Compare commits

...

102 Commits

Author SHA1 Message Date
Rob French 6b365beac0 Added Schematics folder and picture of the I/O board (specifically the ADC buffer). 2021-01-27 22:03:08 -06:00
Rob French d97f282f7b Merge branch 'master' of ssh://git.sdf.org:2222/kc4upr/ubitx-v5x 2021-01-20 23:30:13 -06:00
Rob French c93e191dfd More reorg. 2021-01-20 23:26:38 -06:00
Rob French b50ad3275a Initial commit 2021-01-21 05:08:16 +00:00
Rob French 04b70450ae Reorganized. 2021-01-20 20:50:27 -06:00
Rob French 3364cb78d5 Merge remote-tracking branch 'teensydsp/master' 2021-01-20 20:43:32 -06:00
Rob French cfa6f8699d Move raduino files into subdir 2021-01-20 20:42:20 -06:00
Rob French 48344923cc Merge remote-tracking branch 'raduino/master' 2021-01-20 20:36:04 -06:00
Rob French dec1d1edec Initial commit before I start merging in other projects. 2021-01-20 20:31:27 -06:00
phdlee e77a3715a8
Update README.md 2020-09-08 17:46:57 +09:00
phdlee 1a60adaf2f
Merge pull request #2 from phdlee/version0.8
added SWR, PWR sensor
2019-04-11 22:38:52 +09:00
phdlee 02c0066df4 added SWR, PWR sensor 2019-04-11 22:37:24 +09:00
phdlee 262ef3947a
Merge pull request #46 from phdlee/version1.20
changed version number for nextion lcd protocol
2019-04-06 16:38:44 +09:00
phdlee a4d9f6e6c5 changed version number for nextion lcd protocol 2019-04-06 16:35:46 +09:00
phdlee 395dd42459
Update README.md 2019-04-02 23:20:04 +09:00
phdlee f25bf57556
Update README.md 2019-04-02 23:18:54 +09:00
phdlee 171f889f4a
Merge pull request #45 from phdlee/version1.20
Version1.20
2019-04-02 23:16:03 +09:00
phdlee 05de66a038 uBITX V5 suppoort and SDR Frequency Change 2019-04-02 23:09:18 +09:00
phdlee 2c075d5236 for uBITX v5 2019-02-15 19:32:07 +09:00
phdlee 37fcc5975a
Merge pull request #44 from phdlee/version1.11
Added Custom LPF Control
2018-09-22 19:14:22 +09:00
phdlee 450f57ae0f Added Custom LPF Control 2018-09-22 18:56:23 +09:00
phdlee c34e798313
Update README.md 2018-09-11 18:09:22 +09:00
phdlee df2c493700
Merge pull request #43 from phdlee/version1.1
Add Custom LPF Filter and Changed Version Number
2018-09-07 23:39:25 +09:00
phdlee 9ff8365c3f Add Custom LPF Filter and Changed Version Number 2018-09-07 23:37:23 +09:00
phdlee 948267bb39
Merge pull request #40 from phdlee/version1.098
Version1.098
2018-08-10 16:08:13 +09:00
phdlee e79dbdbbe7 for Release Version 1.097 2018-08-06 13:59:55 +09:00
phdlee 265188dc86
Merge pull request #1 from phdlee/version0.7
added delay time at startup
2018-08-06 12:11:41 +09:00
phdlee aee410fd19 added delay time at startup 2018-08-06 11:58:41 +09:00
phdlee 16e173b109 add Init version files 2018-08-04 11:23:20 +09:00
phdlee d5db04ff0e Init and add comment for licnese 2018-08-04 11:04:51 +09:00
phdlee 0586bb75a7
Initial commit 2018-08-04 10:55:39 +09:00
phdlee 7c1ee29500 Before Release V1.096 2018-07-28 18:53:28 +09:00
phdlee 4ee3631db0 Change menu type (selectable functions) 2018-07-17 21:10:45 +09:00
phdlee c27bbf1b6b Apply DSP meter to all lcd types 2018-07-17 20:41:17 +09:00
phdlee b984f62dfd Add I2C Scan, Change DSP Meter I2C 2018-07-17 20:13:06 +09:00
phdlee 41548163cf Support I2C S-Meter 2018-07-17 11:21:24 +09:00
phdlee 1ce889eef0 Release v1.095 Beta 2018-07-05 19:18:22 +09:00
phdlee dd43ba4c33 Modified about Loopback protocol 2018-06-28 23:29:06 +09:00
phdlee fe44c703c5 define eeprom map for external device and send eeprom data to nextion lcd 2018-06-19 11:17:58 +09:00
phdlee 22bb9ee112 Release 1.093Beta 2018-06-17 01:19:37 +09:00
phdlee c73fffb25b Modified Spectrum Protocol 2018-06-16 23:03:47 +09:00
phdlee 82177199c4 Increase Buffer for SW Serial and Modified Protocol for EEProm 2018-06-16 21:45:55 +09:00
phdlee 0e13dd0267 modified Checksum logic for Nextion LCD 2018-06-15 21:43:56 +09:00
phdlee c602fdde7c Add EEProm Read by Nextion LCD Reversed order 2018-06-15 20:48:51 +09:00
phdlee edadce7d89 add protocol about eeprom 2018-06-15 10:34:52 +09:00
phdlee 9da71429cb added protocol 2018-06-13 23:15:58 +09:00
phdlee 3050374504 Second Deploy for Nextion LCD 2018-06-12 00:30:50 +09:00
phdlee 152b63a9ed Added SW Trigger, Spectrum Protocol, Get ADC Protocol 2018-06-11 22:06:42 +09:00
phdlee 72ccd3b0e4 modified protocol for nextion lcd 2018-06-09 18:26:11 +09:00
phdlee e81413fa02 Support Nextion LCD 2018-06-09 17:13:26 +09:00
phdlee c6b020fa70
Update README.md 2018-05-23 18:32:55 +09:00
phdlee 2e8c97f19b
Update README.md 2018-05-23 18:32:01 +09:00
phdlee 337320b433
Merge pull request #37 from phdlee/version1.080
add comment
2018-05-23 16:00:25 +09:00
phdlee 7c8088f753 add comment 2018-05-23 15:58:50 +09:00
phdlee b172527d00
Merge pull request #36 from phdlee/version1.080
Version1.080
2018-05-23 15:46:01 +09:00
phdlee 67cdd14945 modified comments 2018-05-23 15:28:00 +09:00
phdlee b375b7e9e4 modified some comments 2018-05-23 15:20:10 +09:00
phdlee 27092d23e0
Merge pull request #35 from phdlee/version1.080
Version1.080
2018-05-23 15:09:43 +09:00
phdlee 8a6e01e289 improve external switch check routine 2018-05-23 15:07:37 +09:00
phdlee 83dc1de18e fixed mode change 2018-05-22 11:37:10 +09:00
phdlee 2de1c873a1
Merge pull request #34 from phdlee/version1.075
Version1.075
2018-05-09 16:55:47 +09:00
phdlee 4d97ac2283
Merge pull request #33 from phdlee/version1.074
Version1.074
2018-05-09 16:54:51 +09:00
phdlee 65d21aba77 Fixed Band Select Bug 2018-05-09 16:53:49 +09:00
phdlee 6a2369bc27 Fixed Band Select Bug 2018-05-09 16:53:40 +09:00
phdlee 76d5c362d0 complete test for Factory Recovery 2018-05-07 14:08:22 +09:00
phdlee 70fc6aeba8 Add Factory Recovery function 2018-05-07 13:56:46 +09:00
phdlee 75d952718b
Merge pull request #32 from phdlee/version1.073
reduce compiller warning
2018-05-06 22:34:15 +09:00
phdlee 1d28f3e7e9 update versioninfo.txt 2018-05-03 21:23:10 +09:00
phdlee 51f690ef85 change frequency display in WSPR Menu 2018-05-03 17:57:06 +09:00
phdlee 12984486a6 Modfied SMeter and CAT 2018-05-03 16:20:09 +09:00
phdlee e961cd8ac9 reduce compiller warning 2018-04-24 18:00:41 +09:00
phdlee 5c40718bec
Merge pull request #31 from phdlee/version1.073
Version1.073
2018-04-24 17:33:58 +09:00
phdlee 6add092391 Extended key (select key type) 2018-04-24 17:26:34 +09:00
phdlee 3b4bdafacc
Merge pull request #30 from phdlee/version1.072
Version1.072
2018-04-23 21:43:56 +09:00
phdlee 82d9682ee9
Merge branch 'master' into version1.072 2018-04-23 21:43:50 +09:00
phdlee 6be127d811 test lcd 2018-04-23 21:40:45 +09:00
phdlee 5b13ede65b test of extended key and dual lcd 2018-04-23 08:29:19 +09:00
phdlee 0aafe32e27 Added Dual LCD 2018-04-21 16:09:21 +09:00
phdlee 289ae1bd77
Merge pull request #29 from phdlee/version1.071
Improve receive perforamnce for USB, CWU, custom uBITX
2018-04-18 20:25:32 +09:00
phdlee 5611e1c0ff lcdtest and extended ubutton tested 2018-04-18 20:22:52 +09:00
phdlee 86797181cf
Merge pull request #28 from RichNeese/master
Tuning step change
2018-04-18 08:32:53 +09:00
phdlee f600c18541 add extended Keys (mode, band, tunestep) and i2clcd working 2018-04-17 21:26:29 +09:00
Richard Neese 11b6fbc1f4 Tuning step change
changed tuning steps to 10/50/100/500/1000
2018-04-16 21:56:20 -04:00
phdlee 0e245fc488 Add 20x04LCD and S.Meter 2018-04-16 23:56:32 +09:00
phdlee d721816039 LCD Work step1 2018-04-12 22:08:43 +09:00
phdlee 34be2d0845 Improve receive perforamnce for USB, CWU, custom uBITX 2018-04-09 23:35:13 +09:00
phdlee 0996870154
Merge pull request #27 from phdlee/version1.07
Version1.07
2018-04-07 21:33:30 +09:00
phdlee 689cfda09e Add Support SDR Receiver and improve ATT 2018-04-07 21:32:01 +09:00
phdlee 23f1b7cd5c Added IF Tune, ATT, SDR Functions 2018-04-06 21:43:36 +09:00
phdlee d4ed0589e5 Applied 1602 Tiny LCD Library for reduce program Memory 2018-04-05 22:57:07 +09:00
phdlee 5f906a4497 To Support various LCD Type 2018-04-05 22:16:54 +09:00
phdlee 1210f56cd1 move display routine ui to idle 2018-04-05 21:30:35 +09:00
phdlee e8d6792073 complete setup menu ui for reduce program memory 2018-04-05 17:36:16 +09:00
phdlee 9c4b694ce2
Update README.md 2018-04-05 10:19:38 +09:00
phdlee 02f22d66e5 Change Menu codes 2018-04-05 09:50:29 +09:00
phdlee 11e47fdccc Added Version Info at top of ubitx_20.ino 2018-04-04 22:20:04 +09:00
phdlee 7aafed9e95 rename ubitx_wspr.cpp to ubitx_wspr.ino 2018-04-04 20:29:27 +09:00
phdlee 5afcdf2583
Update README.md 2018-04-04 20:22:42 +09:00
phdlee 075f585a1e
Update README.md 2018-03-29 22:31:36 +09:00
phdlee d0c04df9d8
Merge pull request #26 from phdlee/version1.06
Version1.06
2018-03-25 03:22:29 +09:00
phdlee dd6d4555a8
Update ubitx_20.ino 2018-03-25 03:21:31 +09:00
phdlee 8f8850f4da
Update ubitx_wspr.cpp 2018-03-25 03:17:04 +09:00
34 changed files with 9007 additions and 1960 deletions

186
README.md
View File

@ -1,185 +1,3 @@
#IMPORTANT INFORMATION
----------------------------------------------------------------------------
- A bug was found in version 1.0, When CW Keytype is set to IAMBCA and IAMBCB, there was a problem that switching to RX is not performed well when CAT communication is performed. If CW key type is straight, it works normally. This bug has been fixed and changed to version 1.01.
- Now Release Version 1.01 on my blog (http://www.hamskey.com)
- You can download and compiled hex file and uBITX Manager application on my blog (http://www.hamskey.com)
# ubitx-v5x
#NOTICE
----------------------------------------------------------------------------
I received uBITX a month ago and found that many features are required, and began coding with the idea of implementing minimal functionality as a general hf transceiver rather than an experimental device.
Most of the basic functions of the HF transceiver I thought were implemented.
The minimum basic specification for uBITX to operate as a radio, I think it is finished.
So I will release the 0.27 version and if I do not see the bug anymore, I will try to change the version name to 1.0.
Now uBITX is an HF radio and will be able to join you in your happy hams life.
Based on this source, you can use it by adding functions.
I am going to do a new project based on this source, linking with WSPR, WSJT-X and so on.
Of course, this repository is still running. If you have any bugs or ideas, please feel free to email me.
http://www.hamskey.com
DE KD8CEC
kd8cec@gmail.com
#uBITX
uBITX firmware, written for the Raduino/Arduino control of uBITX transceivers
This project is based on https://github.com/afarhan/ubitx and all copyright is inherited.
The copyright information of the original is below.
KD8CEC
----------------------------------------------------------------------------
Prepared or finished tasks for the next version
- Include WSPR Beacone function - (implement other new repository)
complete experiment
need solve : Big code size (over 100%, then remove some functions for experment)
need replace Si5351 Library (increase risk and need more beta tester)
W3PM sent me his wonderful source - using BITX, GPS
----------------------------------------------------------------------------
## REVISION RECORD
1.04
- Optimized from Version1.03
- Reduce program size (97% -> 95%)
1.03
- Change eBFO Calibration Step (50 to 5)
- Change CW Frequency Display type
1.02
- Applied CW Start Delay to New CW Key logic (This is my mistake when applying the new CW Key Logic.Since uBITX operations are not significantly affected, this does not create a separate Release, It will be reflected in the next release.) - complete
- Modified CW Key Logic for Auto Key, (available AutoKey function by any cw keytype) - complete
- reduce cpu use usage (working)
- reduce (working)
1.01
- Fixed Cat problem with (IAMBIC A or B Selected)
1.0
- rename 0.30 to 1.0
0.35
- vfo to channel bug fixed (not saved mode -> fixed, channel has frequency and mode)
- add Channel tag (ch.1 ~ 10) by uBITX Manager
- add VFO to Channel, Channel To VFO
0.34
- TX Status check in auto Keysend logic
- optimize codes
- change default tune step size, and fixed bug
- change IF shift step (1Hz -> 50Hz)
0.33
- Added CWL, CWU Mode, (dont complete test yet)
- fixed VFO changed bug.
- Added Additional BFO for CWL, CWL
- Added IF Shift
- Change confirmation key PTT -> function key (not critical menus)
- Change CW Key Select type, (toggle -> select by dial)
0.32
- Added function Scroll Frequencty on upper line
- Added Example code for Draw meter and remarked (you can see and use this code in source codes)
- Added Split function, just toggle VFOs when TX/RX
0.31
- Fixed CW ADC Range error
- Display Message on Upper Line (anothor VFO Frequency, Tune Step, Selected Key Type)
0.30
- implemented the function to monitor the value of all analog inputs. This allows you to monitor the status of the CW keys connected to your uBITX.
- possible to set the ADC range for CW Keying. If no setting is made, it will have the same range as the original code. If you set the CW Keying ADC Values using uBITX Manager 0.3, you can reduce the key error.
- Added the function to select Straight Key, IAMBICA, IAMBICB key from the menu.
- default Band select is Ham Band mode, if you want common type, long press function key at band select menu, uBITX Manager can be used to modify frequencies to suit your country.
0.29
- Remove the use of initialization values in BFO settings - using crruent value, if factory reset
- Select Tune Step, default 0, 20, 50, 100, 200, Use the uBITX Manager to set the steps value you want. You can select Step by pressing and holding the Function Key (1sec ~ 2sec).
- Modify Dial Lock Function, Press the Function key for more than 3 seconds to toggle dial lock.
- created a new frequency tune method. remove original source codes, Threshold has been applied to reduce malfunction. checked the continuity of the user operating to make natural tune possible.
- stabilize and remove many warning messages - by Pullrequest and merge
- Changed cw keying method. removed the original code and applied Ron's code and Improved compatibility with original hardware and CAT commnication. It can be used without modification of hardware.
0.28
- Fixed CAT problem with hamlib on Linux
- restore Protocol autorecovery logic
0.27
(First alpha test version, This will be renamed to the major version 1.0)
- Dual VFO Dial Lock (vfoA Dial lock)
- Support Ham band on uBITX
default Hamband is regeion1 but customize by uBITX Manager Software
- Advanced ham band options (Tx control) for use in all countries. You can adjust it yourself.
- Convenience of band movement
0.26
- only Beta tester released & source code share
- find a bug on none initial eeprom uBITX - Fixed (Check -> initialized & compatible original source code)
- change the version number 0.26 -> 0.27
- Prevent overflow bugs
- bug with linux based Hamlib (raspberry pi), It was perfect for the 0.224 version, but there was a problem for the 0.25 version.
On Windows, ham deluxe, wsjt-x, jt65-hf, and fldigi were successfully run. Problem with Raspberry pi.
0.25
- Beta Version Released
http://www.hamskey.com/2018/01/release-beta-version-of-cat-support.html
- Added CAT Protocol for uBITX
- Modified the default usb carrier value used when the setting is wrong.
- Fixed a routine to repair when the CAT protocol was interrupted.
0.24
- Program optimization
reduce usage ram rate (string with M() optins)
- Optimized CAT protocol for wsjt-x, fldigi
0.23
- added delay_background() , replace almost delay() to delay_background for prevent timeout
- cat library compatible with FT-817 Command
switch VFOA / VFOB,
Read Write CW Speed
Read Write CW Delay Time
Read Write CW Pitch (with sidetone)
All of these can be controlled by Hamradio deluxe.
- modified cat libray function for protocol for CAT communication is not broken in CW or TX mode
- Ability to change CW Delay
- Added Dial Lock function
- Add functions CW Start dely (TX -> CW interval)
- Automatic storage of VFO frequency
It was implemented by storing it only once when the frequency stays 10 seconds or more after the change.
(protect eeprom life)
0.22
- fixed screen Update Problem
- Frequency Display Problem - Problems occur below 1Mhz
- added function Enhanced CAT communication
- replace ubitx_cat.ino to cat_libs.ino
- Save mode when switching to VFOA / VFOB
0.21
- fixed the cw side tone configuration.
- Fix the error that the frequency is over.
- fixed frequency display (alignment, point)
0.20
- original uBITX software (Ashhar Farhan)
## Original README.md
uBITX firmware, written for the Raduino/Arduino control of uBITX transceigers
Copyright (C) 2017, Ashhar Farhan
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"Extended" version of the uBITX v5, including both a Teensy-based DSP as well as a Nextion 3.2" display.

View File

@ -1,8 +1,20 @@
//Firmware Version
//+ : This symbol identifies the firmware.
// It was originally called 'CEC V1.072' but it is too long to waste the LCD window.
// I do not want to make this Firmware users's uBITX messy with my callsign.
// Putting one alphabet in front of 'v' has a different meaning.
// So I put + in the sense that it was improved one by one based on Original Firmware.
// This firmware has been gradually changed based on the original firmware created by Farhan, Jack, Jerry and others.
#define FIRMWARE_VERSION_INFO F("+v1.200")
#define FIRMWARE_VERSION_NUM 0x04 //1st Complete Project : 1 (Version 1.061), 2st Project : 2, 1.08: 3, 1.09 : 4
/**
Since KD8CEC Version 0.29, most of the original code is no longer available.
Cat Suppoort uBITX CEC Version
This firmware has been gradually changed based on the original firmware created by Farhan, Jack, Jerry and others.
Most features(TX, Frequency Range, Ham Band, TX Control, CW delay, start Delay... more) have been added by KD8CEC.
However, the license rules are subject to the original source rules.
DE Ian KD8CEC
My wish is to keep the original author's Comment as long as the meaning does not change much, even if the code looks a bit long.
Ian KD8CEC
Original source comment -------------------------------------------------------------
* This source file is under General Public License version 3.
@ -39,177 +51,8 @@
#include <Wire.h>
#include <EEPROM.h>
#include "ubitx.h"
#include "ubitx_eemap.h"
/**
The main chip which generates upto three oscillators of various frequencies in the
Raduino is the Si5351a. To learn more about Si5351a you can download the datasheet
from www.silabs.com although, strictly speaking it is not a requirment to understand this code.
We no longer use the standard SI5351 library because of its huge overhead due to many unused
features consuming a lot of program space. Instead of depending on an external library we now use
Jerry Gaffke's, KE7ER, lightweight standalone mimimalist "si5351bx" routines (see further down the
code). Here are some defines and declarations used by Jerry's routines:
*/
/**
* We need to carefully pick assignment of pin for various purposes.
* There are two sets of completely programmable pins on the Raduino.
* First, on the top of the board, in line with the LCD connector is an 8-pin connector
* that is largely meant for analog inputs and front-panel control. It has a regulated 5v output,
* ground and six pins. Each of these six pins can be individually programmed
* either as an analog input, a digital input or a digital output.
* The pins are assigned as follows (left to right, display facing you):
* Pin 1 (Violet), A7, SPARE
* Pin 2 (Blue), A6, KEYER (DATA)
* Pin 3 (Green), +5v
* Pin 4 (Yellow), Gnd
* Pin 5 (Orange), A3, PTT
* Pin 6 (Red), A2, F BUTTON
* Pin 7 (Brown), A1, ENC B
* Pin 8 (Black), A0, ENC A
*Note: A5, A4 are wired to the Si5351 as I2C interface
* *
* Though, this can be assigned anyway, for this application of the Arduino, we will make the following
* assignment
* A2 will connect to the PTT line, which is the usually a part of the mic connector
* A3 is connected to a push button that can momentarily ground this line. This will be used for RIT/Bandswitching, etc.
* A6 is to implement a keyer, it is reserved and not yet implemented
* A7 is connected to a center pin of good quality 100K or 10K linear potentiometer with the two other ends connected to
* ground and +5v lines available on the connector. This implments the tuning mechanism
*/
#define ENC_A (A0)
#define ENC_B (A1)
#define FBUTTON (A2)
#define PTT (A3)
#define ANALOG_KEYER (A6)
#define ANALOG_SPARE (A7)
#define ANALOG_SMETER (A7) //by KD8CEC
/**
* The Raduino board is the size of a standard 16x2 LCD panel. It has three connectors:
*
* First, is an 8 pin connector that provides +5v, GND and six analog input pins that can also be
* configured to be used as digital input or output pins. These are referred to as A0,A1,A2,
* A3,A6 and A7 pins. The A4 and A5 pins are missing from this connector as they are used to
* talk to the Si5351 over I2C protocol.
*
* Second is a 16 pin LCD connector. This connector is meant specifically for the standard 16x2
* LCD display in 4 bit mode. The 4 bit mode requires 4 data lines and two control lines to work:
* Lines used are : RESET, ENABLE, D4, D5, D6, D7
* We include the library and declare the configuration of the LCD panel too
*/
#include <LiquidCrystal.h>
LiquidCrystal lcd(8,9,10,11,12,13);
#define VERSION_NUM 0x01 //for KD8CEC'S firmware and for memory management software
/**
* The Arduino, unlike C/C++ on a regular computer with gigabytes of RAM, has very little memory.
* We have to be very careful with variables that are declared inside the functions as they are
* created in a memory region called the stack. The stack has just a few bytes of space on the Arduino
* if you declare large strings inside functions, they can easily exceed the capacity of the stack
* and mess up your programs.
* We circumvent this by declaring a few global buffers as kitchen counters where we can
* slice and dice our strings. These strings are mostly used to control the display or handle
* the input and output from the USB port. We must keep a count of the bytes used while reading
* the serial port as we can easily run out of buffer space. This is done in the serial_in_count variable.
*/
char c[30], b[30];
char printBuff[2][17]; //mirrors what is showing on the two lines of the display
int count = 0; //to generally count ticks, loops, etc
/**
* The second set of 16 pins on the Raduino's bottom connector are have the three clock outputs and the digital lines to control the rig.
* This assignment is as follows :
* Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
* GND +5V CLK0 GND GND CLK1 GND GND CLK2 GND D2 D3 D4 D5 D6 D7
* These too are flexible with what you may do with them, for the Raduino, we use them to :
* - TX_RX line : Switches between Transmit and Receive after sensing the PTT or the morse keyer
* - CW_KEY line : turns on the carrier for CW
*/
#define TX_RX (7)
#define CW_TONE (6)
#define TX_LPF_A (5)
#define TX_LPF_B (4)
#define TX_LPF_C (3)
#define CW_KEY (2)
/**
* These are the indices where these user changable settinngs are stored in the EEPROM
*/
#define MASTER_CAL 0
#define LSB_CAL 4
#define USB_CAL 8
#define SIDE_TONE 12
//these are ids of the vfos as well as their offset into the eeprom storage, don't change these 'magic' values
#define VFO_A 16
#define VFO_B 20
#define CW_SIDETONE 24
#define CW_SPEED 28
//AT328 has 1KBytes EEPROM
#define CW_CAL 252
#define VFO_A_MODE 256
#define VFO_B_MODE 257
#define CW_DELAY 258
#define CW_START 259
#define HAM_BAND_COUNT 260 //
#define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) //1STEP :
//for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
#define CW_ADC_ST_FROM 349 //CW ADC Range STRAIGHT KEY from (Lower 8 bit)
#define CW_ADC_ST_TO 350 //CW ADC Range STRAIGHT KEY to (Lower 8 bit)
#define CW_ADC_DOT_FROM 351 //CW ADC Range DOT from (Lower 8 bit)
#define CW_ADC_DOT_TO 352 //CW ADC Range DOT to (Lower 8 bit)
#define CW_ADC_MOST_BIT2 353 //most 2bits of BOTH_TO, BOTH_FROM, DASH_TO, DASH_FROM
#define CW_ADC_DASH_FROM 354 //CW ADC Range DASH from (Lower 8 bit)
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
#define CW_KEY_TYPE 358
#define CW_DISPLAY_SHIFT 359 //Transmits on CWL, CWU Mode, LCD Frequency shifts Sidetone Frequency.
//(7:Enable / Disable //0: enable, 1:disable, (default is applied shift)
//6 : 0 : Adjust Pulus, 1 : Adjust Minus
//0~5: Adjust Value : * 10 = Adjust Value (0~300)
#define COMMON_OPTION0 360 //0: Confirm : CW Frequency Shift
//1 : IF Shift Save
//
//
//
#define IF_SHIFTVALUE 363
#define DISPLAY_OPTION1 361 //Display Option1
#define DISPLAY_OPTION2 362 //Display Option2
#define CHANNEL_FREQ 630 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define CHANNEL_DESC 710 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define RESERVE3 770 //Reserve3 between Channel and Firmware id check
//Check Firmware type and version
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
#define VERSION_ADDRESS 779 //check Firmware version
//USER INFORMATION
#define USER_CALLSIGN_KEY 780 //0x59
#define USER_CALLSIGN_LEN 781 //1BYTE (OPTION + LENGTH) + CALLSIGN (MAXIMUM 18)
#define USER_CALLSIGN_DAT 782 //CALL SIGN DATA //direct EEPROM to LCD basic offset
//AUTO KEY STRUCTURE
//AUTO KEY USE 800 ~ 1023
#define CW_AUTO_MAGIC_KEY 800 //0x73
#define CW_AUTO_COUNT 801 //0 ~ 255
#define CW_AUTO_DATA 803 //[INDEX, INDEX, INDEX,DATA,DATA, DATA (Positon offset is CW_AUTO_DATA
#define CW_DATA_OFSTADJ CW_AUTO_DATA - USER_CALLSIGN_DAT //offset adjust for ditect eeprom to lcd (basic offset is USER_CALLSIGN_DAT
#define CW_STATION_LEN 1023 //value range : 4 ~ 30
/**
* The uBITX is an upconnversion transceiver. The first IF is at 45 MHz.
* The first IF frequency is not exactly at 45 Mhz but about 5 khz lower,
@ -229,10 +72,43 @@ int count = 0; //to generally count ticks, loops, etc
// the second oscillator should ideally be at 57 MHz, however, the crystal filter's center frequency
// is shifted down a little due to the loading from the impedance matching L-networks on either sides
#define SECOND_OSC_USB (56995000l)
#define SECOND_OSC_LSB (32995000l)
//these are the two default USB and LSB frequencies. The best frequencies depend upon your individual taste and filter shape
#define INIT_USB_FREQ (11996500l)
#if UBITX_BOARD_VERSION == 5
//For Test //45005000
//#define SECOND_OSC_USB (56064200l)
//#define SECOND_OSC_LSB (33945800l)
/*
//For Test //4500000
#define SECOND_OSC_USB (56059200l)
#define SECOND_OSC_LSB (33940800l)
*/
/*
//For Test // V1.121 44991500(LSB), 44998500 (USB), abs : 7k
#define SECOND_OSC_USB (56057700l)
#define SECOND_OSC_LSB (33932300l)
*/
//==============================================================================================================================
//For Test // V1.200 V1.122 45002500 (LSB), 45002000 (USB) (Change Default BFO Frequency 11056xxx, adjust bfo and ifshift ), abs: 0.5k
//Best, Test 3 uBITX V5
//Last Value, If more data is collected, it can be changed to a better value.
#define SECOND_OSC_USB (56058700l)
#define SECOND_OSC_LSB (33945800l)
//Not used, Just comment (Default)
#define INIT_USB_FREQ (11056500l)
//-----------------------------------------------------------------------------------------------------------------------------
#else
#define SECOND_OSC_USB (56995000l)
#define SECOND_OSC_LSB (32995000l)
//these are the two default USB and LSB frequencies. The best frequencies depend upon your individual taste and filter shape
//Not used, Just comment (Default)
#define INIT_USB_FREQ (11996500l)
#endif
// limits the tuning and working range of the ubitx between 3 MHz and 30 MHz
#define LOWEST_FREQ (3000000l)
#define HIGHEST_FREQ (30000000l)
@ -241,11 +117,6 @@ int count = 0; //to generally count ticks, loops, etc
#define LOWEST_FREQ_DIAL (3000l)
#define HIGHEST_FREQ_DIAL (60000000l)
//we directly generate the CW by programmin the Si5351 to the cw tx frequency, hence, both are different modes
//these are the parameter passed to startTx
#define TX_SSB 0
#define TX_CW 1
char ritOn = 0;
char vfoActive = VFO_A;
int8_t meter_reading = 0; // a -1 on meter makes it invisible
@ -332,13 +203,38 @@ unsigned long dbgCount = 0; //not used now
unsigned char txFilter = 0; //which of the four transmit filters are in use
boolean modeCalibrate = false;//this mode of menus shows extended menus to calibrate the oscillators and choose the proper
//beat frequency
byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2~Bit3 : dynamic sdr frequency, bit 7: IFTune_Value Reverse for DIY uBITX
byte attLevel = 0; //ATT : RF Gain Control (Receive) <-- IF1 Shift, 0 : Off, ShiftValue is attLevel * 100; attLevel 150 = 15K
byte if1TuneValue = 0; //0 : OFF, IF1 + if1TuneValue * 100; // + - 12500;
byte sdrModeOn = 0; //SDR MODE ON / OFF
unsigned long SDR_Center_Freq; //
unsigned long beforeIdle_ProcessTime = 0; //for check Idle time
byte line2DisplayStatus = 0; //0:Clear, 1 : menu, 1: DisplayFrom Idle,
char lcdMeter[17];
byte sMeterLevels[9];
//Current ADC Value for S.Meter, and S Meter Level
int currentSMeter = 0;
byte scaledSMeter = 0;
byte I2C_LCD_MASTER_ADDRESS; //0x27 //if Set I2C Address by uBITX Manager, read from EEProm
byte I2C_LCD_SECOND_ADDRESS; //only using Dual LCD Mode
byte KeyValues[16][3];
byte isIFShift = 0; //1 = ifShift, 2 extend
int ifShiftValue = 0; //
int ifShiftValue = 0; //
byte TriggerBySW = 0; //Action Start from Nextion LCD, Other MCU
//Use Custom Filter
//#define CUST_LPF_ENABLED 48
//#define CUST_LPF_START 49
char isCustomFilter = 0;
char isCustomFilter_A7 = 0;
char CustFilters[7][2];
/**
* Below are the basic functions that control the uBitx. Understanding the functions before
@ -347,8 +243,8 @@ int ifShiftValue = 0; //
//Ham Band
#define MAX_LIMIT_RANGE 10 //because limited eeprom size
byte useHamBandCount = 0; //0 use full range frequency
byte tuneTXType = 0; //0 : use full range, 1 : just Change Dial speed, 2 : just ham band change, but can general band by tune, 3 : only ham band (just support 0, 2 (0.26 version))
byte useHamBandCount = 0; //0 use full range frequency
byte tuneTXType = 0; //0 : use full range, 1 : just Change Dial speed, 2 : just ham band change, but can general band by tune, 3 : only ham band (just support 0, 2 (0.26 version))
//100 : use full range but not TX on general band, 101 : just change dial speed but.. 2 : jut... but.. 3 : only ham band (just support 100, 102 (0.26 version))
unsigned int hamBandRange[MAX_LIMIT_RANGE][2]; // = //Khz because reduce use memory
@ -400,8 +296,8 @@ void setNextHamBandFreq(unsigned long f, char moveDirection)
if ((resultFreq / 1000) < hamBandRange[(unsigned char)findedIndex][0] || (resultFreq / 1000) > hamBandRange[(unsigned char)findedIndex][1])
resultFreq = (unsigned long)(hamBandRange[(unsigned char)findedIndex][0]) * 1000;
setFrequency(resultFreq);
byteToMode(loadMode, 1);
setFrequency(resultFreq);
}
void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) {
@ -461,27 +357,74 @@ byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWK
*/
void setTXFilters(unsigned long freq){
#ifdef USE_CUSTOM_LPF_FILTER
freq = freq / 1000000UL;
for (byte i = 0; i < 7; i++) {
if (freq >= CustFilters[i][0])
{
char aIn = CustFilters[i][1];
digitalWrite(TX_LPF_A, aIn & 0x01);
digitalWrite(TX_LPF_B, aIn & 0x02);
digitalWrite(TX_LPF_C, aIn & 0x04);
if (isCustomFilter_A7 == 1)
{
digitalWrite(10, aIn & 0x08);
digitalWrite(11, aIn & 0x10);
digitalWrite(12, aIn & 0x20);
digitalWrite(13, aIn & 0x40);
}
return;
}
} //end of for
#else
if (freq > 21000000L){ // the default filter is with 35 MHz cut-off
digitalWrite(TX_LPF_A, 0);
digitalWrite(TX_LPF_B, 0);
digitalWrite(TX_LPF_C, 0);
}
else if (freq >= 14000000L){ //thrown the KT1 relay on, the 30 MHz LPF is bypassed and the 14-18 MHz LPF is allowd to go through
digitalWrite(TX_LPF_A, 1);
digitalWrite(TX_LPF_B, 0);
digitalWrite(TX_LPF_C, 0);
}
else if (freq > 7000000L){
digitalWrite(TX_LPF_A, 1);
digitalWrite(TX_LPF_B, 1);
digitalWrite(TX_LPF_C, 0);
}
else {
digitalWrite(TX_LPF_A, 1);
digitalWrite(TX_LPF_B, 1);
digitalWrite(TX_LPF_C, 1);
}
#if UBITX_BOARD_VERSION == 5
if (freq > 21000000L){ // the default filter is with 35 MHz cut-off
digitalWrite(TX_LPF_A, 0);
digitalWrite(TX_LPF_B, 0);
digitalWrite(TX_LPF_C, 0);
}
else if (freq >= 14000000L){ //thrown the KT1 relay on, the 30 MHz LPF is bypassed and the 14-18 MHz LPF is allowd to go through
digitalWrite(TX_LPF_A, 1);
digitalWrite(TX_LPF_B, 0);
digitalWrite(TX_LPF_C, 0);
}
else if (freq > 7000000L){
digitalWrite(TX_LPF_A, 0);
digitalWrite(TX_LPF_B, 1);
digitalWrite(TX_LPF_C, 0);
}
else {
digitalWrite(TX_LPF_A, 0);
digitalWrite(TX_LPF_B, 0);
digitalWrite(TX_LPF_C, 1);
}
#else
if (freq > 21000000L){ // the default filter is with 35 MHz cut-off
digitalWrite(TX_LPF_A, 0);
digitalWrite(TX_LPF_B, 0);
digitalWrite(TX_LPF_C, 0);
}
else if (freq >= 14000000L){ //thrown the KT1 relay on, the 30 MHz LPF is bypassed and the 14-18 MHz LPF is allowd to go through
digitalWrite(TX_LPF_A, 1);
digitalWrite(TX_LPF_B, 0);
digitalWrite(TX_LPF_C, 0);
}
else if (freq > 7000000L){
digitalWrite(TX_LPF_A, 1);
digitalWrite(TX_LPF_B, 1);
digitalWrite(TX_LPF_C, 0);
}
else {
digitalWrite(TX_LPF_A, 1);
digitalWrite(TX_LPF_B, 1);
digitalWrite(TX_LPF_C, 1);
}
#endif
#endif
}
/**
@ -502,27 +445,95 @@ void setFrequency(unsigned long f){
setTXFilters(f);
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
int appliedTuneValue = 0;
if (cwMode == 0)
//applied if tune
//byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency0, Bit3 : dynamic sdr frequency1, bit 7: IFTune_Value Reverse for DIY uBITX
if ((advancedFreqOption1 & 0x01) != 0x00)
{
if (isUSB){
si5351bx_setfreq(2, SECOND_OSC_USB - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
appliedTuneValue = if1TuneValue;
//In the LSB state, the optimum reception value was found. To apply to USB, 3Khz decrease is required.
if (sdrModeOn && (inTx == 0))
appliedTuneValue -= 15; //decrease 1.55Khz
//if (isUSB)
if (cwMode == 2 || (cwMode == 0 && (isUSB)))
appliedTuneValue -= 30; //decrease 3Khz
}
//if1Tune RX, TX Enabled, ATT : only RX Mode
//The IF Tune shall be measured at the LSB. Then, move the 3Khz down for USB.
long if1AdjustValue = ((inTx == 0) ? (attLevel * 100) : 0) + (appliedTuneValue * 100); //if1Tune RX, TX Enabled, ATT : only RX Mode //5600
//for DIY uBITX (custom filter)
if ((advancedFreqOption1 & 0x80) != 0x00) //Reverse IF Tune (- Value for DIY uBITX)
if1AdjustValue *= -1;
if (sdrModeOn && (inTx == 0)) //IF SDR MODE
{
//Fixed Frequency SDR (Default Frequency : 32Mhz, available change sdr Frequency by uBITX Manager)
//Dynamic Frequency is for SWL without cat
//byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency0, Bit3 : dynamic sdr frequency1, bit 7: IFTune_Value Reverse for DIY uBITX
long moveFrequency = 0;
//7 6 5 4 3 2 1 0
// _ _ <-- SDR Freuqncy Option
byte sdrOption = (advancedFreqOption1 >> 2) & 0x03;
if (sdrOption == 1) // SDR Frequency + frequenc
{
//example : offset Freq : 20 Mhz and frequency = 7.080 => 27.080 Mhz
//example : offset Freq : 0 Mhz and frequency = 7.080 => 7.080 Mhz
//for available HF, SDR
moveFrequency = f;
}
else{
si5351bx_setfreq(2, SECOND_OSC_LSB + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
else if (sdrOption == 2) //Mhz move
{
//Offset Frequency + Mhz,
//Example : Offset Frequency : 30Mhz and current Frequncy is 7.080 => 37.080Mhz
// Offset Frequency : 30Mhz and current Frequncy is 14.074 => 34.074Mhz
moveFrequency = (f % 10000000);
}
else if (sdrOption == 3) //Khz move
{
//Offset Frequency + Khz,
//Example : Offset Frequency : 30Mhz and current Frequncy is 7.080 => 30.080Mhz
// Offset Frequency : 30Mhz and current Frequncy is 14.074 => 30.074Mhz
moveFrequency = (f % 1000000);
}
#if UBITX_BOARD_VERSION == 5
si5351bx_setfreq(2, 45002000 + if1AdjustValue + f);
si5351bx_setfreq(1, 45002000
+ if1AdjustValue
+ SDR_Center_Freq
//+ ((advancedFreqOption1 & 0x04) == 0x00 ? 0 : (f % 10000000))
+ moveFrequency);
// + 2390); //RTL-SDR Frequency Error, Do not add another SDR because the error is different. V1.3
#else
si5351bx_setfreq(2, 44991500 + if1AdjustValue + f);
si5351bx_setfreq(1, 44991500
+ if1AdjustValue
+ SDR_Center_Freq
//+ ((advancedFreqOption1 & 0x04) == 0x00 ? 0 : (f % 10000000))
+ moveFrequency );
//+ 2390); Do not add another SDR because the error is different. V1.3
#endif
}
else
{
if (cwMode == 1){ //CWL
si5351bx_setfreq(2, SECOND_OSC_LSB + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
if (cwMode == 1 || (cwMode == 0 && (!isUSB))) //cwl or lsb
{
//CWL(cwMode == 1) or LSB (cwMode == 0 && (!isUSB))
si5351bx_setfreq(2, SECOND_OSC_LSB + if1AdjustValue + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB + if1AdjustValue);
}
else{ //CWU
si5351bx_setfreq(2, SECOND_OSC_USB - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
else //cwu or usb
{
//CWU (cwMode == 2) or USB (cwMode == 0 and isUSB)
si5351bx_setfreq(2, SECOND_OSC_USB + if1AdjustValue - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB + if1AdjustValue);
}
}
@ -553,13 +564,17 @@ void startTx(byte txMode, byte isDisplayUpdate){
}
else
{
if (splitOn == 1) {
if (vfoActive == VFO_B) {
if (splitOn == 1)
{
FrequencyToVFO(1); //Save current Frequency and Mode to eeprom
if (vfoActive == VFO_B)
{
vfoActive = VFO_A;
frequency = vfoA;
byteToMode(vfoA_mode, 0);
}
else if (vfoActive == VFO_A){
else if (vfoActive == VFO_A)
{
vfoActive = VFO_B;
frequency = vfoB;
byteToMode(vfoB_mode, 0);
@ -606,13 +621,6 @@ void stopTx(void){
inTx = 0;
digitalWrite(TX_RX, 0); //turn off the tx
/*
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
*/
SetCarrierFreq();
if (ritOn)
@ -669,7 +677,7 @@ void ritDisable(){
* flip the T/R line to T and update the display to denote transmission
*/
void checkPTT(){
void checkPTT(){
//we don't check for ptt when transmitting cw
if (cwTimeout > 0)
return;
@ -678,11 +686,116 @@ void checkPTT(){
startTx(TX_SSB, 1);
delay(50); //debounce the PTT
}
if (digitalRead(PTT) == 1 && inTx == 1)
stopTx();
}
#ifdef EXTEND_KEY_GROUP1
void checkButton(){
char currentBandIndex = -1;
//only if the button is pressed
int keyStatus = getBtnStatus();
if (keyStatus == -1)
return;
delay(50);
keyStatus = getBtnStatus(); //will be remove 3 lines
if (keyStatus == -1)
return;
if (keyStatus == FKEY_PRESS) //Menu Key
{
//for touch screen
#ifdef USE_SW_SERIAL
SetSWActivePage(1);
doMenu();
if (isCWAutoMode == 0)
SetSWActivePage(0);
#else
doMenu();
#endif
}
else if (keyStatus <= FKEY_TYPE_MAX) //EXTEND KEY GROUP #1
{
switch(keyStatus)
{
case FKEY_MODE :
if (cwMode == 1)
{
cwMode = 2;
}
else if (cwMode == 2)
{
cwMode = 0;
isUSB = 0;
}
else if (isUSB == 0)
{
isUSB = 1;
}
else
{
cwMode = 1;
}
break;
case FKEY_BANDUP :
case FKEY_BANDDOWN :
//Save Band Information
if (tuneTXType == 2 || tuneTXType == 3 || tuneTXType == 102 || tuneTXType == 103) { //only ham band move
currentBandIndex = getIndexHambanBbyFreq(frequency);
if (currentBandIndex >= 0) {
saveBandFreqByIndex(frequency, modeToByte(), currentBandIndex);
}
}
setNextHamBandFreq(frequency, keyStatus == FKEY_BANDDOWN ? -1 : 1); //Prior Band
break;
case FKEY_STEP :
if (++tuneStepIndex > 5)
tuneStepIndex = 1;
EEPROM.put(TUNING_STEP, tuneStepIndex);
printLine2ClearAndUpdate();
break;
case FKEY_VFOCHANGE :
menuVfoToggle(1); //Vfo Toggle
break;
case FKEY_SPLIT :
menuSplitOnOff(1);
break;
case FKEY_TXOFF:
menuTxOnOff(1, 0x01);
break;
case FKEY_SDRMODE :
menuSDROnOff(1);
break;
case FKEY_RIT :
menuRitToggle(1);
break;
}
FrequencyToVFO(1);
SetCarrierFreq();
setFrequency(frequency);
//delay_background(delayTime, 0);
updateDisplay();
}
//wait for the button to go up again
while(keyStatus == getBtnStatus()) {
delay(10);
Check_Cat(0);
}
//delay(50);//debounce
}
#else
void checkButton(){
//only if the button is pressed
if (!btnDown())
@ -700,7 +813,7 @@ void checkButton(){
}
//delay(50);//debounce
}
#endif
/************************************
Replace function by KD8CEC
@ -862,7 +975,7 @@ void initSettings(){
printLineF(1, F("Init EEProm..."));
//initial all eeprom
for (unsigned int i = 32; i < 1024; i++) //protect Master_cal, usb_cal
for (unsigned int i = 64; i < 1024; i++) //protect Master_cal, usb_cal
EEPROM.write(i, 0);
//Write Firmware ID
@ -872,8 +985,26 @@ void initSettings(){
}
//Version Write for Memory Management Software
if (EEPROM.read(VERSION_ADDRESS) != VERSION_NUM)
EEPROM.write(VERSION_ADDRESS, VERSION_NUM);
if (EEPROM.read(VERSION_ADDRESS) != FIRMWARE_VERSION_NUM)
EEPROM.write(VERSION_ADDRESS, FIRMWARE_VERSION_NUM);
//SI5351 I2C Address
//I2C_ADDR_SI5351
SI5351BX_ADDR = EEPROM.read(I2C_ADDR_SI5351);
if (SI5351BX_ADDR < 0x10 || SI5351BX_ADDR > 0xF0)
{
SI5351BX_ADDR = 0x60;
}
//Backup Calibration Setting from Factory Setup
//Check Factory Setting Backup Y/N
if (EEPROM.read(FACTORY_BACKUP_YN) != 0x13) {
EEPROM.write(FACTORY_BACKUP_YN, 0x13); //Set Backup Y/N
for (unsigned int i = 0; i < 32; i++) //factory setting range
EEPROM.write(FACTORY_VALUES + i, EEPROM.read(i)); //0~31 => 65~96
}
EEPROM.get(CW_CAL, cwmCarrier);
@ -901,12 +1032,40 @@ void initSettings(){
else
keyerControl |= IAMBICB;
}
EEPROM.get(COMMON_OPTION0, commonOption0);
EEPROM.get(DISPLAY_OPTION1, displayOption1);
EEPROM.get(DISPLAY_OPTION2, displayOption2);
for (byte i = 0; i < 8; i++) {
sMeterLevels[i + 1] = EEPROM.read(S_METER_LEVELS + i);
}
//KeyValues
for (byte i = 0; i < 16; i++) {
KeyValues[i][0] = EEPROM.read(EXTENDED_KEY_RANGE + (i * 3)); //RANGE : Start Value
KeyValues[i][1] = EEPROM.read(EXTENDED_KEY_RANGE + (i * 3) + 1); //RANGE : End Value
KeyValues[i][2] = EEPROM.read(EXTENDED_KEY_RANGE + (i * 3) + 2); //KEY TYPE
}
#ifdef USE_CUSTOM_LPF_FILTER
//Custom Filters
EEPROM.get(CUST_LPF_ENABLED, isCustomFilter);
if (isCustomFilter == 0x58)
{
isCustomFilter_A7 = 1;
}
isCustomFilter = (isCustomFilter == 0x58 || isCustomFilter == 0x57);
for (byte i = 0; i < 7; i++) {
CustFilters[i][0] = EEPROM.read(CUST_LPF_START + (i * 2)); //LPF (To) Mhz
CustFilters[i][1] = EEPROM.read(CUST_LPF_START + (i * 2) + 1); //Enabled I/O
}
//char isCustomFilter = 0;
//char isCustomFilter_A7 = 0;
//char CustFilters[2][7];
#endif
//User callsign information
if (EEPROM.read(USER_CALLSIGN_KEY) == 0x59)
userCallsignLength = EEPROM.read(USER_CALLSIGN_LEN); //MAXIMUM 18 LENGTH
@ -964,10 +1123,10 @@ void initSettings(){
{
//Default Setting
arTuneStep[0] = 10;
arTuneStep[1] = 20;
arTuneStep[2] = 50;
arTuneStep[3] = 100;
arTuneStep[4] = 200;
arTuneStep[1] = 50;
arTuneStep[2] = 100;
arTuneStep[3] = 500;
arTuneStep[4] = 1000;
}
if (tuneStepIndex == 0) //New User
@ -1015,6 +1174,25 @@ void initSettings(){
isIFShift = ifShiftValue != 0;
}
//Advanced Freq control
EEPROM.get(ADVANCED_FREQ_OPTION1, advancedFreqOption1);
//byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency0, Bit3 : dynamic sdr frequency1, bit 7: IFTune_Value Reverse for DIY uBITX
if ((advancedFreqOption1 & 0x01) != 0x00)
{
EEPROM.get(IF1_CAL, if1TuneValue);
//Stored Enabled SDR Mode
if ((advancedFreqOption1 & 0x02) != 0x00)
{
EEPROM.get(ENABLE_SDR, sdrModeOn);
}
}
EEPROM.get(SDR_FREQUNCY, SDR_Center_Freq);
//if (SDR_Center_Freq == 0)
// SDR_Center_Freq = 32000000;
//default Value (for original hardware)
if (cwAdcSTFrom >= cwAdcSTTo)
{
@ -1049,12 +1227,22 @@ void initSettings(){
if (vfoB_mode < 2)
vfoB_mode = 3;
#if UBITX_BOARD_VERSION == 5
//original code with modified by kd8cec
if (usbCarrier > 11060000l || usbCarrier < 11048000l)
usbCarrier = 11052000l;
if (cwmCarrier > 11060000l || cwmCarrier < 11048000l)
cwmCarrier = 11052000l;
#else
//original code with modified by kd8cec
if (usbCarrier > 12010000l || usbCarrier < 11990000l)
usbCarrier = 11997000l;
if (cwmCarrier > 12010000l || cwmCarrier < 11990000l)
cwmCarrier = 11997000l;
#endif
if (vfoA > 35000000l || 3500000l > vfoA) {
vfoA = 7150000l;
@ -1104,6 +1292,16 @@ void initPorts(){
pinMode(ANALOG_KEYER, INPUT_PULLUP);
pinMode(ANALOG_SMETER, INPUT); //by KD8CEC
#ifdef USE_CUSTOM_LPF_FILTER
if (isCustomFilter_A7)
{
pinMode(10, OUTPUT);
pinMode(11, OUTPUT);
pinMode(12, OUTPUT);
pinMode(13, OUTPUT);
}
#endif
pinMode(CW_TONE, OUTPUT);
digitalWrite(CW_TONE, 0);
@ -1121,6 +1319,40 @@ void initPorts(){
digitalWrite(CW_KEY, 0);
}
//Recovery Factory Setting Values
void factory_Recovery()
{
if (EEPROM.read(FACTORY_BACKUP_YN) != 0x13)
return;
if (digitalRead(PTT) == 0) //Do not proceed if PTT is pressed to prevent malfunction.
return;
printLineF2(F("Factory Recovery"));
delay(2000);
if (!btnDown())
return;
printLineF2(F("IF you continue"));
printLineF1(F("release the key"));
delay(2000);
if (btnDown())
return;
printLineF1(F("Press Key PTT"));
delay(2000);
if (digitalRead(PTT) == 0)
{
for (unsigned int i = 0; i < 32; i++) //factory setting range
EEPROM.write(i, EEPROM.read(FACTORY_VALUES + i)); //65~96 => 0~31
//printLineF2(F("CompleteRecovery"));
printLineF1(F("Power Reset!"));
while(1); //Hold
}
}
void setup()
{
/*
@ -1135,27 +1367,52 @@ void setup()
//while(1);
//end section of test
*/
//Load I2C LCD Address for I2C LCD
//I2C LCD Parametere
#ifdef USE_I2C_LCD
EEPROM.get(I2C_LCD_MASTER, I2C_LCD_MASTER_ADDRESS);
EEPROM.get(I2C_LCD_SECOND, I2C_LCD_SECOND_ADDRESS);
if (I2C_LCD_MASTER_ADDRESS < 0x10 || I2C_LCD_MASTER_ADDRESS > 0xF0)
I2C_LCD_MASTER_ADDRESS = I2C_LCD_MASTER_ADDRESS_DEFAULT;
if (I2C_LCD_SECOND_ADDRESS < 0x10 || I2C_LCD_SECOND_ADDRESS > 0xF0)
I2C_LCD_SECOND_ADDRESS = I2C_LCD_SECOND_ADDRESS_DEFAULT;
#endif
//Serial.begin(9600);
lcd.begin(16, 2);
printLineF(1, F("CE v1.06"));
LCD_Init();
//printLineF(1, FIRMWARE_VERSION_INFO);
DisplayVersionInfo(FIRMWARE_VERSION_INFO);
Init_Cat(38400, SERIAL_8N1);
initMeter(); //not used in this build
initSettings();
initPorts();
if (userCallsignLength > 0 && ((userCallsignLength & 0x80) == 0x80)) {
#ifdef USE_SW_SERIAL
// if (userCallsignLength > 0 && ((userCallsignLength & 0x80) == 0x80))
// {
userCallsignLength = userCallsignLength & 0x7F;
printLineFromEEPRom(0, 0, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
delay(500);
// }
#else
//for Chracter LCD
if (userCallsignLength > 0 && ((userCallsignLength & 0x80) == 0x80))
{
userCallsignLength = userCallsignLength & 0x7F;
DisplayCallsign(userCallsignLength);
}
else {
printLineF(0, F("uBITX v0.20"));
delay(500);
clearLine2();
}
initPorts();
#endif
#ifdef FACTORY_RECOVERY_BOOTUP
if (btnDown())
factory_Recovery();
#endif
byteToMode(vfoA_mode, 0);
initOscillators();
@ -1163,10 +1420,18 @@ void setup()
frequency = vfoA;
saveCheckFreq = frequency; //for auto save frequency
setFrequency(vfoA);
#ifdef USE_SW_SERIAL
SendUbitxData();
#endif
updateDisplay();
#ifdef ENABLE_FACTORYALIGN
if (btnDown())
factory_alignment();
#endif
}
//Auto save Frequency and Mode with Protected eeprom life by KD8CEC
@ -1223,4 +1488,9 @@ void loop(){
//we check CAT after the encoder as it might put the radio into TX
Check_Cat(inTx? 1 : 0);
//for SEND SW Serial
#ifdef USE_SW_SERIAL
SWS_Process();
#endif
}

View File

@ -31,8 +31,8 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
#include "ubitx.h"
//for broken protocol
#define CAT_RECEIVE_TIMEOUT 500
@ -252,12 +252,35 @@ void ReadEEPRom() //for remove warnings.
Serial.write(0x02); //STX
checkSum = 0x02;
for (uint16_t i = 0; i < eepromReadLength; i++)
//I2C Scanner
//Magic Key Start 59414, Length : 48583
//if (eepromStartIndex == 59414 && eepromReadLength == 48583)
if (CAT_BUFF[0] == 0x16 && CAT_BUFF[1] == 0xe8)
{
read1Byte = EEPROM.read(eepromStartIndex + i);
checkSum += read1Byte;
Serial.write(read1Byte);
for (uint8_t i = 1; i < 127; i++)
{
Wire.beginTransmission(i);
read1Byte = Wire.endTransmission();
if (read1Byte == 0)
{
Serial.write(i);
}
else
{
Serial.write(0);
}
}
}
else
{
for (uint16_t i = 0; i < eepromReadLength; i++)
{
read1Byte = EEPROM.read(eepromStartIndex + i);
checkSum += read1Byte;
Serial.write(read1Byte);
}
}
Serial.write(checkSum);
Serial.write(ACK);
}
@ -278,7 +301,19 @@ void WriteEEPRom(void) //for remove warning
}
else
{
EEPROM.write(eepromStartIndex, write1Byte);
//Special Command
if (eepromStartIndex == 13131) //Magic Key
{
if (write1Byte == 0x51) //Restart
{
asm volatile (" jmp 0");
}
}
else
{
EEPROM.write(eepromStartIndex, write1Byte);
}
Serial.write(0x77); //OK
Serial.write(ACK);
}
@ -611,10 +646,38 @@ void WriteEEPRom_FT817(byte fromType)
Serial.write(ACK);
}
const byte anlogPinIndex[6] = {A0, A1, A2, A3, A6, A7};
//Read ADC Value by uBITX Manager Software
void ReadADCValue(void)
{
//ADC MAP for uBITX
int readedADCValue;
//5BYTES
//CAT_BUFF[0] [1] [2] [3] [4] //4 COMMAND
//0 READ ADDRESS
readedADCValue = analogRead(anlogPinIndex[CAT_BUFF[0]]);
CAT_BUFF[0] = readedADCValue >> 8;
CAT_BUFF[1] = readedADCValue;
SendCatData(2);
Serial.write(ACK);
}
void SetIFSValue(void)
{
//Set IFShift Value
isIFShift = CAT_BUFF[0];
ifShiftValue = CAT_BUFF[1] + CAT_BUFF[2] * 256;
setFrequency(frequency);
SetCarrierFreq();
updateLine2Buffer(1); //option, perhap not need
Serial.write(ACK);
}
//void CatRxStatus(byte fromType)
void CatRxStatus(void) //for remove warning
{
byte sMeterValue = 1;
byte sMeterValue = 0;
/*
http://www.ka7oei.com/ft817_meow.html
@ -627,6 +690,33 @@ void CatRxStatus(void) //for remove warning
Bit 7 is 0 if there is a signal present, or 1 if the receiver is squelched.
*/
// The lower 4 bits (0-3) of this byte indicate the current S-meter reading. 00 refers to an S-Zero reading, 04 = S4, 09 = S9, 0A = "10 over," 0B = "20 over" and so on up to 0F.
//0~8
switch (scaledSMeter)
{
case 8 : sMeterValue = 0x0B;
break;
case 7 : sMeterValue = 0x0A;
break;
case 6 : sMeterValue = 0x09;
break;
case 5 : sMeterValue = 0x07;
break;
case 4 : sMeterValue = 0x05;
break;
case 3 : sMeterValue = 0x04;
break;
case 2 : sMeterValue = 0x02;
break;
case 1 : sMeterValue = 0x01;
break;
}
/*
sMeterValue = (scaledSMeter * 2) -1;
if (sMeterValue > 0)
sMeterValue--;
*/
CAT_BUFF[0] = sMeterValue & 0b00001111;
SendCatData(1);
}
@ -768,6 +858,14 @@ void Check_Cat(byte fromType)
WriteEEPRom_FT817(fromType);
break;
case 0xDD: //Read uBITX ADC Data
ReadADCValue(); //Call by uBITX Manager Program
break;
case 0xDE: //IF-Shift Control by CAT
SetIFSValue(); //
break;
case 0xE7 : //Read RX Status
CatRxStatus();
break;

View File

@ -235,30 +235,6 @@ void sendCWChar(char cwKeyChar)
}
}
/*
void sendAutoCW(int cwSendLength, char *sendString)
{
byte i;
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10;
startTx(TX_CW, 0); //disable updateDisplay Command for reduce latency time
updateDisplay();
delay_background(delayBeforeCWStartTime * 2, 2);
}
for (i = 0; i < cwSendLength; i++)
{
sendCWChar(sendString[i]);
if (i != cwSendLength -1) delay_background(cwSpeed * 3, 3);
}
delay_background(cwDelayTime * 10, 2);
stopTx();
}
*/
byte isNeedScroll = 0;
unsigned long scrollDispayTime = 0;
#define scrollSpeed 500
@ -296,17 +272,19 @@ void controlAutoCW(){
{
displayScrolStep = 0;
}
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ, 0);
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
lcd.setCursor(0, diplayAutoCWLine);
lcd.write(byteToChar(selectedCWTextIndex));
lcd.write(':');
#ifdef USE_SW_SERIAL
//Not need Scroll
//Display_AutoKeyTextIndex(selectedCWTextIndex);
SendCommand1Num('w', selectedCWTextIndex); //Index
SendEEPromData('a', cwStartIndex + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ, 0) ; //Data
SendCommand1Num('y', 1); //Send YN
isNeedScroll = 0;
#else
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ, 0);
isNeedScroll = (cwEndIndex - cwStartIndex) > 14 ? 1 : 0;
Display_AutoKeyTextIndex(selectedCWTextIndex);
#endif
scrollDispayTime = millis() + scrollSpeed;
beforeCWTextIndex = selectedCWTextIndex;
}

334
Raduino/softserial_tiny.cpp Normal file
View File

@ -0,0 +1,334 @@
/*
Softserial for Nextion LCD and Control MCU
KD8CEC, Ian Lee
-----------------------------------------------------------------------
It is a library rewritten in C format based on SoftwareSerial.c.
I tried to use as much as possible without modifying the SoftwareSerial.
But eventually I had to modify the code.
I rewrote it in C for the following reasons.
- Problems occurred when increasing Program Size and Program Memory
- We had to reduce the program size.
Of course, Software Serial is limited to one.
- reduce the steps for transmitting and receiving
useage
extern void SWSerial_Begin(long speedBaud);
extern void SWSerial_Write(uint8_t b);
extern int SWSerial_Available(void);
extern int SWSerial_Read(void);
extern void SWSerial_Print(uint8_t *b);
If you use Softwreserial library instead of this library, you can modify the code as shown below.
I kept the function name of SoftwareSerial so you only need to modify a few lines of code.
define top of source code
#include <SoftwareSerial.h>
SoftwareSerial sSerial(10, 11); // RX, TX
replace source code
SWSerial_Begin to sSerial.begin
SWSerial_Write to sSerial.write
SWSerial_Available to sSerial.available
SWSerial_Read to sSerial.read
KD8CEC, Ian Lee
-----------------------------------------------------------------------
License
All licenses for the source code are subject to the license of the original source SoftwareSerial Library.
However, if you use or modify this code, please keep the all comments in this source code.
KD8CEC
-----------------------------------------------------------------------
License from SoftwareSerial
-----------------------------------------------------------------------
SoftwareSerial.cpp (formerly NewSoftSerial.cpp) -
Multi-instance software serial library for Arduino/Wiring
-- Interrupt-driven receive and other improvements by ladyada
(http://ladyada.net)
-- Tuning, circular buffer, derivation from class Print/Stream,
multi-instance support, porting to 8MHz processors,
various optimizations, PROGMEM delay tables, inverse logic and
direct port writing by Mikal Hart (http://www.arduiniana.org)
-- Pin change interrupt macros by Paul Stoffregen (http://www.pjrc.com)
-- 20MHz processor support by Garrett Mace (http://www.macetech.com)
-- ATmega1280/2560 support by Brett Hagman (http://www.roguerobotics.com/)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
The latest version of this library can always be found at
http://arduiniana.org.
*/
#include <Arduino.h>
//================================================================
//Public Variable
//================================================================
#define TX_PIN 9
#define RX_PIN 8
#define _SS_MAX_RX_BUFF 35 // RX buffer size
#define PRINT_MAX_LENGTH 30
//================================================================
//Internal Variable from SoftwareSerial.c and SoftwareSerial.h
//================================================================
//variable from softwareserial.c and softwareserial.h
static uint8_t swr_receive_buffer[_SS_MAX_RX_BUFF];
volatile uint8_t *_transmitPortRegister; //Write Port Register
uint8_t transmit_RegMask; //use Mask bit 1
uint8_t transmit_InvMask; //use mask bit 0
volatile uint8_t *_receivePortRegister; //Read Port Register
uint8_t _receiveBitMask;
//delay value for Bit
uint16_t _tx_delay;
//delay value for Receive
uint16_t _rx_delay_stopbit;
uint16_t _rx_delay_centering;
uint16_t _rx_delay_intrabit;
//Customize for uBITX Protocol
int8_t receiveIndex = 0;
uint8_t receivedCommandLength = 0;
int8_t ffCount = 0;
//Values for Receive Buffer
//uint16_t _buffer_overflow;
//static volatile uint8_t _receive_buffer_head;
//static volatile uint8_t _receive_buffer_tail;
//Values for Interrupt (check Start Bit)
volatile uint8_t *_pcint_maskreg;
uint8_t _pcint_maskvalue;
//================================================================
//Internal Function from SoftwareSerial.c
//================================================================
uint16_t subtract_cap(uint16_t num, uint16_t sub)
{
if (num > sub)
return num - sub;
else
return 1;
}
inline void tunedDelay(uint16_t delay)
{
_delay_loop_2(delay);
}
void setRxIntMsk(bool enable)
{
if (enable)
*_pcint_maskreg |= _pcint_maskvalue;
else
*_pcint_maskreg &= ~_pcint_maskvalue;
}
uint8_t rx_pin_read()
{
return *_receivePortRegister & _receiveBitMask;
}
//
// The receive routine called by the interrupt handler
//
void softSerail_Recv()
{
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Preserve the registers that the compiler misses
// (courtesy of Arduino forum user *etracer*)
asm volatile(
"push r18 \n\t"
"push r19 \n\t"
"push r20 \n\t"
"push r21 \n\t"
"push r22 \n\t"
"push r23 \n\t"
"push r26 \n\t"
"push r27 \n\t"
::);
#endif
uint8_t d = 0;
// If RX line is high, then we don't see any start bit
// so interrupt is probably not for us
if (!rx_pin_read()) //Start Bit
{
// Disable further interrupts during reception, this prevents
// triggering another interrupt directly after we return, which can
// cause problems at higher baudrates.
setRxIntMsk(false);
// Wait approximately 1/2 of a bit width to "center" the sample
tunedDelay(_rx_delay_centering);
// Read each of the 8 bits
for (uint8_t i=8; i > 0; --i)
{
tunedDelay(_rx_delay_intrabit);
d >>= 1;
if (rx_pin_read())
d |= 0x80;
}
if (receivedCommandLength == 0) //check Already Command
{
//Set Received Data
swr_receive_buffer[receiveIndex++] = d;
//Finded Command
if (d == 0x73 && ffCount > 1 && receiveIndex > 6)
{
receivedCommandLength = receiveIndex;
receiveIndex = 0;
ffCount = 0;
}
else if (receiveIndex > _SS_MAX_RX_BUFF)
{
//Buffer Overflow
receiveIndex = 0;
ffCount = 0;
}
else if (d == 0xFF)
{
ffCount++;
}
else
{
ffCount = 0;
}
}
// skip the stop bit
tunedDelay(_rx_delay_stopbit);
// Re-enable interrupts when we're sure to be inside the stop bit
setRxIntMsk(true);
}
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Restore the registers that the compiler misses
asm volatile(
"pop r27 \n\t"
"pop r26 \n\t"
"pop r23 \n\t"
"pop r22 \n\t"
"pop r21 \n\t"
"pop r20 \n\t"
"pop r19 \n\t"
"pop r18 \n\t"
::);
#endif
}
ISR(PCINT0_vect)
{
softSerail_Recv();
}
//================================================================
//Public Function from SoftwareSerial.c and modified and create
//================================================================
// Read data from buffer
void SWSerial_Read(uint8_t * receive_cmdBuffer)
{
for (int i = 0; i < receivedCommandLength; i++)
receive_cmdBuffer[i] = swr_receive_buffer[i];
}
void SWSerial_Write(uint8_t b)
{
volatile uint8_t *reg = _transmitPortRegister;
uint8_t oldSREG = SREG;
uint16_t delay = _tx_delay;
cli(); // turn off interrupts for a clean txmit
// Write the start bit
*reg &= transmit_InvMask;
tunedDelay(delay);
// Write each of the 8 bits
for (uint8_t i = 8; i > 0; --i)
{
if (b & 1) // choose bit
*reg |= transmit_RegMask; // send 1
else
*reg &= transmit_InvMask; // send 0
tunedDelay(delay);
b >>= 1;
}
// restore pin to natural state
*reg |= transmit_RegMask;
SREG = oldSREG; // turn interrupts back on
tunedDelay(_tx_delay);
}
void SWSerial_Print(uint8_t *b)
{
for (int i = 0; i < PRINT_MAX_LENGTH; i++)
{
if (b[i] == 0x00)
break;
else
SWSerial_Write(b[i]);
}
}
void SWSerial_Begin(long speedBaud)
{
//INT TX_PIN
digitalWrite(TX_PIN, HIGH);
pinMode(TX_PIN, OUTPUT);
transmit_RegMask = digitalPinToBitMask(TX_PIN); //use Bit 1
transmit_InvMask = ~digitalPinToBitMask(TX_PIN); //use Bit 0
_transmitPortRegister = portOutputRegister(digitalPinToPort(TX_PIN));
//INIT RX_PIN
pinMode(RX_PIN, INPUT);
digitalWrite(RX_PIN, HIGH); // pullup for normal logic!
_receiveBitMask = digitalPinToBitMask(RX_PIN);
_receivePortRegister = portInputRegister(digitalPinToPort(RX_PIN));
//Set Values
uint16_t bit_delay = (F_CPU / speedBaud) / 4;
_tx_delay = subtract_cap(bit_delay, 15 / 4);
if (digitalPinToPCICR(RX_PIN))
{
_rx_delay_centering = subtract_cap(bit_delay / 2, (4 + 4 + 75 + 17 - 23) / 4);
_rx_delay_intrabit = subtract_cap(bit_delay, 23 / 4);
_rx_delay_stopbit = subtract_cap(bit_delay * 3 / 4, (37 + 11) / 4);
*digitalPinToPCICR(RX_PIN) |= _BV(digitalPinToPCICRbit(RX_PIN));
_pcint_maskreg = digitalPinToPCMSK(RX_PIN);
_pcint_maskvalue = _BV(digitalPinToPCMSKbit(RX_PIN));
tunedDelay(_tx_delay); // if we were low this establishes the end
}
//Start Listen
setRxIntMsk(true);
}

335
Raduino/ubitx.h Normal file
View File

@ -0,0 +1,335 @@
/*************************************************************************
header file for C++ by KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifndef _UBITX_HEADER__
#define _UBITX_HEADER__
#include <Arduino.h> //for Linux, On Linux it is case sensitive.
//==============================================================================
// Compile Option
//==============================================================================
//Ubitx Board Version
#define UBITX_BOARD_VERSION 2 //v1 ~ v4 : 4, v5: 5
//Depending on the type of LCD mounted on the uBITX, uncomment one of the options below.
//You must select only one.
//#define UBITX_DISPLAY_LCD1602P //LCD mounted on unmodified uBITX (Parallel)
//#define UBITX_DISPLAY_LCD1602I //I2C type 16 x 02 LCD
//#define UBITX_DISPLAY_LCD1602I_DUAL //I2C type 16 x02 LCD Dual
//#define UBITX_DISPLAY_LCD2004P //24 x 04 LCD (Parallel)
//#define UBITX_DISPLAY_LCD2004I //I2C type 24 x 04 LCD
#define UBITX_DISPLAY_NEXTION //NEXTION LCD
//#define UBITX_DISPLAY_NEXTION_SAFE //Only EEProm Write 770~775
#define I2C_LCD_MASTER_ADDRESS_DEFAULT 0x27 //0x27 //DEFAULT, if Set I2C Address by uBITX Manager, read from EEProm
#define I2C_LCD_SECOND_ADDRESS_DEFAULT 0x3F //0x27 //only using Dual LCD Mode
//Select betwen Analog S-Meter and DSP (I2C) Meter
#define USE_I2CSMETER
#define EXTEND_KEY_GROUP1 //MODE, BAND(-), BAND(+), STEP
//#define EXTEND_KEY_GROUP2 //Numeric (0~9), Point(.), Enter //Not supported in Version 1.0x
//Custom LPF Filter Mod
//#define USE_CUSTOM_LPF_FILTER //LPF FILTER MOD
//#define ENABLE_FACTORYALIGN
#define FACTORY_RECOVERY_BOOTUP //Whether to enter Factory Recovery mode by pressing FKey and turning on power
#define ENABLE_ADCMONITOR //Starting with Version 1.07, you can read ADC values directly from uBITX Manager. So this function is not necessary.
extern byte I2C_LCD_MASTER_ADDRESS; //0x27 //if Set I2C Address by uBITX Manager, read from EEProm
extern byte I2C_LCD_SECOND_ADDRESS; //only using Dual LCD Mode
#define SMeterLatency 3 //1 is 0.25 sec
//==============================================================================
// User Select feather list
//==============================================================================
//Enable all features
#define FN_BAND 1 //592
#define FN_VFO_TOGGLE 1 //78
#define FN_MODE 1 //20
#define FN_RIT 1 //58
#define FN_SPLIT 1 //62
#define FN_IFSHIFT 1 //238
#define FN_ATT 1 //128
#define FN_CW_SPEED 1 //152
#define FN_VFOTOMEM 1 //254
#define FN_MEMTOVFO 1 //188
#define FN_MEMORYKEYER 1 //156
#define FN_WSPR 1 //1044
#define FN_SDRMODE 1 //68
#define FN_CALIBRATION 1 //666
#define FN_CARRIER 1 //382
#define FN_CWCARRIER 1 //346
#define FN_CWTONE 1 //148
#define FN_CWDELAY 1 //98
#define FN_TXCWDELAY 1 //94
#define FN_KEYTYPE 1 //168
#define FN_ADCMONITOR 1 //516
#define FN_TXONOFF 1 //58
/*
//Test Configuration (88%)
#define FN_BAND 0 //592
#define FN_VFO_TOGGLE 0 //78
#define FN_MODE 0 //20
#define FN_RIT 0 //58
#define FN_SPLIT 0 //62
#define FN_IFSHIFT 0 //238
#define FN_ATT 0 //128
#define FN_CW_SPEED 1 //152
#define FN_VFOTOMEM 0 //254
#define FN_MEMTOVFO 0 //188
#define FN_MEMORYKEYER 1 //156
#define FN_WSPR 0 //1044
#define FN_SDRMODE 1 //68
#define FN_CALIBRATION 1 //666
#define FN_CARRIER 1 //382
#define FN_CWCARRIER 1 //346
#define FN_CWTONE 1 //148
#define FN_CWDELAY 1 //98
#define FN_TXCWDELAY 1 //94
#define FN_KEYTYPE 1 //168
#define FN_ADCMONITOR 1 //516
#define FN_TXONOFF 1 //58
*/
/*
//Recommended Character LCD Developer 87%
#define FN_BAND 1 //592
#define FN_VFO_TOGGLE 1 //78
#define FN_MODE 1 //20
#define FN_RIT 1 //58
#define FN_SPLIT 1 //62
#define FN_IFSHIFT 1 //238
#define FN_ATT 0 //128
#define FN_CW_SPEED 0 //152 //using MM
#define FN_VFOTOMEM 1 //254
#define FN_MEMTOVFO 1 //188
#define FN_MEMORYKEYER 1 //156
#define FN_WSPR 1 //1044
#define FN_SDRMODE 1 //68
#define FN_CALIBRATION 0 //667 //using MM
#define FN_CARRIER 0 //382 //using MM
#define FN_CWCARRIER 0 //346 //using MM
#define FN_CWTONE 0 //148 //using MM
#define FN_CWDELAY 0 //98 //using MM
#define FN_TXCWDELAY 0 //94 //using MM
#define FN_KEYTYPE 0 //168 //using MM
#define FN_ADCMONITOR 0 //516 //using MM
#define FN_TXONOFF 1 //58
*/
/*
//Recommended for Nextion, TJC LCD 88%
#define FN_BAND 1 //600
#define FN_VFO_TOGGLE 1 //90
#define FN_MODE 1 //318
#define FN_RIT 1 //62
#define FN_SPLIT 1 //2
#define FN_IFSHIFT 1 //358
#define FN_ATT 1 //250
#define FN_CW_SPEED 0 //286
#define FN_VFOTOMEM 0 //276
#define FN_MEMTOVFO 0 //234
#define FN_MEMORYKEYER 1 //168
#define FN_WSPR 1 //1130
#define FN_SDRMODE 1 //70
#define FN_CALIBRATION 0 //790
#define FN_CARRIER 0 //500
#define FN_CWCARRIER 0 //464
#define FN_CWTONE 0 //158
#define FN_CWDELAY 0 //108
#define FN_TXCWDELAY 0 //106
#define FN_KEYTYPE 0 //294
#define FN_ADCMONITOR 0 //526 //not available with Nextion or Serial UI
#define FN_TXONOFF 1 //70
*/
//==============================================================================
// End of User Select Mode and Compil options
//==============================================================================
#ifdef UBITX_DISPLAY_LCD1602I
#define USE_I2C_LCD
#elif defined(UBITX_DISPLAY_LCD1602I_DUAL)
#define USE_I2C_LCD
#elif defined(UBITX_DISPLAY_LCD2004I)
#define USE_I2C_LCD
#endif
#ifdef UBITX_DISPLAY_NEXTION
#define USE_SW_SERIAL
#undef ENABLE_ADCMONITOR
#undef FACTORY_RECOVERY_BOOTUP
#elif defined(UBITX_CONTROL_MCU)
#define USE_SW_SERIAL
#undef ENABLE_ADCMONITOR
#undef FACTORY_RECOVERY_BOOTUP
#endif
//==============================================================================
// Hardware, Define PIN Usage
//==============================================================================
/**
* We need to carefully pick assignment of pin for various purposes.
* There are two sets of completely programmable pins on the Raduino.
* First, on the top of the board, in line with the LCD connector is an 8-pin connector
* that is largely meant for analog inputs and front-panel control. It has a regulated 5v output,
* ground and six pins. Each of these six pins can be individually programmed
* either as an analog input, a digital input or a digital output.
* The pins are assigned as follows (left to right, display facing you):
* Pin 1 (Violet), A7, SPARE => Analog S-Meter
* Pin 2 (Blue), A6, KEYER (DATA)
* Pin 3 (Green), +5v
* Pin 4 (Yellow), Gnd
* Pin 5 (Orange), A3, PTT
* Pin 6 (Red), A2, F BUTTON
* Pin 7 (Brown), A1, ENC B
* Pin 8 (Black), A0, ENC A
*Note: A5, A4 are wired to the Si5351 as I2C interface
* *
* Though, this can be assigned anyway, for this application of the Arduino, we will make the following
* assignment
* A2 will connect to the PTT line, which is the usually a part of the mic connector
* A3 is connected to a push button that can momentarily ground this line. This will be used for RIT/Bandswitching, etc.
* A6 is to implement a keyer, it is reserved and not yet implemented
* A7 is connected to a center pin of good quality 100K or 10K linear potentiometer with the two other ends connected to
* ground and +5v lines available on the connector. This implments the tuning mechanism
*/
#define ENC_A (A0)
#define ENC_B (A1)
#define FBUTTON (A2)
#define PTT (A3)
#define ANALOG_KEYER (A6)
#define ANALOG_SPARE (A7)
#define ANALOG_SMETER (A7) //by KD8CEC
/**
* The second set of 16 pins on the Raduino's bottom connector are have the three clock outputs and the digital lines to control the rig.
* This assignment is as follows :
* Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
* GND +5V CLK2 GND GND CLK1 GND GND CLK0 GND D2 D3 D4 D5 D6 D7
* These too are flexible with what you may do with them, for the Raduino, we use them to :
* - TX_RX line : Switches between Transmit and Receive after sensing the PTT or the morse keyer
* - CW_KEY line : turns on the carrier for CW
*/
#define TX_RX (7) //Relay
#define CW_TONE (6)
#define TX_LPF_A (5) //Relay
#define TX_LPF_B (4) //Relay
#define TX_LPF_C (3) //Relay
#define CW_KEY (2)
//******************************************************
//DSP (I2C) Meter
//******************************************************
//S-Meter Address
#define I2CMETER_ADDR 0x58
//VALUE TYPE============================================
//Signal
#define I2CMETER_CALCS 0x59 //Calculated Signal Meter
#define I2CMETER_UNCALCS 0x58 //Uncalculated Signal Meter
//Power
#define I2CMETER_CALCP 0x57 //Calculated Power Meter
#define I2CMETER_UNCALCP 0x56 //UnCalculated Power Meter
//SWR
#define I2CMETER_CALCR 0x55 //Calculated SWR Meter
#define I2CMETER_UNCALCR 0x54 //Uncalculated SWR Meter
//==============================================================================
// for public, Variable, functions
//==============================================================================
#define WSPR_BAND_COUNT 3
#define TX_SSB 0
#define TX_CW 1
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
//0x00 : None, 0x01 : MODE, 0x02:BAND+, 0x03:BAND-, 0x04:TUNE_STEP, 0x05:VFO Toggle, 0x06:SplitOn/Off, 0x07:TX/ON-OFF, 0x08:SDR Mode On / Off, 0x09:Rit Toggle
#define FUNCTION_KEY_ADC 80 //MODE, BAND(-), BAND(+), STEP
#define FKEY_PRESS 0x78
#define FKEY_MODE 0x01
#define FKEY_BANDUP 0x02
#define FKEY_BANDDOWN 0x03
#define FKEY_STEP 0x04
#define FKEY_VFOCHANGE 0x05
#define FKEY_SPLIT 0x06
#define FKEY_TXOFF 0x07
#define FKEY_SDRMODE 0x08
#define FKEY_RIT 0x09
#define FKEY_ENTER 0x0A
#define FKEY_POINT 0x0B
#define FKEY_DELETE 0x0C
#define FKEY_CANCEL 0x0D
#define FKEY_NUM0 0x10
#define FKEY_NUM1 0x11
#define FKEY_NUM2 0x12
#define FKEY_NUM3 0x13
#define FKEY_NUM4 0x14
#define FKEY_NUM5 0x15
#define FKEY_NUM6 0x16
#define FKEY_NUM7 0x17
#define FKEY_NUM8 0x18
#define FKEY_NUM9 0x19
#define FKEY_TYPE_MAX 0x1F
extern uint8_t SI5351BX_ADDR; //change typical -> variable at Version 1.097, address read from eeprom, default value is 0x60
//EEProm Address : 63
extern unsigned long frequency;
extern byte WsprMSGCount;
extern byte sMeterLevels[9];
extern int currentSMeter; //ADC Value for S.Meter
extern byte scaledSMeter; //Calculated S.Meter Level
extern byte KeyValues[16][3]; //Set : Start Value, End Value, Key Type, 16 Set (3 * 16 = 48)
extern byte TriggerBySW; //Action Start from Nextion LCD, Other MCU
extern void printLine1(const char *c);
extern void printLine2(const char *c);
extern void printLineF(char linenmbr, const __FlashStringHelper *c);
extern void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetType);
extern byte delay_background(unsigned delayTime, byte fromType);
extern int btnDown(void);
extern char c[30];
extern char b[30];
extern int enc_read(void);
extern void si5351bx_init(void);
extern void si5351bx_setfreq(uint8_t clknum, uint32_t fout);
extern void si5351_set_calibration(int32_t cal);
extern void initOscillators(void);
extern void Set_WSPR_Param(void);
extern void TXSubFreq(unsigned long P2);
extern void startTx(byte txMode, byte isDisplayUpdate);
extern void stopTx(void);
extern void setTXFilters(unsigned long freq);
extern void SendWSPRManage(void);
extern char byteToChar(byte srcByte);
extern void DisplayCallsign(byte callSignLength);
extern void DisplayVersionInfo(const char* fwVersionInfo);
//I2C Signal Meter, Version 1.097
extern int GetI2CSmeterValue(int valueType); //ubitx_ui.ino
#endif //end of if header define

152
Raduino/ubitx_eemap.h Normal file
View File

@ -0,0 +1,152 @@
/*************************************************************************
header file for EEProm Address Map by KD8CEC
It must be protected to protect the factory calibrated calibration.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifndef _UBITX_EEPOM_HEADER__
#define _UBITX_EEPOM_HEADER__
//==============================================================================
// Factory-shipped EEProm address
// (factory Firmware)
// Address : 0 ~ 31
//==============================================================================
#define MASTER_CAL 0
#define LSB_CAL 4
#define USB_CAL 8
#define SIDE_TONE 12
//these are ids of the vfos as well as their offset into the eeprom storage, don't change these 'magic' values
#define VFO_A 16
#define VFO_B 20
#define CW_SIDETONE 24
#define CW_SPEED 28
//==============================================================================
// The spare space available in the original firmware #1
// Address : 32 ~ 62
//==============================================================================
#define RESERVE_FOR_FACTORY1 32
//==============================================================================
// custom LPF Filter
// 48 : Using Custom LPF Filter (48 = 0x57 or 0x58 => Using Custom LPF Filter, 0x58 = using A7 IO
// 49, 50 : LPF1 (49 : MHz (~ Mhz), 50 : Enabled PIN
// 51, 52 : LPF2
// 53, 54 : LPF3
// 55, 56 : LPF4
// 57, 58 : LPF5
// 59, 60 : LPF6
// 61, 62 : LPF7
//==============================================================================
#define CUST_LPF_ENABLED 48
#define CUST_LPF_START 49
//SI5351 I2C Address (Version 1.097)
#define I2C_ADDR_SI5351 63
//==============================================================================
// The spare space available in the original firmware #2
// (Enabled if the EEProm address is insufficient)
// Address : 64 ~ 100
//==============================================================================
#define RESERVE_FOR_FACTORY2 64 //use Factory backup from Version 1.075
#define FACTORY_BACKUP_YN 64 //Check Backup //Magic : 0x13
#define FACTORY_VALUES 65 //65 ~ 65 + 32
//==============================================================================
// KD8CEC EEPROM MAP
// Address : 101 ~ 1023
// 256 is the base address
// 256 ~ 1023 (EEProm Section #1)
// 255 ~ 101 (EEProm Section #2)
//==============================================================================
//0x00 : None, 0x01 : MODE, 0x02:BAND+, 0x03:BAND-, 0x04:TUNE_STEP, 0x05:VFO Toggle, 0x06:SplitOn/Off, 0x07:TX/ON-OFF, 0x08:SDR Mode On / Off, 0x09:Rit Toggle
#define EXTENDED_KEY_RANGE 140 //Extended Key => Set : Start Value, End Value, Key Type, 16 Set (3 * 16 = 48)
#define I2C_LCD_MASTER 190
#define I2C_LCD_SECOND 191
#define S_METER_LEVELS 230 //LEVEL0 ~ LEVEL7
#define ADVANCED_FREQ_OPTION1 240 //Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency
#define IF1_CAL 241
#define ENABLE_SDR 242
#define SDR_FREQUNCY 243
#define CW_CAL 252
#define VFO_A_MODE 256
#define VFO_B_MODE 257
#define CW_DELAY 258
#define CW_START 259
#define HAM_BAND_COUNT 260 //
#define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) //1STEP :
//for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
#define CW_ADC_ST_FROM 349 //CW ADC Range STRAIGHT KEY from (Lower 8 bit)
#define CW_ADC_ST_TO 350 //CW ADC Range STRAIGHT KEY to (Lower 8 bit)
#define CW_ADC_DOT_FROM 351 //CW ADC Range DOT from (Lower 8 bit)
#define CW_ADC_DOT_TO 352 //CW ADC Range DOT to (Lower 8 bit)
#define CW_ADC_MOST_BIT2 353 //most 2bits of BOTH_TO, BOTH_FROM, DASH_TO, DASH_FROM
#define CW_ADC_DASH_FROM 354 //CW ADC Range DASH from (Lower 8 bit)
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
#define CW_KEY_TYPE 358
#define CW_DISPLAY_SHIFT 359 //Transmits on CWL, CWU Mode, LCD Frequency shifts Sidetone Frequency.
//(7:Enable / Disable //0: enable, 1:disable, (default is applied shift)
//6 : 0 : Adjust Pulus, 1 : Adjust Minus
//0~5: Adjust Value : * 10 = Adjust Value (0~300)
#define COMMON_OPTION0 360 //0: Confirm : CW Frequency Shift
//1 : IF Shift Save
#define IF_SHIFTVALUE 363
#define DISPLAY_OPTION1 361 //Display Option1
#define DISPLAY_OPTION2 362 //Display Option2
#define WSPR_COUNT 443 //WSPR_MESSAGE_COUNT
#define WSPR_MESSAGE1 444 //
#define WSPR_MESSAGE2 490 //
#define WSPR_MESSAGE3 536 //
#define WSPR_MESSAGE4 582 //
#define CHANNEL_FREQ 630 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define CHANNEL_DESC 710 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define EXTERNAL_DEVICE_OPT1 770 //for External Deivce 4byte
#define EXTERNAL_DEVICE_OPT2 774 //for External Deivce 2byte
//Check Firmware type and version
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
#define VERSION_ADDRESS 779 //check Firmware version
//USER INFORMATION
#define USER_CALLSIGN_KEY 780 //0x59
#define USER_CALLSIGN_LEN 781 //1BYTE (OPTION + LENGTH) + CALLSIGN (MAXIMUM 18)
#define USER_CALLSIGN_DAT 782 //CALL SIGN DATA //direct EEPROM to LCD basic offset
//AUTO KEY STRUCTURE
//AUTO KEY USE 800 ~ 1023
#define CW_AUTO_MAGIC_KEY 800 //0x73
#define CW_AUTO_COUNT 801 //0 ~ 255
#define CW_AUTO_DATA 803 //[INDEX, INDEX, INDEX,DATA,DATA, DATA (Positon offset is CW_AUTO_DATA
#define CW_DATA_OFSTADJ CW_AUTO_DATA - USER_CALLSIGN_DAT //offset adjust for ditect eeprom to lcd (basic offset is USER_CALLSIGN_DAT
#define CW_STATION_LEN 1023 //value range : 4 ~ 30
#endif //end of if header define

View File

@ -1,3 +1,4 @@
#include "ubitx.h"
/**
* This procedure is only for those who have a signal generator/transceiver tuned to exactly 7.150 and a dummy load
@ -27,14 +28,25 @@ void factory_alignment(){
printLine2("#2 BFO");
delay(1000);
#if UBITX_BOARD_VERSION == 5
usbCarrier = 11053000l;
menuSetupCarrier(1);
if (usbCarrier == 11053000l){
printLine2("Setup Aborted");
return;
}
#else
usbCarrier = 11994999l;
menuSetupCarrier(1);
if (usbCarrier == 11994999l){
printLine2("Setup Aborted");
return;
}
#endif
printLine2("#3:Test 3.5MHz");
cwMode = 0;
@ -88,4 +100,3 @@ void factory_alignment(){
updateDisplay();
}

64
Raduino/ubitx_lcd.h Normal file
View File

@ -0,0 +1,64 @@
/*************************************************************************
header file for LCD by KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifndef _UBITX_LCD_HEADER__
#define _UBITX_LCD_HEADER__
//Common Defines *********************************************************
#define LCD_CLEARDISPLAY 0x01
#define LCD_RETURNHOME 0x02
#define LCD_ENTRYMODESET 0x04
#define LCD_DISPLAYCONTROL 0x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET 0x20
#define LCD_SETCGRAMADDR 0x40
#define LCD_SETDDRAMADDR 0x80
// flags for display entry mode
#define LCD_ENTRYRIGHT 0x00
#define LCD_ENTRYLEFT 0x02
#define LCD_ENTRYSHIFTINCREMENT 0x01
#define LCD_ENTRYSHIFTDECREMENT 0x00
// flags for display on/off control
#define LCD_DISPLAYON 0x04
#define LCD_DISPLAYOFF 0x00
#define LCD_CURSORON 0x02
#define LCD_CURSOROFF 0x00
#define LCD_BLINKON 0x01
#define LCD_BLINKOFF 0x00
// flags for display/cursor shift
#define LCD_DISPLAYMOVE 0x08
#define LCD_CURSORMOVE 0x00
#define LCD_MOVERIGHT 0x04
#define LCD_MOVELEFT 0x00
// flags for function set
#define LCD_8BITMODE 0x10
#define LCD_4BITMODE 0x00
#define LCD_2LINE 0x08
#define LCD_1LINE 0x00
#define LCD_5x10DOTS 0x04
#define LCD_5x8DOTS 0x00
// flags for backlight control
#define LCD_BACKLIGHT 0x08
#define LCD_NOBACKLIGHT 0x00
#endif //end of if header define

790
Raduino/ubitx_lcd_1602.ino Normal file
View File

@ -0,0 +1,790 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD1602 Parrel
1.This is the display code for the default LCD mounted in uBITX.
2.Some functions moved from uBITX_Ui.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#include "ubitx_lcd.h"
//========================================================================
//Begin of TinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602P
/*************************************************************************
LCD1602_TINY Library for 16 x 2 LCD
Referecnce Source : LiquidCrystal.cpp
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
**************************************************************************/
#define LCD_Command(x) (LCD_Send(x, LOW))
#define LCD_Write(x) (LCD_Send(x, HIGH))
#define UBITX_DISPLAY_LCD1602_BASE
//Define connected PIN
#define LCD_PIN_RS 8
#define LCD_PIN_EN 9
uint8_t LCD_PIN_DAT[4] = {10, 11, 12, 13};
void write4bits(uint8_t value)
{
for (int i = 0; i < 4; i++)
digitalWrite(LCD_PIN_DAT[i], (value >> i) & 0x01);
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(1);
digitalWrite(LCD_PIN_EN, HIGH);
delayMicroseconds(1); // enable pulse must be >450ns
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(100); // commands need > 37us to settle
}
void LCD_Send(uint8_t value, uint8_t mode)
{
digitalWrite(LCD_PIN_RS, mode);
write4bits(value>>4);
write4bits(value);
}
void LCD1602_Init()
{
pinMode(LCD_PIN_RS, OUTPUT);
pinMode(LCD_PIN_EN, OUTPUT);
for (int i = 0; i < 4; i++)
pinMode(LCD_PIN_DAT[i], OUTPUT);
delayMicroseconds(50);
// Now we pull both RS and R/W low to begin commands
digitalWrite(LCD_PIN_RS, LOW);
digitalWrite(LCD_PIN_EN, LOW);
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(2000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
}
#endif
//========================================================================
//End of TinyLCD Library by KD8CEC
//========================================================================
//========================================================================
//Begin of I2CTinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602I
#include <Wire.h>
/*************************************************************************
I2C Tiny LCD Library
Referecnce Source : LiquidCrystal_I2C.cpp // Based on the work by DFRobot
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal_I2C Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
Ian KD8CEC
**************************************************************************/
#define UBITX_DISPLAY_LCD1602_BASE
#define En B00000100 // Enable bit
#define Rw B00000010 // Read/Write bit
#define Rs B00000001 // Register select bit
#define LCD_Command(x) (LCD_Send(x, 0))
#define LCD_Write(x) (LCD_Send(x, Rs))
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _numlines;
uint8_t _cols;
uint8_t _rows;
uint8_t _backlightval;
#define printIIC(args) Wire.write(args)
void expanderWrite(uint8_t _data)
{
Wire.beginTransmission(_Addr);
printIIC((int)(_data) | _backlightval);
Wire.endTransmission();
}
void pulseEnable(uint8_t _data){
expanderWrite(_data | En); // En high
delayMicroseconds(1); // enable pulse must be >450ns
expanderWrite(_data & ~En); // En low
delayMicroseconds(50); // commands need > 37us to settle
}
void write4bits(uint8_t value)
{
expanderWrite(value);
pulseEnable(value);
}
void LCD_Send(uint8_t value, uint8_t mode)
{
uint8_t highnib=value&0xf0;
uint8_t lownib=(value<<4)&0xf0;
write4bits((highnib)|mode);
write4bits((lownib)|mode);
}
// Turn the (optional) backlight off/on
void noBacklight(void) {
_backlightval=LCD_NOBACKLIGHT;
expanderWrite(0);
}
void backlight(void) {
_backlightval=LCD_BACKLIGHT;
expanderWrite(0);
}
void LCD1602_Init()
{
//I2C Init
_Addr = I2C_LCD_MASTER_ADDRESS;
_cols = 16;
_rows = 2;
_backlightval = LCD_NOBACKLIGHT;
Wire.begin();
delay(50);
// Now we pull both RS and R/W low to begin commands
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
delay(1000);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
}
/*
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row * 0x40)); //0 : 0x00, 1 : 0x40, only for 16 x 2 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
*/
#endif
//========================================================================
//End of I2CTinyLCD Library by KD8CEC
//========================================================================
//========================================================================
// 16 X 02 LCD Routines
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602_BASE
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
#define OPTION_SKINNYBARS
char c[30], b[30];
char printBuff[2][17]; //mirrors what is showing on the two lines of the display
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row * 0x40)); //0 : 0x00, 1 : 0x40, only for 16 x 2 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
void LCD_Init(void)
{
LCD1602_Init();
initMeter(); //for Meter Display
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 16; i++) { // add white spaces until the end of the 16 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[17];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 17; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 16; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[17];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
//warning : unused parameter 'displayType' <-- ignore, this is reserve
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'M';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'M';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
if (isIFShift)
{
// if (isDirectCall == 1)
// for (int i = 0; i < 16; i++)
// line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
//if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step & Key Type display
{
//if (isDirectCall != 0)
// return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (sdrModeOn == 1)
{
line2Buffer[13] = 'S';
line2Buffer[14] = 'D';
line2Buffer[15] = 'R';
}
else if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue);
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
LCD_SetCursor(drawPosition, lineNumber);
LCD_Write(lcdMeter[0]);
LCD_Write(lcdMeter[1]);
LCD_Write(lcdMeter[2]);
}
}
char checkCount = 0;
char checkCountSMeter = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
}
//S-Meter Display
if (((displayOption1 & 0x08) == 0x08 && (sdrModeOn == 0)) && (++checkCountSMeter > SMeterLatency))
{
int newSMeter;
#ifdef USE_I2CSMETER
scaledSMeter = GetI2CSmeterValue(I2CMETER_CALCS);
#else
//VK2ETA S-Meter from MAX9814 TC pin / divide 4 by KD8CEC for reduce EEPromSize
newSMeter = analogRead(ANALOG_SMETER) / 4;
//Faster attack, Slower release
//currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10) / 4;
currentSMeter = newSMeter;
scaledSMeter = 0;
for (byte s = 8; s >= 1; s--) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
#endif
DisplayMeter(0, scaledSMeter, 13);
checkCountSMeter = 0; //Reset Latency time
} //end of S-Meter
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(byte textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(textIndex));
LCD_Write(':');
}
void DisplayCallsign(byte callSignLength)
{
printLineFromEEPRom(0, 0, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
//delay(500);
}
void DisplayVersionInfo(const __FlashStringHelper * fwVersionInfo)
{
printLineF(1, fwVersionInfo);
}
#endif

View File

@ -0,0 +1,727 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD1602 Dual LCD
1.This is the display code for the 16x02 Dual LCD
2.Some functions moved from uBITX_Ui.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#include "ubitx_lcd.h"
//========================================================================
//Begin of I2CTinyLCD Library for Dual LCD by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602I_DUAL
#include <Wire.h>
/*************************************************************************
I2C Tiny LCD Library
Referecnce Source : LiquidCrystal_I2C.cpp // Based on the work by DFRobot
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal_I2C Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
Ian KD8CEC
**************************************************************************/
#define UBITX_DISPLAY_LCD1602_BASE
#define En B00000100 // Enable bit
#define Rw B00000010 // Read/Write bit
#define Rs B00000001 // Register select bit
#define LCD_Command(x) (LCD_Send(x, 0))
#define LCD_Write(x) (LCD_Send(x, Rs))
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _numlines;
uint8_t _cols;
uint8_t _rows;
uint8_t _backlightval;
#define printIIC(args) Wire.write(args)
void expanderWrite(uint8_t _data)
{
Wire.beginTransmission(_Addr);
printIIC((int)(_data) | _backlightval);
Wire.endTransmission();
}
void pulseEnable(uint8_t _data){
expanderWrite(_data | En); // En high
delayMicroseconds(1); // enable pulse must be >450ns
expanderWrite(_data & ~En); // En low
delayMicroseconds(50); // commands need > 37us to settle
}
void write4bits(uint8_t value)
{
expanderWrite(value);
pulseEnable(value);
}
void LCD_Send(uint8_t value, uint8_t mode)
{
uint8_t highnib=value&0xf0;
uint8_t lownib=(value<<4)&0xf0;
write4bits((highnib)|mode);
write4bits((lownib)|mode);
}
// Turn the (optional) backlight off/on
void noBacklight(void) {
_backlightval=LCD_NOBACKLIGHT;
expanderWrite(0);
}
void backlight(void) {
_backlightval=LCD_BACKLIGHT;
expanderWrite(0);
}
void LCD1602_Dual_Init()
{
//I2C Init
_cols = 16;
_rows = 2;
_backlightval = LCD_NOBACKLIGHT;
Wire.begin();
delay(50);
// Now we pull both RS and R/W low to begin commands
_Addr = I2C_LCD_MASTER_ADDRESS;
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
_Addr = I2C_LCD_SECOND_ADDRESS;
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
delay(1000);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
_Addr = I2C_LCD_MASTER_ADDRESS;
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
_Addr = I2C_LCD_SECOND_ADDRESS;
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
//Change to Default LCD (Master)
_Addr = I2C_LCD_MASTER_ADDRESS;
}
//========================================================================
// 16 X 02 LCD Routines
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
const int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row_offsets[row])); //0 : 0x00, 1 : 0x40, only for 20 x 4 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
//#define OPTION_SKINNYBARS
char c[30], b[30];
char printBuff[4][20]; //mirrors what is showing on the two lines of the display
void LCD_Init(void)
{
LCD1602_Dual_Init();
_Addr = I2C_LCD_SECOND_ADDRESS;
initMeter(); //for Meter Display //when dual LCD, S.Meter on second LCD
_Addr = I2C_LCD_MASTER_ADDRESS;
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 20; i++) { // add white spaces until the end of the 20 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[21];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 21; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 20
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 20; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
// i also Very TNX Purdum for good source code
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[20];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
//warning : unused parameter 'displayType' <-- ignore, this is reserve
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
memset(&line2Buffer[10], ' ', 10);
if (isIFShift)
{
line2Buffer[6] = 'M';
line2Buffer[7] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
for (int i = 12; i < 17; i++)
{
if (line2Buffer[i] == 0)
line2Buffer[i] = ' ';
}
} // end of display IF
else // step & Key Type display
{
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 13; i >= 11 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[14] = 'H';
line2Buffer[15] = 'z';
}
}
//line2Buffer[17] = ' ';
/* ianlee
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[18] = 'S';
line2Buffer[19] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'A';
}
else
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'B';
}
*/
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue);
LCD_SetCursor(drawPosition, 0);
LCD_Write('S');
LCD_Write(':');
for (int i = 0; i < 7; i++)
LCD_Write(lcdMeter[i]);
}
}
char checkCount = 0;
char checkCountSMeter = 0;
char beforeKeyType = -1;
char displaySDRON = 0;
//execute interval : 0.25sec
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
//check change CW Key Type
if (beforeKeyType != cwKeyType)
{
_Addr = I2C_LCD_SECOND_ADDRESS;
LCD_SetCursor(10, 0);
LCD_Write('K');
LCD_Write('E');
LCD_Write('Y');
LCD_Write(':');
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
LCD_Write('S');
LCD_Write('T');
}
else if (cwKeyType == 1)
{
LCD_Write('I');
LCD_Write('A');
}
else
{
LCD_Write('I');
LCD_Write('B');
}
beforeKeyType = cwKeyType;
_Addr = I2C_LCD_MASTER_ADDRESS;
} //Display Second Screen
}
}
//EX for Meters
//S-Meter Display
_Addr = I2C_LCD_SECOND_ADDRESS;
if (sdrModeOn == 1)
{
if (displaySDRON == 0) //once display
{
displaySDRON = 1;
LCD_SetCursor(0, 0);
LCD_Write('S');
LCD_Write('D');
LCD_Write('R');
LCD_Write(' ');
LCD_Write('M');
LCD_Write('O');
LCD_Write('D');
LCD_Write('E');
}
}
else if (((displayOption1 & 0x08) == 0x08) && (++checkCountSMeter > 3))
{
int newSMeter;
displaySDRON = 0;
#ifdef USE_I2CSMETER
scaledSMeter = GetI2CSmeterValue(I2CMETER_CALCS);
#else
//VK2ETA S-Meter from MAX9814 TC pin / divide 4 by KD8CEC for reduce EEPromSize
newSMeter = analogRead(ANALOG_SMETER) / 4;
//Faster attack, Slower release
//currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10);
//currentSMeter = (currentSMeter * 3 + newSMeter * 7) / 10; //remarked becaused of have already Latency time
currentSMeter = newSMeter;
scaledSMeter = 0;
for (byte s = 8; s >= 1; s--) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
#endif
DisplayMeter(0, scaledSMeter, 0);
checkCountSMeter = 0;
} //end of S-Meter
_Addr = I2C_LCD_MASTER_ADDRESS;
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(byte textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(textIndex));
LCD_Write(':');
}
void DisplayCallsign(byte callSignLength)
{
_Addr = I2C_LCD_SECOND_ADDRESS;
printLineFromEEPRom(1, 16 - userCallsignLength, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
_Addr = I2C_LCD_MASTER_ADDRESS;
}
void DisplayVersionInfo(const __FlashStringHelper * fwVersionInfo)
{
_Addr = I2C_LCD_SECOND_ADDRESS;
printLineF(1, fwVersionInfo);
_Addr = I2C_LCD_MASTER_ADDRESS;
}
#endif

743
Raduino/ubitx_lcd_2004.ino Normal file
View File

@ -0,0 +1,743 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD2004 Parrel & I2C
1.This is the display code for the 20x04 LCD
2.Some functions moved from uBITX_Ui.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#include "ubitx_lcd.h"
//========================================================================
//Begin of TinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD2004P
/*************************************************************************
LCD2004TINY Library for 20 x 4 LCD
Referecnce Source : LiquidCrystal.cpp
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
**************************************************************************/
#define LCD_Command(x) (LCD_Send(x, LOW))
#define LCD_Write(x) (LCD_Send(x, HIGH))
#define UBITX_DISPLAY_LCD2004_BASE
//Define connected PIN
#define LCD_PIN_RS 8
#define LCD_PIN_EN 9
uint8_t LCD_PIN_DAT[4] = {10, 11, 12, 13};
void write4bits(uint8_t value)
{
for (int i = 0; i < 4; i++)
digitalWrite(LCD_PIN_DAT[i], (value >> i) & 0x01);
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(1);
digitalWrite(LCD_PIN_EN, HIGH);
delayMicroseconds(1); // enable pulse must be >450ns
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(100); // commands need > 37us to settle
}
void LCD_Send(uint8_t value, uint8_t mode)
{
digitalWrite(LCD_PIN_RS, mode);
write4bits(value>>4);
write4bits(value);
}
void LCD2004_Init()
{
pinMode(LCD_PIN_RS, OUTPUT);
pinMode(LCD_PIN_EN, OUTPUT);
for (int i = 0; i < 4; i++)
pinMode(LCD_PIN_DAT[i], OUTPUT);
delayMicroseconds(50);
// Now we pull both RS and R/W low to begin commands
digitalWrite(LCD_PIN_RS, LOW);
digitalWrite(LCD_PIN_EN, LOW);
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(2000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
}
#endif
//========================================================================
//End of TinyLCD Library by KD8CEC
//========================================================================
//========================================================================
//Begin of I2CTinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD2004I
#include <Wire.h>
/*************************************************************************
I2C Tiny LCD Library
Referecnce Source : LiquidCrystal_I2C.cpp // Based on the work by DFRobot
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal_I2C Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
Ian KD8CEC
**************************************************************************/
#define UBITX_DISPLAY_LCD2004_BASE
#define En B00000100 // Enable bit
#define Rw B00000010 // Read/Write bit
#define Rs B00000001 // Register select bit
#define LCD_Command(x) (LCD_Send(x, 0))
#define LCD_Write(x) (LCD_Send(x, Rs))
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _numlines;
uint8_t _cols;
uint8_t _rows;
uint8_t _backlightval;
#define printIIC(args) Wire.write(args)
void expanderWrite(uint8_t _data)
{
Wire.beginTransmission(_Addr);
printIIC((int)(_data) | _backlightval);
Wire.endTransmission();
}
void pulseEnable(uint8_t _data){
expanderWrite(_data | En); // En high
delayMicroseconds(1); // enable pulse must be >450ns
expanderWrite(_data & ~En); // En low
delayMicroseconds(50); // commands need > 37us to settle
}
void write4bits(uint8_t value)
{
expanderWrite(value);
pulseEnable(value);
}
void LCD_Send(uint8_t value, uint8_t mode)
{
uint8_t highnib=value&0xf0;
uint8_t lownib=(value<<4)&0xf0;
write4bits((highnib)|mode);
write4bits((lownib)|mode);
}
// Turn the (optional) backlight off/on
void noBacklight(void) {
_backlightval=LCD_NOBACKLIGHT;
expanderWrite(0);
}
void backlight(void) {
_backlightval=LCD_BACKLIGHT;
expanderWrite(0);
}
void LCD2004_Init()
{
//I2C Init
_Addr = I2C_LCD_MASTER_ADDRESS;
_cols = 20;
_rows = 4;
_backlightval = LCD_NOBACKLIGHT;
Wire.begin();
delay(50);
// Now we pull both RS and R/W low to begin commands
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
delay(1000);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
}
#endif
//========================================================================
//End of I2CTinyLCD Library by KD8CEC
//========================================================================
//========================================================================
// 20 X 04 LCD Routines
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
#ifdef UBITX_DISPLAY_LCD2004_BASE
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
const int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row_offsets[row])); //0 : 0x00, 1 : 0x40, only for 20 x 4 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
//#define OPTION_SKINNYBARS
char c[30], b[30];
char printBuff[4][21]; //mirrors what is showing on the two lines of the display
void LCD_Init(void)
{
LCD2004_Init();
initMeter(); //for Meter Display
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 20; i++) { // add white spaces until the end of the 20 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[21];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 21; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 20
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 20; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
// i also Very TNX Purdum for good source code
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
if (sdrModeOn)
strcat(c, " SDR");
else
strcat(c, " SPK");
//remarked by KD8CEC
//already RX/TX status display, and over index (20 x 4 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[20];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
//warning : unused parameter 'displayType' <-- ignore, this is reserve
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
memset(&line2Buffer[10], ' ', 10);
if (isIFShift)
{
line2Buffer[6] = 'M';
line2Buffer[7] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
for (int i = 12; i < 17; i++)
{
if (line2Buffer[i] == 0)
line2Buffer[i] = ' ';
}
} // end of display IF
else // step & Key Type display
{
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 14; i >= 12 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[15] = 'H';
line2Buffer[16] = 'z';
}
}
line2Buffer[17] = ' ';
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[18] = 'S';
line2Buffer[19] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'A';
}
else
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'B';
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue);
LCD_SetCursor(drawPosition, 2);
LCD_Write('S');
LCD_Write(':');
for (int i = 0; i < 7; i++) //meter 5 + +db 1 = 6
LCD_Write(lcdMeter[i]);
}
}
char checkCount = 0;
char checkCountSMeter = 0;
//execute interval : 0.25sec
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 0);
if (testValue > 30)
testValue = 0;
*/
//Sample
//DisplayMeter(0, analogRead(ANALOG_SMETER) / 30, 0);
//DisplayMeter(0, analogRead(ANALOG_SMETER) / 10, 0);
//delay_background(10, 0);
//DisplayMeter(0, analogRead(ANALOG_SMETER), 0);
//if (testValue > 30)
// testValue = 0;
//S-Meter Display
if (((displayOption1 & 0x08) == 0x08 && (sdrModeOn == 0)) && (++checkCountSMeter > SMeterLatency))
{
int newSMeter;
#ifdef USE_I2CSMETER
scaledSMeter = GetI2CSmeterValue(I2CMETER_CALCS);
#else
//VK2ETA S-Meter from MAX9814 TC pin
newSMeter = analogRead(ANALOG_SMETER) / 4;
//Faster attack, Slower release
//currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10);
//currentSMeter = ((currentSMeter * 7 + newSMeter * 3) + 5) / 10;
currentSMeter = newSMeter;
scaledSMeter = 0;
for (byte s = 8; s >= 1; s--) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
#endif
DisplayMeter(0, scaledSMeter, 0);
checkCountSMeter = 0; //Reset Latency time
} //end of S-Meter
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(byte textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(textIndex));
LCD_Write(':');
}
void DisplayCallsign(byte callSignLength)
{
printLineFromEEPRom(3, 20 - userCallsignLength, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
}
void DisplayVersionInfo(const __FlashStringHelper * fwVersionInfo)
{
printLineF(3, fwVersionInfo);
}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -13,9 +13,9 @@
* The output clock channel that controls the frequency is connected to the PLL-B.
* The WSPR protocol is generated by changing the clock of the PLL-B.
************************************************************************************/
#include "ubitx.h"
// ************* SI5315 routines - tks Jerry Gaffke, KE7ER ***********************
// An minimalist standalone set of Si5351 routines.
// VCOA is fixed at 875mhz, VCOB not used.
// The output msynth dividers are used to generate 3 independent clocks
@ -48,7 +48,8 @@
#define BB1(x) ((uint8_t)(x>>8))
#define BB2(x) ((uint8_t)(x>>16))
#define SI5351BX_ADDR 0x60 // I2C address of Si5351 (typical)
//#define SI5351BX_ADDR 0x60 // I2C address of Si5351 (typical)
uint8_t SI5351BX_ADDR; // I2C address of Si5351 (variable from Version 1.097)
#define SI5351BX_XTALPF 2 // 1:6pf 2:8pf 3:10pf
// If using 27mhz crystal, set XTAL=27000000, MSA=33. Then vco=891mhz
@ -58,7 +59,13 @@
// User program may have reason to poke new values into these 3 RAM variables
uint32_t si5351bx_vcoa = (SI5351BX_XTAL*SI5351BX_MSA); // 25mhzXtal calibrate
uint8_t si5351bx_rdiv = 0; // 0-7, CLK pin sees fout/(2**rdiv)
#if UBITX_BOARD_VERSION == 5
uint8_t si5351bx_drive[3] = {3, 3, 3}; // 0=2ma 1=4ma 2=6ma 3=8ma for CLK 0,1,2
#else
uint8_t si5351bx_drive[3] = {1, 1, 1}; // 0=2ma 1=4ma 2=6ma 3=8ma for CLK 0,1,2
#endif
uint8_t si5351bx_clken = 0xFF; // Private, all CLK output drivers off
int32_t calibration = 0;
@ -92,6 +99,18 @@ void si5351bx_init() { // Call once at power-up, start PLLA
i2cWriten(26, si5351Val, 8); // Write to 8 PLLA msynth regs
i2cWrite(177, 0x20); // Reset PLLA (0x80 resets PLLB)
#if UBITX_BOARD_VERSION == 5
//why? TODO : CHECK by KD8CEC
//initializing the ppl2 as well
i2cWriten(34, si5351Val, 8); // Write to 8 PLLA msynth regs
i2cWrite(177, 0xa0); // Reset PLLA & PPLB (0x80 resets PLLB)
#else
//
#endif
}
void si5351bx_setfreq(uint8_t clknum, uint32_t fout) { // Set a CLK to fout Hz
@ -127,7 +146,9 @@ void si5351_set_calibration(int32_t cal){
void SetCarrierFreq()
{
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
si5351bx_setfreq(0, appliedCarrier);
//si5351bx_setfreq(0, (sdrModeOn ? 0 : appliedCarrier));
si5351bx_setfreq(0, ((sdrModeOn && (inTx == 0)) ? 0 : appliedCarrier)); //found bug by KG4GEK
/*
if (cwMode == 0)
@ -167,6 +188,3 @@ void TXSubFreq(unsigned long P2)
i2cWrite(40, (P2 & 65280) >> 8);
i2cWrite(41, P2 & 255);
}

299
Raduino/ubitx_ui.ino Normal file
View File

@ -0,0 +1,299 @@
/**
* The user interface of the ubitx consists of the encoder, the push-button on top of it
* and the 16x2 LCD display.
* The upper line of the display is constantly used to display frequency and status
* of the radio. Occasionally, it is used to provide a two-line information that is
* quickly cleared up.
*/
/*
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100 , //custom 3
B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110 , //custom 4
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
};
*/
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
#ifdef OPTION_SKINNYBARS //We want skninny bars with more text
//VK2ETA modded "Skinny" bitmaps
const PROGMEM uint8_t meters_bitmap[] = {
// B01110, B10001, B10001, B11111, B11011, B11011, B11111, B00000, //Padlock Symbol, for merging. Not working, see below
B00000, B00000, B00000, B00000, B00000, B00000, B00000, B10000, //shortest bar
B00000, B00000, B00000, B00000, B00000, B00000, B00100, B10100,
B00000, B00000, B00000, B00000, B00000, B00001, B00101, B10101,
B00000, B00000, B00000, B00000, B10000, B10000, B10000, B10000,
B00000, B00000, B00000, B00100, B10100, B10100, B10100, B10100,
B00000, B00000, B00001, B00101, B10101, B10101, B10101, B10101, //tallest bar
B00000, B00010, B00111, B00010, B01000, B11100, B01000, B00000, // ++ sign
};
#else
//VK2ETA "Fat" bars, easy to read, with less text
const PROGMEM uint8_t meters_bitmap[] = {
// B01110, B10001, B10001, B11111, B11011, B11011, B11111, B00000, //Padlock Symbol, for merging. Not working, see below
B00000, B00000, B00000, B00000, B00000, B00000, B00000, B11111, //shortest bar
B00000, B00000, B00000, B00000, B00000, B00000, B11111, B11111,
B00000, B00000, B00000, B00000, B00000, B11111, B11111, B11111,
B00000, B00000, B00000, B00000, B11111, B11111, B11111, B11111,
B00000, B00000, B00000, B11111, B11111, B11111, B11111, B11111,
B00000, B00000, B11111, B11111, B11111, B11111, B11111, B11111, //tallest bar
B00000, B00010, B00111, B00010, B01000, B11100, B01000, B00000, // ++ sign
};
#endif //OPTION_SKINNYBARS
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = {
0b01110,
0b10001,
0b10001,
0b11111,
0b11011,
0b11011,
0b11111,
0b00000};
PGM_P plock_bitmap = reinterpret_cast<PGM_P>(lock_bitmap);
// initializes the custom characters
// we start from char 1 as char 0 terminates the string!
void initMeter(){
uint8_t tmpbytes[8];
byte i;
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(plock_bitmap + i);
LCD_CreateChar(0, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
LCD_CreateChar(1, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
LCD_CreateChar(2, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
LCD_CreateChar(3, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
LCD_CreateChar(4, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
LCD_CreateChar(5, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
LCD_CreateChar(6, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 48);
LCD_CreateChar(7, tmpbytes);
}
//by KD8CEC
//0 ~ 25 : 30 over : + 10
/*
void drawMeter(int needle) {
//5Char + O over
int i;
for (i = 0; i < 5; i++) {
if (needle >= 5)
lcdMeter[i] = 5; //full
else if (needle > 0)
lcdMeter[i] = needle; //full
else //0
lcdMeter[i] = 0x20;
needle -= 5;
}
if (needle > 0)
lcdMeter[5] = 6;
else
lcdMeter[5] = 0x20;
}
*/
//VK2ETA meter for S.Meter, power and SWR
void drawMeter(int needle)
{
#ifdef OPTION_SKINNYBARS
//Fill buffer with growing set of bars, up to needle value
lcdMeter[0] = 0x20;
lcdMeter[1] = 0x20;
for (int i = 0; i < 6; i++) {
if (needle > i)
lcdMeter[i / 3] = byte(i + 1); //Custom characters above
//else if (i == 1 || i == 4) {
// lcdMeter[i / 3] = 0x20; //blank
//}
}
if (needle > 7) {
lcdMeter[2] = byte(7); //Custom character "++"
} else if (needle > 6) {
lcdMeter[2] = '+'; //"+"
} else lcdMeter[2] = 0x20;
#else //Must be "fat" bars
//Fill buffer with growing set of bars, up to needle value
for (int i = 0; i < 6; i++) {
if (needle > i)
lcdMeter[i] = byte(i + 1); //Custom characters above
else
lcdMeter[i] = 0x20; //blank
}
if (needle > 7) {
lcdMeter[6] = byte(7); //Custom character "++"
} else if (needle > 6) {
lcdMeter[6] = '+'; //"+"
} else lcdMeter[6] = 0x20;
#endif //OPTION_FATBARS
}
char byteToChar(byte srcByte){
if (srcByte < 10)
return 0x30 + srcByte;
else
return 'A' + srcByte - 10;
}
//returns true if the button is pressed
int btnDown(void){
#ifdef EXTEND_KEY_GROUP1
if (analogRead(FBUTTON) > FUNCTION_KEY_ADC)
return 0;
else
return 1;
#else
if (digitalRead(FBUTTON) == HIGH)
return 0;
else
return 1;
#endif
}
#ifdef EXTEND_KEY_GROUP1
int getBtnStatus(void){
int readButtonValue = analogRead(FBUTTON);
if (analogRead(FBUTTON) < FUNCTION_KEY_ADC)
return FKEY_PRESS;
else
{
readButtonValue = readButtonValue / 4;
//return FKEY_VFOCHANGE;
for (int i = 0; i < 16; i++)
if (KeyValues[i][2] != 0 && KeyValues[i][0] <= readButtonValue && KeyValues[i][1] >= readButtonValue)
return KeyValues[i][2];
//return i;
}
return -1;
}
#endif
int enc_prev_state = 3;
/**
* The A7 And A6 are purely analog lines on the Arduino Nano
* These need to be pulled up externally using two 10 K resistors
*
* There are excellent pages on the Internet about how these encoders work
* and how they should be used. We have elected to use the simplest way
* to use these encoders without the complexity of interrupts etc to
* keep it understandable.
*
* The enc_state returns a two-bit number such that each bit reflects the current
* value of each of the two phases of the encoder
*
* The enc_read returns the number of net pulses counted over 50 msecs.
* If the puluses are -ve, they were anti-clockwise, if they are +ve, the
* were in the clockwise directions. Higher the pulses, greater the speed
* at which the enccoder was spun
*/
byte enc_state (void) {
return (analogRead(ENC_A) > 500 ? 1 : 0) + (analogRead(ENC_B) > 500 ? 2: 0);
}
int enc_read(void) {
int result = 0;
byte newState;
int enc_speed = 0;
unsigned long start_at = millis();
while (millis() - start_at < 50) { // check if the previous state was stable
newState = enc_state(); // Get current state
if (newState != enc_prev_state)
delay (1);
if (enc_state() != newState || newState == enc_prev_state)
continue;
//these transitions point to the encoder being rotated anti-clockwise
if ((enc_prev_state == 0 && newState == 2) ||
(enc_prev_state == 2 && newState == 3) ||
(enc_prev_state == 3 && newState == 1) ||
(enc_prev_state == 1 && newState == 0)){
result--;
}
//these transitions point o the enccoder being rotated clockwise
if ((enc_prev_state == 0 && newState == 1) ||
(enc_prev_state == 1 && newState == 3) ||
(enc_prev_state == 3 && newState == 2) ||
(enc_prev_state == 2 && newState == 0)){
result++;
}
enc_prev_state = newState; // Record state for next pulse interpretation
enc_speed++;
delay(1);
}
return(result);
}
//===================================================================
//I2C Signal Meter, Version 1.097
//===================================================================
// 0xA0 ~ 0xCF : CW Decode Mode + 100Hz ~
// 0xD0 ~ 0xF3 : RTTY Decode Mode + 100Hz ~
// 0x10 ~ 0x30 : Spectrum Mode
int GetI2CSmeterValue(int valueType)
{
if (valueType > 0)
{
Wire.beginTransmission(I2CMETER_ADDR); //j : S-Meter
Wire.write(valueType); //Y : Get Value Type
Wire.endTransmission();
}
Wire.requestFrom(I2CMETER_ADDR, 1);
if (Wire.available() > 0)
{
return Wire.read();
}
else
{
return 0;
}
}

View File

@ -6,8 +6,6 @@ Thanks to G3ZIL for sharing great code.
Due to the limited memory of uBITX, I have implemented at least only a few of the codes in uBITX.
Thanks for testing
Beta Tester :
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -23,21 +21,19 @@ Beta Tester :
along with this program. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************************/
#include <arduino.h>
#include <EEPROM.h>
#include "ubitx.h"
//begin of test
byte WsprToneCode[164];
long lastTime=0;
unsigned long lastTime=0;
unsigned long TX_MSNB_P2; // Si5351 register MSNB_P2 PLLB for Tx
unsigned long TX_P2; // Variable values for MSNB_P2 which defines the frequencies for the data
extern int enc_read(void);
byte WsprMSGCount = 0;
#define PTT (A3)
#define WSPR_BAND1 401
@ -48,7 +44,7 @@ void SendWSPRManage()
{
int knob = 0;
byte knobPosition = 0;
char isNeedDisplayInfo = 0;
//char isNeedDisplayInfo = 0;
char nowSelectedIndex = 0;
char nowWsprStep = 0; //0 : select Message, 1 : select band, 2 : send
char selectedWsprMessageIndex = -1;
@ -56,8 +52,8 @@ void SendWSPRManage()
unsigned long WsprTXFreq = 0;
unsigned int WsprMultiChan = 0;
unsigned long prevFreq;
char loopIndex;
//unsigned long prevFreq;
byte loopIndex;
delay_background(500, 0);
@ -75,13 +71,14 @@ void SendWSPRManage()
if (nowWsprStep == 0) //select Message status
{
printLineF2(F("WSPR:"));
//printLineF2(F("WSPR:"));
if (selectedWsprMessageIndex != nowSelectedIndex)
{
selectedWsprMessageIndex = nowSelectedIndex;
int wsprMessageBuffIndex = selectedWsprMessageIndex * 46;
printLineF2(F("WSPR:"));
//Display WSPR Name tag
printLineFromEEPRom(0, 6, wsprMessageBuffIndex, wsprMessageBuffIndex + 4, 1);
@ -115,22 +112,9 @@ void SendWSPRManage()
EEPROM.get(bandBuffIndex, WsprTXFreq);
EEPROM.get(bandBuffIndex + 4, WsprMultiChan);
/*
//3, 4, 5, 6, 7
Wspr_Reg1[3] = EEPROM.read(bandBuffIndex + 6);
Wspr_Reg1[4] = EEPROM.read(bandBuffIndex + 7);
Wspr_Reg1[5] = EEPROM.read(bandBuffIndex + 8);
Wspr_Reg1[6] = EEPROM.read(bandBuffIndex + 9);
Wspr_Reg1[7] = EEPROM.read(bandBuffIndex + 10);
*/
for (loopIndex = 3; loopIndex < 8; loopIndex++)
Wspr_Reg1[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 3);
/*
Wspr_Reg2[2] = EEPROM.read(bandBuffIndex + 11);
Wspr_Reg2[3] = EEPROM.read(bandBuffIndex + 12);
Wspr_Reg2[4] = EEPROM.read(bandBuffIndex + 13);
*/
//2, 3, 4
for (loopIndex = 2; loopIndex < 5; loopIndex++)
Wspr_Reg2[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 9);
@ -138,25 +122,46 @@ void SendWSPRManage()
TX_MSNB_P2 = ((unsigned long)Wspr_Reg1[5] & 0x0F) << 16 | ((unsigned long)Wspr_Reg1[6]) << 8 | Wspr_Reg1[7];
}
ltoa(WsprTXFreq, b, DEC);
if (digitalRead(PTT) == 0)
strcpy(c, "SEND:");
strcpy(c, "SEND: ");
else
strcpy(c, "PTT->");
strcpy(c, "PTT-> ");
//ltoa(WsprTXFreq, b, DEC);
//strcat(c, b);
//display frequency, Frequency to String for KD8CEC
unsigned long tmpFreq = WsprTXFreq;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
strcat(c, b);
printLine1(c);
#ifdef USE_SW_SERIAL
SWS_Process();
if ((digitalRead(PTT) == 0) || (TriggerBySW == 1))
{
TriggerBySW = 0;
#else
if (digitalRead(PTT) == 0)
{
//printLineF1(F("Transmitting"));
#endif
//SEND WSPR
//If you need to consider the Rit and Sprite modes, uncomment them below.
//remark = To reduce the size of the program
//prevFreq = frequency;
//frequency = WsprTXFreq;
setTXFilters(WsprTXFreq);
startTx(TX_CW, 0);
setTXFilters(WsprTXFreq);
//Start WSPR
Set_WSPR_Param();

Binary file not shown.

76
TeensyDSP/TeensyDSP.h Normal file
View File

@ -0,0 +1,76 @@
/*
Configuration file for Nextion LCD and Control MCU
The parameter can be set according to the CPU used.
KD8CEC, Ian Lee
-----------------------------------------------------------------------
**********************************************************************/
#include <arduino.h>
//================================================================
//COMMUNICATION SECTION
//================================================================
#define USE_SW_SERIAL
extern void SWSerial_Write(uint8_t b);
extern void SWSerial_Print(uint8_t *b);
#ifdef USE_SW_SERIAL
extern void SWSerial_Begin(long speedBaud);
extern int SWSerial_Available(void);
extern int SWSerial_Read(void);
#else
#define PRINT_MAX_LENGTH 30
#endif
//================================================================
//FFT and Decode Morse
//================================================================
#define FFTSIZE 64
#define SAMPLE_PREQUENCY 6000
#define SAMPLESIZE (FFTSIZE * 2)
#define DECODE_MORSE_SAMPLESIZE 48
extern uint8_t cwDecodeHz;
extern int magnitudelimit_low;
//================================================================
//EEPROM Section
//================================================================
#define MAX_FORWARD_BUFF_LENGTH 128
#define EEPROM_DSPTYPE 100
#define EEPROM_SMETER_UART 111
#define EEPROM_SMETER_TIME 112
#define EEPROM_CW_FREQ 120
//#define EEPROM_CW_MAG_LIMIT 121
#define EEPROM_CW_MAG_LOW 122
#define EEPROM_CW_NBTIME 126
#define EEPROM_RTTYDECODEHZ 130
//================================================================
//DEFINE for I2C Command
//================================================================
//S-Meter Address
#define I2CMETER_ADDR 0x58 //changed from 0x6A
//VALUE TYPE============================================
//Signal
#define I2CMETER_CALCS 0x59 //Calculated Signal Meter
#define I2CMETER_UNCALCS 0x58 //Uncalculated Signal Meter
//Power
#define I2CMETER_CALCP 0x57 //Calculated Power Meter
#define I2CMETER_UNCALCP 0x56 //UnCalculated Power Meter
//SWR
#define I2CMETER_CALCR 0x55 //Calculated SWR Meter
#define I2CMETER_UNCALCR 0x54 //Uncalculated SWR Meter
#define SIGNAL_METER_ADC A7
#define POWER_METER_ADC A3
#define SWR_METER_ADC A2

1014
TeensyDSP/TeensyDSP.ino Normal file

File diff suppressed because it is too large Load Diff

362
TeensyDSP/fftfunctions.cpp Normal file
View File

@ -0,0 +1,362 @@
/*
FFTFunctions for Nextion LCD and Control MCU
This code is for FFT and CW Decode.
KD8CEC, Ian Lee
-----------------------------------------------------------------------
//The section on CW decode logic is specified at the bottom of this code.
License : I follow the license of the previous code and I do not add any extra constraints.
I hope that the Comment I made or the Comment of OZ1JHM will be maintained.
**********************************************************************/
#include <arduino.h>
#include "TeensyDSP.h"
// Code Referency : http://paulbourke.net/miscellaneous/dft/
// DFT, FFT Wiritten by Paul Bourke, June 1993
void FFT(double *x,double *y, int n, long m)
{
long i,i1,j,k,i2,l,l1,l2;
double c1,c2,tx,ty,t1,t2,u1,u2,z;
short int dir = 0;
/* Do the bit reversal */
i2 = n >> 1;
j = 0;
for (i=0;i<n-1;i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++)
{
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++)
{
for (i=j;i<n;i+=l2)
{
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
/*
if (dir == 1) {
for (i=0;i<n;i++) {
x[i] /= n;
y[i] /= n;
}
}
return 1;
*/
//return(TRUE);
}
double coeff;
void CalculateCoeff(uint8_t freqIndex)
{
float omega;
int targetFrequency = freqIndex * 50 + 300;
int k = (int) (0.5 + ((DECODE_MORSE_SAMPLESIZE * targetFrequency) / SAMPLE_PREQUENCY));
omega = (2.0 * PI * k) / DECODE_MORSE_SAMPLESIZE;
coeff = 2.0 * cos(omega);
}
//=====================================================================
//The CW Decode code refers to the site code below.
//https://k2jji.org/2014/09/18/arduino-base-cw-decoder/
//Some code has been modified, but the original comments remain intact.
// code below is optimal for use in Arduino.
//Thanks to OZ1JHM
//KD8CEC
//=====================================================================
///////////////////////////////////////////////////////////////////////
// CW Decoder made by Hjalmar Skovholm Hansen OZ1JHM VER 1.01 //
// Feel free to change, copy or what ever you like but respect //
// that license is http://www.gnu.org/copyleft/gpl.html //
// Discuss and give great ideas on //
// https://groups.yahoo.com/neo/groups/oz1jhm/conversations/messages //
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
// Read more here http://en.wikipedia.org/wiki/Goertzel_algorithm //
// if you want to know about FFT the http://www.dspguide.com/pdfbook.htm //
///////////////////////////////////////////////////////////////////////////
//int magnitudelimit = 50;
//int magnitudelimit_low = 50;
int magnitudelimit = 30;
int magnitudelimit_low = 30;
char realstate = LOW;
char realstatebefore = LOW;
char filteredstate = LOW;
char filteredstatebefore = LOW;
long laststarttime = 0;
int nbtime = 6; /// ms noise blanker
long starttimehigh;
long highduration;
long lasthighduration;
long hightimesavg;
long lowtimesavg;
long startttimelow;
long lowduration;
char code[20];
uint8_t stop = LOW;
int wpm;
uint8_t cwDecodeHz = 9;
extern void SendCommandStr(char varIndex, char* sendValue);
void printascii(int asciinumber)
{
char rstDecode[4] = {0, 0, 0, 0};
if (asciinumber == 3)
{
}
else if (asciinumber == 4)
{
}
else if (asciinumber == 6)
{
}
else
{
rstDecode[0] = asciinumber;
}
SendCommandStr('b', rstDecode);
//Serial.write(asciinumber);
//if (writeCount++ > 20)
//{
//writeCount = 0;
//Serial.println("");
//}
}
uint8_t docode()
{
if (strcmp(code,".-") == 0) printascii(65);
if (strcmp(code,"-...") == 0) printascii(66);
if (strcmp(code,"-.-.") == 0) printascii(67);
if (strcmp(code,"-..") == 0) printascii(68);
if (strcmp(code,".") == 0) printascii(69);
if (strcmp(code,"..-.") == 0) printascii(70);
if (strcmp(code,"--.") == 0) printascii(71);
if (strcmp(code,"....") == 0) printascii(72);
if (strcmp(code,"..") == 0) printascii(73);
if (strcmp(code,".---") == 0) printascii(74);
if (strcmp(code,"-.-") == 0) printascii(75);
if (strcmp(code,".-..") == 0) printascii(76);
if (strcmp(code,"--") == 0) printascii(77);
if (strcmp(code,"-.") == 0) printascii(78);
if (strcmp(code,"---") == 0) printascii(79);
if (strcmp(code,".--.") == 0) printascii(80);
if (strcmp(code,"--.-") == 0) printascii(81);
if (strcmp(code,".-.") == 0) printascii(82);
if (strcmp(code,"...") == 0) printascii(83);
if (strcmp(code,"-") == 0) printascii(84);
if (strcmp(code,"..-") == 0) printascii(85);
if (strcmp(code,"...-") == 0) printascii(86);
if (strcmp(code,".--") == 0) printascii(87);
if (strcmp(code,"-..-") == 0) printascii(88);
if (strcmp(code,"-.--") == 0) printascii(89);
if (strcmp(code,"--..") == 0) printascii(90);
if (strcmp(code,".----") == 0) printascii(49);
if (strcmp(code,"..---") == 0) printascii(50);
if (strcmp(code,"...--") == 0) printascii(51);
if (strcmp(code,"....-") == 0) printascii(52);
if (strcmp(code,".....") == 0) printascii(53);
if (strcmp(code,"-....") == 0) printascii(54);
if (strcmp(code,"--...") == 0) printascii(55);
if (strcmp(code,"---..") == 0) printascii(56);
if (strcmp(code,"----.") == 0) printascii(57);
if (strcmp(code,"-----") == 0) printascii(48);
if (strcmp(code,"..--..") == 0) printascii(63);
if (strcmp(code,".-.-.-") == 0) printascii(46);
if (strcmp(code,"--..--") == 0) printascii(44);
if (strcmp(code,"-.-.--") == 0) printascii(33);
if (strcmp(code,".--.-.") == 0) printascii(64);
if (strcmp(code,"---...") == 0) printascii(58);
if (strcmp(code,"-....-") == 0) printascii(45);
if (strcmp(code,"-..-.") == 0) printascii(47);
if (strcmp(code,"-.--.") == 0) printascii(40);
if (strcmp(code,"-.--.-") == 0) printascii(41);
if (strcmp(code,".-...") == 0) printascii(95);
if (strcmp(code,"...-..-") == 0) printascii(36);
if (strcmp(code,"...-.-") == 0) printascii(62);
if (strcmp(code,".-.-.") == 0) printascii(60);
if (strcmp(code,"...-.") == 0) printascii(126);
//////////////////
// The specials //
//////////////////
if (strcmp(code,".-.-") == 0) printascii(3);
if (strcmp(code,"---.") == 0) printascii(4);
if (strcmp(code,".--.-") == 0) printascii(6);
}
void Decode_Morse(float magnitude)
{
//magnitudelimit auto Increase
if (magnitude > magnitudelimit_low)
{
magnitudelimit = (magnitudelimit +((magnitude - magnitudelimit)/6)); /// moving average filter
}
if (magnitudelimit < magnitudelimit_low)
magnitudelimit = magnitudelimit_low;
if(magnitude > magnitudelimit*0.6) // just to have some space up
realstate = HIGH;
else
realstate = LOW;
if (realstate != realstatebefore)
laststarttime = millis();
if ((millis()-laststarttime) > nbtime)
{
if (realstate != filteredstate)
{
filteredstate = realstate;
}
}
if (filteredstate != filteredstatebefore)
{
if (filteredstate == HIGH)
{
starttimehigh = millis();
lowduration = (millis() - startttimelow);
}
if (filteredstate == LOW)
{
startttimelow = millis();
highduration = (millis() - starttimehigh);
if (highduration < (2*hightimesavg) || hightimesavg == 0)
{
hightimesavg = (highduration+hightimesavg+hightimesavg)/3; // now we know avg dit time ( rolling 3 avg)
}
if (highduration > (5*hightimesavg) )
{
hightimesavg = highduration+hightimesavg; // if speed decrease fast ..
}
}
}
///////////////////////////////////////////////////////////////
// now we will check which kind of baud we have - dit or dah //
// and what kind of pause we do have 1 - 3 or 7 pause //
// we think that hightimeavg = 1 bit //
///////////////////////////////////////////////////////////////
if (filteredstate != filteredstatebefore)
{
stop = LOW;
if (filteredstate == LOW)
{
if (highduration < (hightimesavg*2) && highduration > (hightimesavg*0.6)) /// 0.6 filter out false dits
{
strcat(code,".");
}
if (highduration > (hightimesavg*2) && highduration < (hightimesavg*6))
{
strcat(code,"-");
wpm = (wpm + (1200/((highduration)/3)))/2; //// the most precise we can do ;o)
}
}
if (filteredstate == HIGH)
{
float lacktime = 1;
if(wpm > 25)lacktime=1.0; /// when high speeds we have to have a little more pause before new letter or new word
if(wpm > 30)lacktime=1.2;
if(wpm > 35)lacktime=1.5;
if (lowduration > (hightimesavg*(2*lacktime)) && lowduration < hightimesavg*(5*lacktime)) // letter space
{
docode();
code[0] = '\0';
}
if (lowduration >= hightimesavg*(5*lacktime))
{ // word space
docode();
code[0] = '\0';
printascii(32);
}
}
}
if ((millis() - startttimelow) > (highduration * 6) && stop == LOW)
{
docode();
code[0] = '\0';
stop = HIGH;
}
/*
if(filteredstate == HIGH)
{
digitalWrite(ledPin, HIGH);
tone(audioOutPin,target_freq);
}
else
{
digitalWrite(ledPin, LOW);
noTone(audioOutPin);
}
*/
realstatebefore = realstate;
lasthighduration = highduration;
filteredstatebefore = filteredstate;
}

355
TeensyDSP/uart_forward.cpp Normal file
View File

@ -0,0 +1,355 @@
/*
Softserial for Nextion LCD and Control MCU
KD8CEC, Ian Lee
-----------------------------------------------------------------------
It is a library rewritten in C format based on SoftwareSerial.c.
I tried to use as much as possible without modifying the SoftwareSerial.
But eventually I had to modify the code.
I rewrote it in C for the following reasons.
- Problems occurred when increasing Program Size and Program Memory
- We had to reduce the program size.
Of course, Software Serial is limited to one.
- reduce the steps for transmitting and receiving
useage
extern void SWSerial_Begin(long speedBaud);
extern void SWSerial_Write(uint8_t b);
extern int SWSerial_Available(void);
extern int SWSerial_Read(void);
extern void SWSerial_Print(uint8_t *b);
If you use Softwreserial library instead of this library, you can modify the code as shown below.
I kept the function name of SoftwareSerial so you only need to modify a few lines of code.
define top of source code
#include <SoftwareSerial.h>
SoftwareSerial sSerial(10, 11); // RX, TX
replace source code
SWSerial_Begin to sSerial.begin
SWSerial_Write to sSerial.write
SWSerial_Available to sSerial.available
SWSerial_Read to sSerial.read
KD8CEC, Ian Lee
-----------------------------------------------------------------------
License
All licenses for the source code are subject to the license of the original source SoftwareSerial Library.
However, if you use or modify this code, please keep the all comments in this source code.
KD8CEC
-----------------------------------------------------------------------
License from SoftwareSerial
-----------------------------------------------------------------------
SoftwareSerial.cpp (formerly NewSoftSerial.cpp) -
Multi-instance software serial library for Arduino/Wiring
-- Interrupt-driven receive and other improvements by ladyada
(http://ladyada.net)
-- Tuning, circular buffer, derivation from class Print/Stream,
multi-instance support, porting to 8MHz processors,
various optimizations, PROGMEM delay tables, inverse logic and
direct port writing by Mikal Hart (http://www.arduiniana.org)
-- Pin change interrupt macros by Paul Stoffregen (http://www.pjrc.com)
-- 20MHz processor support by Garrett Mace (http://www.macetech.com)
-- ATmega1280/2560 support by Brett Hagman (http://www.roguerobotics.com/)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
The latest version of this library can always be found at
http://arduiniana.org.
*/
#include "TeensyDSP.h"
#ifdef USE_SW_SERIAL
//================================================================
//Public Variable
//================================================================
#define TX_PIN 9
#define RX_PIN 8
#define _SS_MAX_RX_BUFF 35 // RX buffer size
#define PRINT_MAX_LENGTH 30
//================================================================
//Internal Variable from SoftwareSerial.c and SoftwareSerial.h
//================================================================
//variable from softwareserial.c and softwareserial.h
static uint8_t swr_receive_buffer[_SS_MAX_RX_BUFF];
volatile uint8_t *_transmitPortRegister; //Write Port Register
uint8_t transmit_RegMask; //use Mask bit 1
uint8_t transmit_InvMask; //use mask bit 0
volatile uint8_t *_receivePortRegister; //Read Port Register
uint8_t _receiveBitMask;
//delay value for Bit
uint16_t _tx_delay;
//delay value for Receive
uint16_t _rx_delay_stopbit;
uint16_t _rx_delay_centering;
uint16_t _rx_delay_intrabit;
//Customize for uBITX Protocol
int8_t receiveIndex = 0;
int8_t receivedCommandLength = 0;
int8_t ffCount = 0;
//Values for Receive Buffer
//uint16_t _buffer_overflow;
//static volatile uint8_t _receive_buffer_head;
//static volatile uint8_t _receive_buffer_tail;
//Values for Interrupt (check Start Bit)
volatile uint8_t *_pcint_maskreg;
uint8_t _pcint_maskvalue;
//================================================================
//Internal Function from SoftwareSerial.c
//================================================================
uint16_t subtract_cap(uint16_t num, uint16_t sub)
{
if (num > sub)
return num - sub;
else
return 1;
}
inline void tunedDelay(uint16_t delay)
{
_delay_loop_2(delay);
}
void setRxIntMsk(bool enable)
{
if (enable)
*_pcint_maskreg |= _pcint_maskvalue;
else
*_pcint_maskreg &= ~_pcint_maskvalue;
}
uint8_t rx_pin_read()
{
return *_receivePortRegister & _receiveBitMask;
}
//
// The receive routine called by the interrupt handler
//
void softSerail_Recv()
{
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Preserve the registers that the compiler misses
// (courtesy of Arduino forum user *etracer*)
asm volatile(
"push r18 \n\t"
"push r19 \n\t"
"push r20 \n\t"
"push r21 \n\t"
"push r22 \n\t"
"push r23 \n\t"
"push r26 \n\t"
"push r27 \n\t"
::);
#endif
uint8_t d = 0;
// If RX line is high, then we don't see any start bit
// so interrupt is probably not for us
if (!rx_pin_read()) //Start Bit
{
// Disable further interrupts during reception, this prevents
// triggering another interrupt directly after we return, which can
// cause problems at higher baudrates.
setRxIntMsk(false);
// Wait approximately 1/2 of a bit width to "center" the sample
tunedDelay(_rx_delay_centering);
// Read each of the 8 bits
for (uint8_t i=8; i > 0; --i)
{
tunedDelay(_rx_delay_intrabit);
d >>= 1;
if (rx_pin_read())
d |= 0x80;
}
if (receivedCommandLength == 0) //check Already Command
{
//Set Received Data
swr_receive_buffer[receiveIndex++] = d;
//Finded Command
if (d == 0x73 && ffCount > 1 && receiveIndex > 6)
{
receivedCommandLength = receiveIndex;
receiveIndex = 0;
ffCount = 0;
}
else if (receiveIndex > _SS_MAX_RX_BUFF)
{
//Buffer Overflow
receiveIndex = 0;
ffCount = 0;
}
else if (d == 0xFF)
{
ffCount++;
}
else
{
ffCount = 0;
}
}
// skip the stop bit
tunedDelay(_rx_delay_stopbit);
// Re-enable interrupts when we're sure to be inside the stop bit
setRxIntMsk(true);
}
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Restore the registers that the compiler misses
asm volatile(
"pop r27 \n\t"
"pop r26 \n\t"
"pop r23 \n\t"
"pop r22 \n\t"
"pop r21 \n\t"
"pop r20 \n\t"
"pop r19 \n\t"
"pop r18 \n\t"
::);
#endif
}
ISR(PCINT0_vect)
{
softSerail_Recv();
}
//================================================================
//Public Function from SoftwareSerial.c and modified and create
//================================================================
// Read data from buffer
void SWSerial_Read(uint8_t * receive_cmdBuffer)
{
for (int i = 0; i < receivedCommandLength; i++)
receive_cmdBuffer[i] = swr_receive_buffer[i];
}
void SWSerial_Write(uint8_t b)
{
volatile uint8_t *reg = _transmitPortRegister;
uint8_t oldSREG = SREG;
uint16_t delay = _tx_delay;
cli(); // turn off interrupts for a clean txmit
// Write the start bit
*reg &= transmit_InvMask;
tunedDelay(delay);
// Write each of the 8 bits
for (uint8_t i = 8; i > 0; --i)
{
if (b & 1) // choose bit
*reg |= transmit_RegMask; // send 1
else
*reg &= transmit_InvMask; // send 0
tunedDelay(delay);
b >>= 1;
}
// restore pin to natural state
*reg |= transmit_RegMask;
SREG = oldSREG; // turn interrupts back on
tunedDelay(_tx_delay);
}
void SWSerial_Print(uint8_t *b)
{
for (int i = 0; i < PRINT_MAX_LENGTH; i++)
{
if (b[i] == 0x00)
break;
else
SWSerial_Write(b[i]);
}
}
void SWSerial_Begin(long speedBaud)
{
//INT TX_PIN
digitalWrite(TX_PIN, HIGH);
pinMode(TX_PIN, OUTPUT);
transmit_RegMask = digitalPinToBitMask(TX_PIN); //use Bit 1
transmit_InvMask = ~digitalPinToBitMask(TX_PIN); //use Bit 0
_transmitPortRegister = portOutputRegister(digitalPinToPort(TX_PIN));
//INIT RX_PIN
pinMode(RX_PIN, INPUT);
digitalWrite(RX_PIN, HIGH); // pullup for normal logic!
_receiveBitMask = digitalPinToBitMask(RX_PIN);
_receivePortRegister = portInputRegister(digitalPinToPort(RX_PIN));
//Set Values
uint16_t bit_delay = (F_CPU / speedBaud) / 4;
_tx_delay = subtract_cap(bit_delay, 15 / 4);
if (digitalPinToPCICR(RX_PIN))
{
_rx_delay_centering = subtract_cap(bit_delay / 2, (4 + 4 + 75 + 17 - 23) / 4);
_rx_delay_intrabit = subtract_cap(bit_delay, 23 / 4);
_rx_delay_stopbit = subtract_cap(bit_delay * 3 / 4, (37 + 11) / 4);
*digitalPinToPCICR(RX_PIN) |= _BV(digitalPinToPCICRbit(RX_PIN));
_pcint_maskreg = digitalPinToPCMSK(RX_PIN);
_pcint_maskvalue = _BV(digitalPinToPCMSKbit(RX_PIN));
tunedDelay(_tx_delay); // if we were low this establishes the end
}
//Start Listen
setRxIntMsk(true);
}
#else
void SWSerial_Write(uint8_t b)
{
Serial.write(b);
//Serial.flush();
}
void SWSerial_Print(uint8_t *b)
{
for (int i = 0; i < PRINT_MAX_LENGTH; i++)
{
if (b[i] == 0x00)
break;
else
SWSerial_Write(b[i]);
}
}
#endif

240
raduino-tmp/README.md Normal file
View File

@ -0,0 +1,240 @@
<<<<<<< HEAD
Stand-in README.md while I merge several repos into this project.
=======
#NOTICE
----------------------------------------------------------------------------
- Now Release Version 1.20 on my blog (http://www.hamskey.com)
- You can download and compiled hex file and uBITX Manager application on release section (https://github.com/phdlee/ubitx/releases)
- For more information, see my blog (http://www.hamskey.com)
http://www.hamskey.com
Ian KD8CEC
kd8cec@gmail.com
#uBITX
uBITX firmware, written for the Raduino/Arduino control of uBITX transceivers
This project is based on https://github.com/afarhan/ubitx and all copyright is inherited.
The copyright information of the original is below.
KD8CEC
----------------------------------------------------------------------------
Prepared or finished tasks for the next version
- Add TTS module
- Direct control for Student
----------------------------------------------------------------------------
## REVISION RECORD
1.20
- Support uBITX V5
- Change to SDR Frequency (Remove just RTL-SDR's error Frequency (2390Hz))
1.12
- Support Custom LPF Control
- Other Minor Bugs
1.1
- Support Nextion LCD, TJC LCD
- Read & Backup uBITX, ADC Monitoring, ATT, IF-Shift and more on Nextion LCD (TJC LCD)
- Factory Reset (Both Character LCD and Nextion LCD are applicable)
- Support Signal Meter using ADC (A7 Port)
- Supoort I2C Signal Meter
- Spectrum
- Band Scan
- Memory Control on Nextion LCD (TJC LCD)
- Speed Change CW-Option on Nextion LCD
- Fixed Band Change Bug (Both Character LCD and Nextion LCD are applicable)
- uBITX Manager removed the Encode and Decode buttons. The procedure has become a bit easier.
- I2C Device Scan on uBITX Manager ( Both Character LCD and Nextion LCD are applicable)
- Si5351 I2C Address can be changed
- Recovery using QR-Code Data from Server
- Nextion LCD and TJC LCD can display Spectrum and CW Decode (using Stand alone S-Meter)
- Other Minor Bugs
1.09 (Beta)
- include 1.094 beta, 1.095 beta, 1.097 beta
1.08
- Receive performance is improved compared to the original firmware or version 1.061
- ATT function has been added to reduce RF gain (Shift 45Mhz IF)
- Added the ability to connect SDR. (Low cost RTL-SDR available)
- Added a protocol to ADC Monitoring in CAT communications
- Various LCD support, 16x02 Parallel LCD - It is the LCD equipped with uBITX, 16x02 I2C LCD, 20x04 Parallel LCD, 20x04 I2C LCD, 16x02 I2C Dual LCD
- Added Extended Switch Support
- Support S Meter
- Added S-Meter setting assistant to uBITX Manager
- Add recovery mode (such as Factory Reset)
- There have been many other improvements and fixes. More information is available on the blog. (http://www.hamskey.com)
1.07 (Beta)
- include 1.071 beta, 1.073 beta, 1.075 beta
- Features implemented in the beta version have been applied to Version 1.08 above.
1.061
- Added WSPR
You only need uBITX to use WSPR. No external devices are required.
Added Si5351 module for WSPR
- Update uBITX Manager to Version 1.0
- Reduce program size
for WSPR
for other Module
- Fixed IF Shift Bug
Disable IF Shift on TX
IF shift available in USB mode
Fixed cat routine in IF Shift setup
- Bugs fixed
cw start delay option
Auto key Bug
(found bug : LZ1LDO)
Message selection when Auto Key is used in RIT mode
(found bug : gerald)
- Improve CW Keying (start TX)
1.05
- include 1.05W, 1.051, 1.051W
- for WSPR Beta Test Version
1.04
- Optimized from Version1.03
- Reduce program size (97% -> 95%)
1.03
- Change eBFO Calibration Step (50 to 5)
- Change CW Frequency Display type
1.02
- Applied CW Start Delay to New CW Key logic (This is my mistake when applying the new CW Key Logic.Since uBITX operations are not significantly affected, this does not create a separate Release, It will be reflected in the next release.) - complete
- Modified CW Key Logic for Auto Key, (available AutoKey function by any cw keytype) - complete
- reduce cpu use usage (working)
- reduce (working)
1.01
- Fixed Cat problem with (IAMBIC A or B Selected)
1.0
- rename 0.30 to 1.0
0.35
- vfo to channel bug fixed (not saved mode -> fixed, channel has frequency and mode)
- add Channel tag (ch.1 ~ 10) by uBITX Manager
- add VFO to Channel, Channel To VFO
0.34
- TX Status check in auto Keysend logic
- optimize codes
- change default tune step size, and fixed bug
- change IF shift step (1Hz -> 50Hz)
0.33
- Added CWL, CWU Mode, (dont complete test yet)
- fixed VFO changed bug.
- Added Additional BFO for CWL, CWL
- Added IF Shift
- Change confirmation key PTT -> function key (not critical menus)
- Change CW Key Select type, (toggle -> select by dial)
0.32
- Added function Scroll Frequencty on upper line
- Added Example code for Draw meter and remarked (you can see and use this code in source codes)
- Added Split function, just toggle VFOs when TX/RX
0.31
- Fixed CW ADC Range error
- Display Message on Upper Line (anothor VFO Frequency, Tune Step, Selected Key Type)
0.30
- implemented the function to monitor the value of all analog inputs. This allows you to monitor the status of the CW keys connected to your uBITX.
- possible to set the ADC range for CW Keying. If no setting is made, it will have the same range as the original code. If you set the CW Keying ADC Values using uBITX Manager 0.3, you can reduce the key error.
- Added the function to select Straight Key, IAMBICA, IAMBICB key from the menu.
- default Band select is Ham Band mode, if you want common type, long press function key at band select menu, uBITX Manager can be used to modify frequencies to suit your country.
0.29
- Remove the use of initialization values in BFO settings - using crruent value, if factory reset
- Select Tune Step, default 0, 20, 50, 100, 200, Use the uBITX Manager to set the steps value you want. You can select Step by pressing and holding the Function Key (1sec ~ 2sec).
- Modify Dial Lock Function, Press the Function key for more than 3 seconds to toggle dial lock.
- created a new frequency tune method. remove original source codes, Threshold has been applied to reduce malfunction. checked the continuity of the user operating to make natural tune possible.
- stabilize and remove many warning messages - by Pullrequest and merge
- Changed cw keying method. removed the original code and applied Ron's code and Improved compatibility with original hardware and CAT commnication. It can be used without modification of hardware.
0.28
- Fixed CAT problem with hamlib on Linux
- restore Protocol autorecovery logic
0.27
(First alpha test version, This will be renamed to the major version 1.0)
- Dual VFO Dial Lock (vfoA Dial lock)
- Support Ham band on uBITX
default Hamband is regeion1 but customize by uBITX Manager Software
- Advanced ham band options (Tx control) for use in all countries. You can adjust it yourself.
- Convenience of band movement
0.26
- only Beta tester released & source code share
- find a bug on none initial eeprom uBITX - Fixed (Check -> initialized & compatible original source code)
- change the version number 0.26 -> 0.27
- Prevent overflow bugs
- bug with linux based Hamlib (raspberry pi), It was perfect for the 0.224 version, but there was a problem for the 0.25 version.
On Windows, ham deluxe, wsjt-x, jt65-hf, and fldigi were successfully run. Problem with Raspberry pi.
0.25
- Beta Version Released
http://www.hamskey.com/2018/01/release-beta-version-of-cat-support.html
- Added CAT Protocol for uBITX
- Modified the default usb carrier value used when the setting is wrong.
- Fixed a routine to repair when the CAT protocol was interrupted.
0.24
- Program optimization
reduce usage ram rate (string with M() optins)
- Optimized CAT protocol for wsjt-x, fldigi
0.23
- added delay_background() , replace almost delay() to delay_background for prevent timeout
- cat library compatible with FT-817 Command
switch VFOA / VFOB,
Read Write CW Speed
Read Write CW Delay Time
Read Write CW Pitch (with sidetone)
All of these can be controlled by Hamradio deluxe.
- modified cat libray function for protocol for CAT communication is not broken in CW or TX mode
- Ability to change CW Delay
- Added Dial Lock function
- Add functions CW Start dely (TX -> CW interval)
- Automatic storage of VFO frequency
It was implemented by storing it only once when the frequency stays 10 seconds or more after the change.
(protect eeprom life)
0.22
- fixed screen Update Problem
- Frequency Display Problem - Problems occur below 1Mhz
- added function Enhanced CAT communication
- replace ubitx_cat.ino to cat_libs.ino
- Save mode when switching to VFOA / VFOB
0.21
- fixed the cw side tone configuration.
- Fix the error that the frequency is over.
- fixed frequency display (alignment, point)
0.20
- original uBITX software (Ashhar Farhan)
## Original README.md
uBITX firmware, written for the Raduino/Arduino control of uBITX transceigers
Copyright (C) 2017, Ashhar Farhan
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
>>>>>>> raduino/master

View File

@ -0,0 +1,30 @@
This file will guide you to change the source code file.
For Windows-based Arduino IDE users, the directory name and the Main source file name must be the same.
You do not need to learn github to download .hex files or source code that I release.
However, if you want to see what I'm doing right now, you should use the github homepage.
You do not need to learn git to suggest source code. If you give me an e-mail, I will correct it at any time.
If you have not joined the BITX Group, join group. There will be discussions on various topics every day.
I am getting a lot of hints from the group.
Ian KD8CEC
kd8cec@gmail.com
==================================================================
Files modified in Version1.08 Beta
1.Delted Files.
2.Added Files
3.Modified Files
- ubitx_20.ino
- ubitx_ui.ino
- cat_libs.ino
- ubitx.h
- ubitx_eemap.h
- ubitx_lcd_1602.ino
- ubitx_lcd_1602Dual.ino
- ubitx_lcd_2004.ino
- ubitx_wspr.ino

View File

Before

Width:  |  Height:  |  Size: 71 KiB

After

Width:  |  Height:  |  Size: 71 KiB

674
teensydsp-tmp/LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

14
teensydsp-tmp/README.md Normal file
View File

@ -0,0 +1,14 @@
# dspmeterv1
Please also refer to the site below.
https://github.com/soligen2010/dspmeterv1
-------------------------------------------
Standalone Signal Analyzer (I2C Type Signal-Meter) for uBITX - Arduino Nano Version
I do not claim any license for my code.
You may use it in any way. I just hope this will be used for amateur radio.
The other person's source code (CW Morse code) follows the original author's license.
Ian KD8CEC

View File

@ -1,80 +0,0 @@
/*************************************************************************
header file for C++ by KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#define WSPR_COUNT 443 //WSPR_MESSAGE_COUNT
#define WSPR_MESSAGE1 444 //
#define WSPR_MESSAGE2 490 //
#define WSPR_MESSAGE3 536 //
#define WSPR_MESSAGE4 582 //
#define WSPR_BAND_COUNT 3
#define TX_SSB 0
#define TX_CW 1
extern void printLine1(const char *c);
extern void printLine2(const char *c);
extern void printLineF(char linenmbr, const __FlashStringHelper *c);
extern void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetType);
extern byte delay_background(unsigned delayTime, byte fromType);
extern int btnDown(void);
extern char c[30];
extern char b[30];
extern unsigned long frequency;
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
/**
* The second set of 16 pins on the Raduino's bottom connector are have the three clock outputs and the digital lines to control the rig.
* This assignment is as follows :
* Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
* GND +5V CLK0 GND GND CLK1 GND GND CLK2 GND D2 D3 D4 D5 D6 D7
* These too are flexible with what you may do with them, for the Raduino, we use them to :
* - TX_RX line : Switches between Transmit and Receive after sensing the PTT or the morse keyer
* - CW_KEY line : turns on the carrier for CW
*/
#define TX_RX (7)
#define CW_TONE (6)
#define TX_LPF_A (5)
#define TX_LPF_B (4)
#define TX_LPF_C (3)
#define CW_KEY (2)
//we directly generate the CW by programmin the Si5351 to the cw tx frequency, hence, both are different modes
//these are the parameter passed to startTx
#define TX_SSB 0
#define TX_CW 1
extern void si5351bx_init(void);
extern void si5351bx_setfreq(uint8_t clknum, uint32_t fout);
extern void si5351_set_calibration(int32_t cal);
extern void initOscillators(void);
extern void Set_WSPR_Param(void);
extern void TXSubFreq(unsigned long P2);
extern void startTx(byte txMode, byte isDisplayUpdate);
extern void stopTx(void);
extern void setTXFilters(unsigned long freq);
extern void SendWSPRManage(void);
extern byte WsprMSGCount;

View File

@ -1,254 +0,0 @@
/*************************************************************************
KD8CEC's uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
char line2Buffer[16];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
void updateLine2Buffer(char isDirectCall)
{
unsigned long tmpFreq = 0;
if (isDirectCall == 0)
{
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//======================================================
//other VFO display
//======================================================
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'k';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'k';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
} //check direct call by encoder
if (isIFShift)
{
if (isDirectCall == 1)
for (int i = 0; i < 16; i++)
line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
//if (ifShiftValue == 0)
//{
/*
line2Buffer[10] = 'S';
line2Buffer[11] = ':';
line2Buffer[12] = 'O';
line2Buffer[13] = 'F';
line2Buffer[14] = 'F';
*/
//}
//else
//{
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
//}
if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step display
{
if (isDirectCall != 0)
return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
//if (isStepKhz == 1)
// line2Buffer[10] = 'k';
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//if (
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue); //call original source code
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
lcd.setCursor(drawPosition, lineNumber);
for (int i = 0; i < 6; i++) //meter 5 + +db 1 = 6
lcd.write(lcdMeter[i]);
}
}
byte testValue = 0;
char checkCount = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 7);
if (testValue > 30)
testValue = 0;
*/
}
}
}

View File

@ -1,392 +0,0 @@
/**
* The user interface of the ubitx consists of the encoder, the push-button on top of it
* and the 16x2 LCD display.
* The upper line of the display is constantly used to display frequency and status
* of the radio. Occasionally, it is used to provide a two-line information that is
* quickly cleared up.
*/
//#define printLineF1(x) (printLineF(1, x))
//#define printLineF2(x) (printLineF(0, x))
//returns true if the button is pressed
int btnDown(void){
if (digitalRead(FBUTTON) == HIGH)
return 0;
else
return 1;
}
/**
* Meter (not used in this build for anything)
* the meter is drawn using special characters. Each character is composed of 5 x 8 matrix.
* The s_meter array holds the definition of the these characters.
* each line of the array is is one character such that 5 bits of every byte
* makes up one line of pixels of the that character (only 5 bits are used)
* The current reading of the meter is assembled in the string called meter
*/
/*
const PROGMEM uint8_t s_meter_bitmap[] = {
B00000,B00000,B00000,B00000,B00000,B00100,B00100,B11011,
B10000,B10000,B10000,B10000,B10100,B10100,B10100,B11011,
B01000,B01000,B01000,B01000,B01100,B01100,B01100,B11011,
B00100,B00100,B00100,B00100,B00100,B00100,B00100,B11011,
B00010,B00010,B00010,B00010,B00110,B00110,B00110,B11011,
B00001,B00001,B00001,B00001,B00101,B00101,B00101,B11011
};
*/
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100 , //custom 3
B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110 , //custom 4
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
};
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = {
0b01110,
0b10001,
0b10001,
0b11111,
0b11011,
0b11011,
0b11111,
0b00000};
PGM_P plock_bitmap = reinterpret_cast<PGM_P>(lock_bitmap);
// initializes the custom characters
// we start from char 1 as char 0 terminates the string!
void initMeter(){
uint8_t tmpbytes[8];
byte i;
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(plock_bitmap + i);
lcd.createChar(0, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
lcd.createChar(1, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
lcd.createChar(2, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
lcd.createChar(3, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
lcd.createChar(4, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
lcd.createChar(5, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
lcd.createChar(6, tmpbytes);
}
//by KD8CEC
//0 ~ 25 : 30 over : + 10
void drawMeter(int needle) {
//5Char + O over
int i;
for (i = 0; i < 5; i++) {
if (needle >= 5)
lcdMeter[i] = 5; //full
else if (needle > 0)
lcdMeter[i] = needle; //full
else //0
lcdMeter[i] = 0x20;
needle -= 5;
}
if (needle > 0)
lcdMeter[5] = 6;
else
lcdMeter[5] = 0x20;
}
/*
void drawMeter(int8_t needle){
int16_t best, i, s;
if (needle < 0)
return;
s = (needle * 4)/10;
for (i = 0; i < 8; i++){
if (s >= 5)
lcdMeter[i] = 1;
else if (s >= 0)
lcdMeter[i] = 2 + s;
else
lcdMeter[i] = 1;
s = s - 5;
}
if (needle >= 40)
lcdMeter[i-1] = 6;
lcdMeter[i] = 0;
}
*/
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
lcd.print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 16; i++) { // add white spaces until the end of the 16 characters line is reached
lcd.print(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[17];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 17; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
lcd.setCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
lcd.write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 16; i++) //Right Padding by Space
lcd.write(' ');
}
// short cut to print to the first line
void printLine1(const char *c){
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c){
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//012...89ABC...Z
char byteToChar(byte srcByte){
if (srcByte < 10)
return 0x30 + srcByte;
else
return 'A' + srcByte - 10;
}
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
lcd.setCursor(5,diplayVFOLine);
lcd.write((uint8_t)0);
}
else if (isCWAutoMode == 2){
lcd.setCursor(5,diplayVFOLine);
lcd.write(0x7E);
}
else
{
lcd.setCursor(5,diplayVFOLine);
lcd.write(":");
}
}
int enc_prev_state = 3;
/**
* The A7 And A6 are purely analog lines on the Arduino Nano
* These need to be pulled up externally using two 10 K resistors
*
* There are excellent pages on the Internet about how these encoders work
* and how they should be used. We have elected to use the simplest way
* to use these encoders without the complexity of interrupts etc to
* keep it understandable.
*
* The enc_state returns a two-bit number such that each bit reflects the current
* value of each of the two phases of the encoder
*
* The enc_read returns the number of net pulses counted over 50 msecs.
* If the puluses are -ve, they were anti-clockwise, if they are +ve, the
* were in the clockwise directions. Higher the pulses, greater the speed
* at which the enccoder was spun
*/
byte enc_state (void) {
return (analogRead(ENC_A) > 500 ? 1 : 0) + (analogRead(ENC_B) > 500 ? 2: 0);
}
int enc_read(void) {
int result = 0;
byte newState;
int enc_speed = 0;
unsigned long start_at = millis();
while (millis() - start_at < 50) { // check if the previous state was stable
newState = enc_state(); // Get current state
if (newState != enc_prev_state)
delay (1);
if (enc_state() != newState || newState == enc_prev_state)
continue;
//these transitions point to the encoder being rotated anti-clockwise
if ((enc_prev_state == 0 && newState == 2) ||
(enc_prev_state == 2 && newState == 3) ||
(enc_prev_state == 3 && newState == 1) ||
(enc_prev_state == 1 && newState == 0)){
result--;
}
//these transitions point o the enccoder being rotated clockwise
if ((enc_prev_state == 0 && newState == 1) ||
(enc_prev_state == 1 && newState == 3) ||
(enc_prev_state == 3 && newState == 2) ||
(enc_prev_state == 2 && newState == 0)){
result++;
}
enc_prev_state = newState; // Record state for next pulse interpretation
enc_speed++;
delay(1);
}
return(result);
}