|
||||
Check_Cat(0); //To prevent disconnections
|
||||
}
|
||||
|
||||
//save the setting
|
||||
if (digitalRead(PTT) == LOW){
|
||||
printLineF2(F("CW Key Type set!"));
|
||||
cwKeyType = selectedKeyType;
|
||||
EEPROM.put(CW_KEY_TYPE, cwKeyType);
|
||||
|
||||
if (cwKeyType == 0)
|
||||
Iambic_Key = false;
|
||||
else
|
||||
{
|
||||
Iambic_Key = true;
|
||||
if (cwKeyType = 1)
|
||||
keyerControl &= ~IAMBICB;
|
||||
else
|
||||
keyerControl |= IAMBICB;
|
||||
}
|
||||
delay_background(2000, 0);
|
||||
}
|
||||
|
||||
printLine2ClearAndUpdate();
|
||||
menuOn = 0;
|
||||
}
|
||||
}
|
||||
|
||||
//Analog pin monitoring with CW Key and function keys connected.
|
||||
//by KD8CEC
|
||||
void menuADCMonitor(int btn){
|
||||
int adcPinA0 = 0; //A0(BLACK, EncoderA)
|
||||
int adcPinA1 = 0; //A1(BROWN, EncoderB)
|
||||
int adcPinA2 = 0; //A2(RED, Function Key)
|
||||
int adcPinA3 = 0; //A3(ORANGE, CW Key)
|
||||
int adcPinA6 = 0; //A6(BLUE, Ptt)
|
||||
int adcPinA7 = 0; //A7(VIOLET, Spare)
|
||||
unsigned long pressKeyTime = 0;
|
||||
|
||||
if (!btn){
|
||||
printLineF2(F("ADC Line Monitor"));
|
||||
return;
|
||||
}
|
||||
|
||||
printLineF2(F("Exit:Long PTT"));
|
||||
delay_background(2000, 0);
|
||||
printLineF1(F("A0 A1 A2"));
|
||||
printLineF2(F("A3 A6 A7"));
|
||||
delay_background(3000, 0);
|
||||
|
||||
while (true) {
|
||||
adcPinA0 = analogRead(A0); //A0(BLACK, EncoderA)
|
||||
adcPinA1 = analogRead(A1); //A1(BROWN, EncoderB)
|
||||
adcPinA2 = analogRead(A2); //A2(RED, Function Key)
|
||||
adcPinA3 = analogRead(A3); //A3(ORANGE, CW Key)
|
||||
adcPinA6 = analogRead(A6); //A6(BLUE, Ptt)
|
||||
adcPinA7 = analogRead(A7); //A7(VIOLET, Spare)
|
||||
|
||||
/*
|
||||
sprintf(c, "%4d %4d %4d", adcPinA0, adcPinA1, adcPinA2);
|
||||
printLine1(c);
|
||||
sprintf(c, "%4d %4d %4d", adcPinA3, adcPinA6, adcPinA7);
|
||||
printLine2(c);
|
||||
*/
|
||||
|
||||
if (adcPinA6 < 10) {
|
||||
if (pressKeyTime == 0)
|
||||
pressKeyTime = millis();
|
||||
else if (pressKeyTime < (millis() - 3000))
|
||||
break;
|
||||
}
|
||||
else
|
||||
pressKeyTime = 0;
|
||||
|
||||
ltoa(adcPinA0, c, 10);
|
||||
//strcat(b, c);
|
||||
strcpy(b, c);
|
||||
strcat(b, ", ");
|
||||
|
||||
ltoa(adcPinA1, c, 10);
|
||||
strcat(b, c);
|
||||
strcat(b, ", ");
|
||||
|
||||
ltoa(adcPinA2, c, 10);
|
||||
strcat(b, c);
|
||||
|
||||
printLine1(b);
|
||||
|
||||
//strcpy(b, " ");
|
||||
ltoa(adcPinA3, c, 10);
|
||||
strcpy(b, c);
|
||||
strcat(b, ", ");
|
||||
|
||||
ltoa(adcPinA6, c, 10);
|
||||
strcat(b, c);
|
||||
strcat(b, ", ");
|
||||
|
||||
ltoa(adcPinA7, c, 10);
|
||||
strcat(b, c);
|
||||
printLine2(b);
|
||||
|
||||
delay_background(200, 0);
|
||||
} //end of while
|
||||
|
||||
printLine2ClearAndUpdate();
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
//Function to disbled transmission
|
||||
//by KD8CEC
|
||||
void menuTxOnOff(int btn, byte optionType){
|
||||
if (!btn){
|
||||
if ((isTxType & optionType) == 0)
|
||||
@@ -342,6 +531,7 @@ void menuCWSpeed(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
//Builtin CW Keyer Logic by KD8CEC
|
||||
void menuCWAutoKey(int btn){
|
||||
if (!btn){
|
||||
printLineF2(F("CW AutoKey Mode?"));
|
||||
@@ -365,6 +555,7 @@ void menuCWAutoKey(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
//Modified by KD8CEC
|
||||
void menuSetupCwDelay(int btn){
|
||||
int knob = 0;
|
||||
int tmpCWDelay = cwDelayTime * 10;
|
||||
@@ -413,6 +604,7 @@ void menuSetupCwDelay(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
//CW Time delay by KD8CEC
|
||||
void menuSetupTXCWInterval(int btn){
|
||||
int knob = 0;
|
||||
int tmpTXCWInterval = delayBeforeCWStartTime * 2;
|
||||
@@ -608,7 +800,6 @@ void menuSetupCalibration(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
|
||||
void printCarrierFreq(unsigned long freq){
|
||||
|
||||
memset(c, 0, sizeof(c));
|
||||
@@ -624,6 +815,7 @@ void printCarrierFreq(unsigned long freq){
|
||||
printLine2(c);
|
||||
}
|
||||
|
||||
//modified by KD8CEC (just 1 line remarked //usbCarrier = ...
|
||||
void menuSetupCarrier(int btn){
|
||||
int knob = 0;
|
||||
unsigned long prevCarrier;
|
||||
@@ -677,6 +869,7 @@ void menuSetupCarrier(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
//Modified by KD8CEC
|
||||
void menuSetupCwTone(int btn){
|
||||
int knob = 0;
|
||||
int prev_sideTone;
|
||||
@@ -725,6 +918,7 @@ void menuSetupCwTone(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
//Lock Dial move by KD8CEC
|
||||
void setDialLock(byte tmpLock, byte fromMode) {
|
||||
if (tmpLock == 1)
|
||||
isDialLock |= (vfoActive == VFO_A ? 0x01 : 0x02);
|
||||
@@ -747,6 +941,7 @@ unsigned int btnDownTimeCount;
|
||||
#define PRESS_ADJUST_TUNE 1000
|
||||
#define PRESS_LOCK_CONTROL 2000
|
||||
|
||||
//Modified by KD8CEC
|
||||
void doMenu(){
|
||||
int select=0, i,btnState;
|
||||
char isNeedDisplay = 0;
|
||||
@@ -830,7 +1025,7 @@ void doMenu(){
|
||||
btnState = btnDown();
|
||||
|
||||
if (i > 0){
|
||||
if (modeCalibrate && select + i < 150)
|
||||
if (modeCalibrate && select + i < 170)
|
||||
select += i;
|
||||
if (!modeCalibrate && select + i < 80)
|
||||
select += i;
|
||||
@@ -868,8 +1063,12 @@ void doMenu(){
|
||||
else if (select < 130 && modeCalibrate)
|
||||
menuSetupTXCWInterval(btnState);
|
||||
else if (select < 140 && modeCalibrate)
|
||||
menuTxOnOff(btnState, 0x01); //TX OFF / ON
|
||||
menuSetupKeyType(btnState);
|
||||
else if (select < 150 && modeCalibrate)
|
||||
menuADCMonitor(btnState);
|
||||
else if (select < 160 && modeCalibrate)
|
||||
menuTxOnOff(btnState, 0x01); //TX OFF / ON
|
||||
else if (select < 170 && modeCalibrate)
|
||||
menuExit(btnState);
|
||||
|
||||
Check_Cat(0); //To prevent disconnections
|
||||
|
@@ -116,6 +116,9 @@ void drawMeter(int8_t needle){
|
||||
|
||||
// The generic routine to display one line on the LCD
|
||||
void printLine(unsigned char linenmbr, const char *c) {
|
||||
if ((displayOption1 & 0x01) == 0x01)
|
||||
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
|
||||
|
||||
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
|
||||
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
|
||||
lcd.print(c);
|
||||
@@ -145,6 +148,9 @@ void printLineF(char linenmbr, const __FlashStringHelper *c)
|
||||
|
||||
#define LCD_MAX_COLUMN 16
|
||||
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex) {
|
||||
if ((displayOption1 & 0x01) == 0x01)
|
||||
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
|
||||
|
||||
lcd.setCursor(lcdColumn, linenmbr);
|
||||
|
||||
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
|
||||
@@ -168,6 +174,12 @@ void printLine2(const char *c){
|
||||
printLine(0,c);
|
||||
}
|
||||
|
||||
void clearLine2()
|
||||
{
|
||||
printLine2("");
|
||||
line2DisplayStatus = 0;
|
||||
}
|
||||
|
||||
// short cut to print to the first line
|
||||
void printLine1Clear(){
|
||||
printLine(1,"");
|
||||
@@ -179,6 +191,7 @@ void printLine2Clear(){
|
||||
|
||||
void printLine2ClearAndUpdate(){
|
||||
printLine(0, "");
|
||||
line2DisplayStatus = 0;
|
||||
updateDisplay();
|
||||
}
|
||||
|
||||
@@ -251,18 +264,22 @@ void updateDisplay() {
|
||||
// strcat(c, " TX");
|
||||
printLine(1, c);
|
||||
|
||||
byte diplayVFOLine = 1;
|
||||
if ((displayOption1 & 0x01) == 0x01)
|
||||
diplayVFOLine = 0;
|
||||
|
||||
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
|
||||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
|
||||
lcd.setCursor(5,1);
|
||||
lcd.setCursor(5,diplayVFOLine);
|
||||
lcd.write((uint8_t)0);
|
||||
}
|
||||
else if (isCWAutoMode == 2){
|
||||
lcd.setCursor(5,1);
|
||||
lcd.setCursor(5,diplayVFOLine);
|
||||
lcd.write(0x7E);
|
||||
}
|
||||
else
|
||||
{
|
||||
lcd.setCursor(5,1);
|
||||
lcd.setCursor(5,diplayVFOLine);
|
||||
lcd.write(":");
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user