Compare commits

..

25 Commits

Author SHA1 Message Date
phdlee
b153a305d6 Merge branch 'master' into version0.29 2018-01-25 22:25:35 +09:00
phdlee
e61e45d3dd Update README.md 2018-01-22 18:26:22 +09:00
phdlee
a1f941f965 Update README.md 2018-01-22 18:25:41 +09:00
phdlee
d1e72b3bd5 Update README.md 2018-01-22 18:24:29 +09:00
phdlee
032e7f919f Update README.md 2018-01-22 18:21:55 +09:00
phdlee
b6bc264332 Update README.md 2018-01-22 18:11:15 +09:00
phdlee
b1cc5eb98a Update README.md 2018-01-22 02:11:35 +09:00
phdlee
2fe1662d67 Merge pull request #8 from qiwenmin/master
Fixed most compilation warnings and a delay issue
2018-01-20 21:24:15 +09:00
phdlee
ebbc5aae5e Merge pull request #9 from phdlee/version0.28
change delaytimes via cat
2018-01-18 11:47:21 +09:00
Qi Wenmin
209cd3a49c Fixed most compilation warnings and a delay issue
* Fixed most compilation warnings (Compiler warning level: All)
* Fixed a delay issue in enc_read function.
2018-01-17 14:42:15 +08:00
phdlee
95e5c1dfe5 Update README.md 2018-01-14 14:53:28 +09:00
phdlee
45a8479061 Update README.md 2018-01-14 14:52:58 +09:00
phdlee
a6ad381c24 Update README.md 2018-01-14 14:52:22 +09:00
phdlee
bcf80f851d Update README.md 2018-01-14 14:51:46 +09:00
phdlee
16304efacd Update README.md 2018-01-14 14:51:23 +09:00
phdlee
968024ab73 Merge pull request #7 from phdlee/beta0.26
Beta0.26
2018-01-14 14:19:53 +09:00
phdlee
3e60728727 Update README.md 2018-01-13 22:27:23 +09:00
phdlee
9781ef086b Update README.md 2018-01-13 10:58:47 +09:00
phdlee
f27f504ea4 Merge pull request #6 from phdlee/beta0.26
Beta0.26
2018-01-12 20:19:09 +09:00
phdlee
2b08a76fbf Update README.md 2018-01-12 10:16:59 +09:00
phdlee
90655e03b8 Update README.md
add status of project
2018-01-12 09:51:58 +09:00
phdlee
8551ff1b68 Update README.md 2018-01-11 17:40:00 +09:00
phdlee
5ce94e8e49 Merge pull request #5 from qiwenmin/master
Fix the delay condition bug when overflow
2018-01-10 13:51:59 +09:00
Qi Wenmin
7ef9c29fa8 Fix the delay condition bug when overflow
The original expression will cause bug when overflow.
2018-01-10 12:00:53 +08:00
phdlee
fda398046e Merge pull request #4 from phdlee/beta0.25
beta 0.25 commit
2018-01-10 11:39:15 +09:00
17 changed files with 1138 additions and 5225 deletions

View File

@@ -1,7 +1,21 @@
#IMPORTANT INFORMATION
----------------------------------------------------------------------------
- Beta 0.26 and Beta 0.261, Beta 0.262, Beta 0.27 is complete test
- You can download and use it.
-Working on version 0.29 now. Download the source from the release section rather than the master branch version.
Master version is working now.
- Beta 0.26 and Beta 0.261, Beta 0.262,0.27 is complete test, 0.28 is tested.
- You can download and use it (Release section).
# Current work list (for Version 0.29)
1 Testing CAT Control with Software using hamlib on Linux
2 BFO setting based on current value - complete
3 Select Tune Step - Testing
4 Change Tune control type, Do not keep the original source - Complete
- Coded differently after clearing the original source
- Prevent malfunction by applying threshold
5 stabilize and remove many warning messages - by Pullrequest and merge
6 Study on improvement method for cw keying - need idea
- set ADC Range value
#NOTICE
----------------------------------------------------------------------------
@@ -46,6 +60,10 @@ Prepared or finished tasks for the next version
----------------------------------------------------------------------------
## REVISION RECORD
0.28
- Fixed CAT problem with hamlib on Linux
- restore Protocol autorecovery logic
0.27
(First alpha test version, This will be renamed to the major version 1.0)
- Dual VFO Dial Lock (vfoA Dial lock)

View File

@@ -1,30 +0,0 @@
This file will guide you to change the source code file.
For Windows-based Arduino IDE users, the directory name and the Main source file name must be the same.
You do not need to learn github to download .hex files or source code that I release.
However, if you want to see what I'm doing right now, you should use the github homepage.
You do not need to learn git to suggest source code. If you give me an e-mail, I will correct it at any time.
If you have not joined the BITX Group, join group. There will be discussions on various topics every day.
I am getting a lot of hints from the group.
Ian KD8CEC
kd8cec@gmail.com
==================================================================
Files modified in Version1.08 Beta
1.Delted Files.
2.Added Files
3.Modified Files
- ubitx_20.ino
- ubitx_ui.ino
- cat_libs.ino
- ubitx.h
- ubitx_eemap.h
- ubitx_lcd_1602.ino
- ubitx_lcd_1602Dual.ino
- ubitx_lcd_2004.ino
- ubitx_wspr.ino

View File

@@ -1,5 +1,4 @@
/*************************************************************************
KD8CEC's CAT Library for uBITX and HAM
This source code is written for uBITX, but it can also be used on other radios.
The CAT protocol is used by many radios to provide remote control to comptuers through
@@ -31,8 +30,8 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
//for broken protocol
#define CAT_RECEIVE_TIMEOUT 500
@@ -109,8 +108,7 @@ void CatSetFreq(byte fromType)
//#define BCD_LEN 9
//PROTOCOL : 0x03
//Computer <-(frequency)-> TRCV CAT_BUFF
//void CatGetFreqMode(unsigned long freq, byte fromType)
void CatGetFreqMode(unsigned long freq) //for remove warning messages
void CatGetFreqMode(unsigned long freq, byte fromType)
{
int i;
byte tmpValue;
@@ -131,40 +129,23 @@ void CatGetFreqMode(unsigned long freq) //for remove warning messages
}
//Mode Check
if (cwMode == 0)
{
if (isUSB)
CAT_BUFF[4] = CAT_MODE_USB;
else
CAT_BUFF[4] = CAT_MODE_LSB;
}
else if (cwMode == 1)
{
CAT_BUFF[4] = CAT_MODE_CW;
}
if (isUSB)
CAT_BUFF[4] = CAT_MODE_USB;
else
{
CAT_BUFF[4] = CAT_MODE_CW;
}
CAT_BUFF[4] = CAT_MODE_LSB;
SendCatData(5);
}
//void CatSetSplit(boolean isSplit, byte fromType)
void CatSetSplit(boolean isSplit) //for remove warning messages
void CatSetSplit(boolean isSplit, byte fromType)
{
if (isSplit)
splitOn = 1;
else
splitOn = 0;
Serial.write(ACK);
}
void CatSetPTT(boolean isPTTOn, byte fromType)
{
//
if ((!inTx) && (fromType == 2 || fromType == 3)) {
if (fromType == 2 || fromType == 3) {
Serial.write(ACK);
return;
}
@@ -200,7 +181,7 @@ void CatSetPTT(boolean isPTTOn, byte fromType)
void CatVFOToggle(boolean isSendACK, byte fromType)
{
if (fromType != 2 && fromType != 3) {
menuVfoToggle(1);
menuVfoToggle(1, 0);
}
if (isSendACK)
@@ -216,18 +197,12 @@ void CatSetMode(byte tmpMode, byte fromType)
if (!inTx)
{
if (tmpMode == CAT_MODE_CW)
if (tmpMode == CAT_MODE_USB)
{
cwMode = 1;
}
else if (tmpMode == CAT_MODE_USB)
{
cwMode = 0;
isUSB = true;
}
else
{
cwMode = 0;
isUSB = false;
}
@@ -239,8 +214,7 @@ void CatSetMode(byte tmpMode, byte fromType)
}
//Read EEProm by uBITX Manager Software
//void ReadEEPRom(byte fromType)
void ReadEEPRom() //for remove warnings.
void ReadEEPRom(byte fromType)
{
//5BYTES
//CAT_BUFF[0] [1] [2] [3] [4] //4 COMMAND
@@ -263,8 +237,7 @@ void ReadEEPRom() //for remove warnings.
}
//Write just proecess 1byes
//void WriteEEPRom(byte fromType)
void WriteEEPRom(void) //for remove warning
void WriteEEPRom(byte fromType)
{
//5BYTES
uint16_t eepromStartIndex = CAT_BUFF[0] + CAT_BUFF[1] * 256;
@@ -278,26 +251,13 @@ void WriteEEPRom(void) //for remove warning
}
else
{
//Special Command
if (eepromStartIndex == 13131) //Magic Key
{
if (write1Byte == 0x51) //Restart
{
asm volatile (" jmp 0");
}
}
else
{
EEPROM.write(eepromStartIndex, write1Byte);
}
EEPROM.write(eepromStartIndex, write1Byte);
Serial.write(0x77); //OK
Serial.write(ACK);
}
}
//void ReadEEPRom_FT817(byte fromType)
void ReadEEPRom_FT817(void) //for remove warnings
void ReadEEPRom_FT817(byte fromType)
{
byte temp0 = CAT_BUFF[0];
byte temp1 = CAT_BUFF[1];
@@ -397,21 +357,10 @@ void ReadEEPRom_FT817(void) //for remove warnings
CAT_BUFF[1] = 0xB2;
break; case 0x69 : //FM Mic (#29) Contains 0-100 (decimal) as displayed
case 0x78 :
if (cwMode == 0)
{
if (isUSB)
CAT_BUFF[0] = CAT_MODE_USB;
else
CAT_BUFF[0] = CAT_MODE_LSB;
}
else if (cwMode == 1)
{
CAT_BUFF[0] = CAT_MODE_CW;
}
else if (cwMode == 2)
{
CAT_BUFF[0] = CAT_MODE_CW;
}
if (isUSB)
CAT_BUFF[0] = CAT_MODE_USB;
else
CAT_BUFF[0] = CAT_MODE_LSB;
if (CAT_BUFF[0] != 0) CAT_BUFF[0] = 1 << 5;
break;
@@ -434,7 +383,7 @@ void ReadEEPRom_FT817(void) //for remove warnings
//7A 6 ? ?
//7A 7 SPL On/Off 0 = Off, 1 = On
CAT_BUFF[0] = (splitOn ? 0xFF : 0x7F);
CAT_BUFF[0] = (isSplitOn ? 0xFF : 0x7F);
break;
case 0xB3 : //
CAT_BUFF[0] = 0x00;
@@ -522,7 +471,7 @@ void WriteEEPRom_FT817(byte fromType)
printLineF2(F("Sidetone set! CAT"));
EEPROM.put(CW_SIDETONE, sideTone);
delay(300); //If timeout errors occur in the calling software, remove them
clearLine2();
printLine2(""); //Ham radio deluxe is the only one that supports this feature yet. and ham radio deluxe has wait time as greater than 500ms
}
break;
@@ -534,8 +483,7 @@ void WriteEEPRom_FT817(byte fromType)
printLineF2(F("Sidetone set! CAT"));
EEPROM.put(CW_SIDETONE, sideTone);
delay(300); //If timeout errors occur in the calling software, remove them
clearLine2();
line2DisplayStatus = 0;
printLine2(""); //Ham radio deluxe is the only one that supports this feature yet. and ham radio deluxe has wait time as greater than 500ms
}
break;
@@ -555,7 +503,7 @@ void WriteEEPRom_FT817(byte fromType)
printLineF2(F("CW Speed set!"));
EEPROM.put(CW_DELAY, cwDelayTime);
delay(300);
clearLine2();
printLine2("");
break;
case 0x62 : //
//5-0 CW Speed (4-60 WPM) (#21) From 0 to 38 (HEX) with 0 = 4 WPM and 38 = 60 WPM (1 WPM steps)
@@ -564,7 +512,7 @@ void WriteEEPRom_FT817(byte fromType)
printLineF2(F("CW Speed set!"));
EEPROM.put(CW_SPEED, cwSpeed);
delay(300);
clearLine2();
printLine2("");
break;
/*
@@ -623,38 +571,9 @@ void WriteEEPRom_FT817(byte fromType)
Serial.write(ACK);
}
const byte anlogPinIndex[6] = {A0, A1, A2, A3, A6, A7};
//Read ADC Value by uBITX Manager Software
void ReadADCValue(void)
void CatRxStatus(byte fromType)
{
//ADC MAP for uBITX
int readedADCValue;
//5BYTES
//CAT_BUFF[0] [1] [2] [3] [4] //4 COMMAND
//0 READ ADDRESS
readedADCValue = analogRead(anlogPinIndex[CAT_BUFF[0]]);
CAT_BUFF[0] = readedADCValue >> 8;
CAT_BUFF[1] = readedADCValue;
SendCatData(2);
Serial.write(ACK);
}
void SetIFSValue(void)
{
//Set IFShift Value
isIFShift = CAT_BUFF[0];
ifShiftValue = CAT_BUFF[1] + CAT_BUFF[2] * 256;
setFrequency(frequency);
SetCarrierFreq();
updateLine2Buffer(1); //option, perhap not need
Serial.write(ACK);
}
//void CatRxStatus(byte fromType)
void CatRxStatus(void) //for remove warning
{
byte sMeterValue = 0;
byte sMeterValue = 1;
/*
http://www.ka7oei.com/ft817_meow.html
@@ -667,40 +586,12 @@ void CatRxStatus(void) //for remove warning
Bit 7 is 0 if there is a signal present, or 1 if the receiver is squelched.
*/
// The lower 4 bits (0-3) of this byte indicate the current S-meter reading. 00 refers to an S-Zero reading, 04 = S4, 09 = S9, 0A = "10 over," 0B = "20 over" and so on up to 0F.
//0~8
switch (scaledSMeter)
{
case 8 : sMeterValue = 0x0B;
break;
case 7 : sMeterValue = 0x0A;
break;
case 6 : sMeterValue = 0x09;
break;
case 5 : sMeterValue = 0x07;
break;
case 4 : sMeterValue = 0x05;
break;
case 3 : sMeterValue = 0x04;
break;
case 2 : sMeterValue = 0x02;
break;
case 1 : sMeterValue = 0x01;
break;
}
/*
sMeterValue = (scaledSMeter * 2) -1;
if (sMeterValue > 0)
sMeterValue--;
*/
CAT_BUFF[0] = sMeterValue & 0b00001111;
SendCatData(1);
}
//void CatTxStatus(byte fromType)
void CatTxStatus(void) //for remove warning
void CatTxStatus(byte fromType)
{
boolean isHighSWR = false;
boolean isSplitOn = false;
@@ -801,11 +692,11 @@ void Check_Cat(byte fromType)
case 0x02 : //Split On
case 0x82: //Split Off
CatSetSplit(CAT_BUFF[4] == 0x02);
CatSetSplit(CAT_BUFF[4] == 0x02, fromType);
break;
case 0x03 : //Read Frequency and mode
CatGetFreqMode(frequency);
CatGetFreqMode(frequency, fromType);
break;
case 0x07 : //Set Operating Mode
@@ -822,32 +713,24 @@ void Check_Cat(byte fromType)
break;
case 0xDB: //Read uBITX EEPROM Data
ReadEEPRom(); //Call by uBITX Manager Program
ReadEEPRom(fromType); //Call by uBITX Manager Program
break;
case 0xBB: //Read FT-817 EEPROM Data (for comfirtable)
ReadEEPRom_FT817();
ReadEEPRom_FT817(fromType);
break;
case 0xDC: //Write uBITX EEPROM Data
WriteEEPRom(); //Call by uBITX Manager Program
WriteEEPRom(fromType); //Call by uBITX Manager Program
break;
case 0xBC: //Write FT-817 EEPROM Data (for comfirtable)
WriteEEPRom_FT817(fromType);
break;
case 0xDD: //Read uBITX ADC Data
ReadADCValue(); //Call by uBITX Manager Program
break;
case 0xDE: //IF-Shift Control by CAT
SetIFSValue(); //
break;
case 0xE7 : //Read RX Status
CatRxStatus();
CatRxStatus(fromType);
break;
case 0xF7: //Read TX Status
CatTxStatus();
CatTxStatus(fromType);
break;
default:
/*

View File

@@ -1,6 +1,4 @@
/*************************************************************************
KD8CEC's Memory Keyer for HAM
This source code is written for All amateur radio operator,
I have not had amateur radio communication for a long time. CW has been
around for a long time, and I do not know what kind of keyer and keying
@@ -15,7 +13,6 @@
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -36,7 +33,7 @@
//27 + 10 + 18 + 1(SPACE) = //56
const PROGMEM uint8_t cwAZTable[27] = {0b00100100 , 0b01001000 , 0b01001010 , 0b00111000 , 0b00010000, 0b01000010, 0b00111100, 0b01000000 , //A ~ H
0b00100000, 0b01000111 ,0b00111010, 0b01000100, 0b00101100, 0b00101000 , 0b00111110, 0b01000110, 0b01001101, 0b00110100, //I ~ R
0b00110000, 0b00011000, 0b00110010, 0b01000001, 0b00110110, 0b01001001, 0b01001011, 0b01001100}; //S ~ Z
0b00110000, 0b00011000, 0b00110010, 0b01000001, 0b00110110, 0b01001001, 0b01001011, 0b00111000}; //S ~ Z
PGM_P pCwAZTable = reinterpret_cast<PGM_P>(cwAZTable);
const PROGMEM uint8_t cw09Table[27] = {0b00011111, 0b00001111, 0b00000111, 0b00000011, 0b00000001, 0b00000000, 0b00010000, 0b00011000, 0b00011100, 0b00011110};
@@ -297,16 +294,11 @@ void controlAutoCW(){
displayScrolStep = 0;
}
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ, 0);
//byte diplayAutoCWLine = 0;
//if ((displayOption1 & 0x01) == 0x01)
// diplayAutoCWLine = 1;
Display_AutoKeyTextIndex(selectedCWTextIndex);
//lcd.setCursor(0, diplayAutoCWLine);
//lcd.write(byteToChar(selectedCWTextIndex));
//lcd.write(':');
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ);
lcd.setCursor(0,0);
lcd.write(byteToChar(selectedCWTextIndex));
lcd.write(':');
isNeedScroll = (cwEndIndex - cwStartIndex) > 14 ? 1 : 0;
scrollDispayTime = millis() + scrollSpeed;
beforeCWTextIndex = selectedCWTextIndex;
@@ -366,11 +358,6 @@ void controlAutoCW(){
//check interval time, if you want adjust interval between chars, modify below
if (isAutoCWHold == 0 && (millis() - autoCWbeforeTime > cwSpeed * 3))
{
if (!inTx){ //if not TX Status, change RX -> TX
keyDown = 0;
startTx(TX_CW, 0); //disable updateDisplay Command for reduce latency time
}
sendCWChar(EEPROM.read(CW_AUTO_DATA + autoCWSendCharIndex++));
if (autoCWSendCharIndex > autoCWSendCharEndIndex) { //finish auto cw send

View File

@@ -1,184 +0,0 @@
/*************************************************************************
header file for C++ by KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifndef _UBITX_HEADER__
#define _UBITX_HEADER__
#include <Arduino.h> //for Linux, On Linux it is case sensitive.
//==============================================================================
// Compile Option
//==============================================================================
//Depending on the type of LCD mounted on the uBITX, uncomment one of the options below.
//You must select only one.
#define UBITX_DISPLAY_LCD1602P //LCD mounted on unmodified uBITX (Parallel)
//#define UBITX_DISPLAY_LCD1602I //I2C type 16 x 02 LCD
//#define UBITX_DISPLAY_LCD1602I_DUAL //I2C type 16 x02 LCD Dual
//#define UBITX_DISPLAY_LCD2004P //24 x 04 LCD (Parallel)
//#define UBITX_DISPLAY_LCD2004I //I2C type 24 x 04 LCD
#define I2C_LCD_MASTER_ADDRESS_DEFAULT 0x3F //0x27 //DEFAULT, if Set I2C Address by uBITX Manager, read from EEProm
#define I2C_LCD_SECOND_ADDRESS_DEFAULT 0x27 //0x27 //only using Dual LCD Mode
#define EXTEND_KEY_GROUP1 //MODE, BAND(-), BAND(+), STEP
//#define EXTEND_KEY_GROUP2 //Numeric (0~9), Point(.), Enter //Not supported in Version 1.0x
//#define ENABLE_FACTORYALIGN
#define FACTORY_RECOVERY_BOOTUP //Whether to enter Factory Recovery mode by pressing FKey and turning on power
#define ENABLE_ADCMONITOR //Starting with Version 1.07, you can read ADC values directly from uBITX Manager. So this function is not necessary.
extern byte I2C_LCD_MASTER_ADDRESS; //0x27 //if Set I2C Address by uBITX Manager, read from EEProm
extern byte I2C_LCD_SECOND_ADDRESS; //only using Dual LCD Mode
#define SMeterLatency 3 //1 is 0.25 sec
#ifdef UBITX_DISPLAY_LCD1602I
#define USE_I2C_LCD
#elif defined(UBITX_DISPLAY_LCD1602I_DUAL)
#define USE_I2C_LCD
#elif defined(UBITX_DISPLAY_LCD2004I)
#define USE_I2C_LCD
#endif
//==============================================================================
// Hardware, Define PIN Usage
//==============================================================================
/**
* We need to carefully pick assignment of pin for various purposes.
* There are two sets of completely programmable pins on the Raduino.
* First, on the top of the board, in line with the LCD connector is an 8-pin connector
* that is largely meant for analog inputs and front-panel control. It has a regulated 5v output,
* ground and six pins. Each of these six pins can be individually programmed
* either as an analog input, a digital input or a digital output.
* The pins are assigned as follows (left to right, display facing you):
* Pin 1 (Violet), A7, SPARE
* Pin 2 (Blue), A6, KEYER (DATA)
* Pin 3 (Green), +5v
* Pin 4 (Yellow), Gnd
* Pin 5 (Orange), A3, PTT
* Pin 6 (Red), A2, F BUTTON
* Pin 7 (Brown), A1, ENC B
* Pin 8 (Black), A0, ENC A
*Note: A5, A4 are wired to the Si5351 as I2C interface
* *
* Though, this can be assigned anyway, for this application of the Arduino, we will make the following
* assignment
* A2 will connect to the PTT line, which is the usually a part of the mic connector
* A3 is connected to a push button that can momentarily ground this line. This will be used for RIT/Bandswitching, etc.
* A6 is to implement a keyer, it is reserved and not yet implemented
* A7 is connected to a center pin of good quality 100K or 10K linear potentiometer with the two other ends connected to
* ground and +5v lines available on the connector. This implments the tuning mechanism
*/
#define ENC_A (A0)
#define ENC_B (A1)
#define FBUTTON (A2)
#define PTT (A3)
#define ANALOG_KEYER (A6)
#define ANALOG_SPARE (A7)
#define ANALOG_SMETER (A7) //by KD8CEC
/**
* The second set of 16 pins on the Raduino's bottom connector are have the three clock outputs and the digital lines to control the rig.
* This assignment is as follows :
* Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
* GND +5V CLK0 GND GND CLK1 GND GND CLK2 GND D2 D3 D4 D5 D6 D7
* These too are flexible with what you may do with them, for the Raduino, we use them to :
* - TX_RX line : Switches between Transmit and Receive after sensing the PTT or the morse keyer
* - CW_KEY line : turns on the carrier for CW
*/
#define TX_RX (7) //Relay
#define CW_TONE (6)
#define TX_LPF_A (5) //Relay
#define TX_LPF_B (4) //Relay
#define TX_LPF_C (3) //Relay
#define CW_KEY (2)
//==============================================================================
// for public, Variable, functions
//==============================================================================
#define WSPR_BAND_COUNT 3
#define TX_SSB 0
#define TX_CW 1
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
//0x00 : None, 0x01 : MODE, 0x02:BAND+, 0x03:BAND-, 0x04:TUNE_STEP, 0x05:VFO Toggle, 0x06:SplitOn/Off, 0x07:TX/ON-OFF, 0x08:SDR Mode On / Off, 0x09:Rit Toggle
#define FUNCTION_KEY_ADC 80 //MODE, BAND(-), BAND(+), STEP
#define FKEY_PRESS 0x78
#define FKEY_MODE 0x01
#define FKEY_BANDUP 0x02
#define FKEY_BANDDOWN 0x03
#define FKEY_STEP 0x04
#define FKEY_VFOCHANGE 0x05
#define FKEY_SPLIT 0x06
#define FKEY_TXOFF 0x07
#define FKEY_SDRMODE 0x08
#define FKEY_RIT 0x09
#define FKEY_ENTER 0x0A
#define FKEY_POINT 0x0B
#define FKEY_DELETE 0x0C
#define FKEY_CANCEL 0x0D
#define FKEY_NUM0 0x10
#define FKEY_NUM1 0x11
#define FKEY_NUM2 0x12
#define FKEY_NUM3 0x13
#define FKEY_NUM4 0x14
#define FKEY_NUM5 0x15
#define FKEY_NUM6 0x16
#define FKEY_NUM7 0x17
#define FKEY_NUM8 0x18
#define FKEY_NUM9 0x19
#define FKEY_TYPE_MAX 0x1F
extern unsigned long frequency;
extern byte WsprMSGCount;
extern byte sMeterLevels[9];
extern int currentSMeter; //ADC Value for S.Meter
extern byte scaledSMeter; //Calculated S.Meter Level
extern byte KeyValues[16][3]; //Set : Start Value, End Value, Key Type, 16 Set (3 * 16 = 48)
extern void printLine1(const char *c);
extern void printLine2(const char *c);
extern void printLineF(char linenmbr, const __FlashStringHelper *c);
extern void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetType);
extern byte delay_background(unsigned delayTime, byte fromType);
extern int btnDown(void);
extern char c[30];
extern char b[30];
extern int enc_read(void);
extern void si5351bx_init(void);
extern void si5351bx_setfreq(uint8_t clknum, uint32_t fout);
extern void si5351_set_calibration(int32_t cal);
extern void initOscillators(void);
extern void Set_WSPR_Param(void);
extern void TXSubFreq(unsigned long P2);
extern void startTx(byte txMode, byte isDisplayUpdate);
extern void stopTx(void);
extern void setTXFilters(unsigned long freq);
extern void SendWSPRManage(void);
extern char byteToChar(byte srcByte);
extern void DisplayCallsign(byte callSignLength);
extern void DisplayVersionInfo(const char* fwVersionInfo);
#endif //end of if header define

File diff suppressed because it is too large Load Diff

View File

@@ -1,134 +0,0 @@
/*************************************************************************
header file for EEProm Address Map by KD8CEC
It must be protected to protect the factory calibrated calibration.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifndef _UBITX_EEPOM_HEADER__
#define _UBITX_EEPOM_HEADER__
//==============================================================================
// Factory-shipped EEProm address
// (factory Firmware)
// Address : 0 ~ 31
//==============================================================================
#define MASTER_CAL 0
#define LSB_CAL 4
#define USB_CAL 8
#define SIDE_TONE 12
//these are ids of the vfos as well as their offset into the eeprom storage, don't change these 'magic' values
#define VFO_A 16
#define VFO_B 20
#define CW_SIDETONE 24
#define CW_SPEED 28
//==============================================================================
// The spare space available in the original firmware #1
// Address : 32 ~ 63
//==============================================================================
#define RESERVE_FOR_FACTORY1 32
//==============================================================================
// The spare space available in the original firmware #2
// (Enabled if the EEProm address is insufficient)
// Address : 64 ~ 100
//==============================================================================
#define RESERVE_FOR_FACTORY2 64 //use Factory backup from Version 1.075
#define FACTORY_BACKUP_YN 64 //Check Backup //Magic : 0x13
#define FACTORY_VALUES 65 //65 ~ 65 + 32
//==============================================================================
// KD8CEC EEPROM MAP
// Address : 101 ~ 1023
// 256 is the base address
// 256 ~ 1023 (EEProm Section #1)
// 255 ~ 101 (EEProm Section #2)
//==============================================================================
//0x00 : None, 0x01 : MODE, 0x02:BAND+, 0x03:BAND-, 0x04:TUNE_STEP, 0x05:VFO Toggle, 0x06:SplitOn/Off, 0x07:TX/ON-OFF, 0x08:SDR Mode On / Off, 0x09:Rit Toggle
#define EXTENDED_KEY_RANGE 140 //Extended Key => Set : Start Value, End Value, Key Type, 16 Set (3 * 16 = 48)
#define I2C_LCD_MASTER 190
#define I2C_LCD_SECOND 191
#define S_METER_LEVELS 230 //LEVEL0 ~ LEVEL7
#define ADVANCED_FREQ_OPTION1 240 //Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency
#define IF1_CAL 241
#define ENABLE_SDR 242
#define SDR_FREQUNCY 243
#define CW_CAL 252
#define VFO_A_MODE 256
#define VFO_B_MODE 257
#define CW_DELAY 258
#define CW_START 259
#define HAM_BAND_COUNT 260 //
#define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) //1STEP :
//for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
#define CW_ADC_ST_FROM 349 //CW ADC Range STRAIGHT KEY from (Lower 8 bit)
#define CW_ADC_ST_TO 350 //CW ADC Range STRAIGHT KEY to (Lower 8 bit)
#define CW_ADC_DOT_FROM 351 //CW ADC Range DOT from (Lower 8 bit)
#define CW_ADC_DOT_TO 352 //CW ADC Range DOT to (Lower 8 bit)
#define CW_ADC_MOST_BIT2 353 //most 2bits of BOTH_TO, BOTH_FROM, DASH_TO, DASH_FROM
#define CW_ADC_DASH_FROM 354 //CW ADC Range DASH from (Lower 8 bit)
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
#define CW_KEY_TYPE 358
#define CW_DISPLAY_SHIFT 359 //Transmits on CWL, CWU Mode, LCD Frequency shifts Sidetone Frequency.
//(7:Enable / Disable //0: enable, 1:disable, (default is applied shift)
//6 : 0 : Adjust Pulus, 1 : Adjust Minus
//0~5: Adjust Value : * 10 = Adjust Value (0~300)
#define COMMON_OPTION0 360 //0: Confirm : CW Frequency Shift
//1 : IF Shift Save
#define IF_SHIFTVALUE 363
#define DISPLAY_OPTION1 361 //Display Option1
#define DISPLAY_OPTION2 362 //Display Option2
#define WSPR_COUNT 443 //WSPR_MESSAGE_COUNT
#define WSPR_MESSAGE1 444 //
#define WSPR_MESSAGE2 490 //
#define WSPR_MESSAGE3 536 //
#define WSPR_MESSAGE4 582 //
#define CHANNEL_FREQ 630 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define CHANNEL_DESC 710 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define RESERVE3 770 //Reserve3 between Channel and Firmware id check
//Check Firmware type and version
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
#define VERSION_ADDRESS 779 //check Firmware version
//USER INFORMATION
#define USER_CALLSIGN_KEY 780 //0x59
#define USER_CALLSIGN_LEN 781 //1BYTE (OPTION + LENGTH) + CALLSIGN (MAXIMUM 18)
#define USER_CALLSIGN_DAT 782 //CALL SIGN DATA //direct EEPROM to LCD basic offset
//AUTO KEY STRUCTURE
//AUTO KEY USE 800 ~ 1023
#define CW_AUTO_MAGIC_KEY 800 //0x73
#define CW_AUTO_COUNT 801 //0 ~ 255
#define CW_AUTO_DATA 803 //[INDEX, INDEX, INDEX,DATA,DATA, DATA (Positon offset is CW_AUTO_DATA
#define CW_DATA_OFSTADJ CW_AUTO_DATA - USER_CALLSIGN_DAT //offset adjust for ditect eeprom to lcd (basic offset is USER_CALLSIGN_DAT
#define CW_STATION_LEN 1023 //value range : 4 ~ 30
#endif //end of if header define

View File

@@ -14,7 +14,6 @@ void btnWaitForClick(){
void factory_alignment(){
factoryCalibration(1);
line2DisplayStatus = 1;
if (calibration == 0){
printLine2("Setup Aborted");
@@ -37,7 +36,6 @@ void factory_alignment(){
printLine2("#3:Test 3.5MHz");
cwMode = 0;
isUSB = false;
setFrequency(3500000l);
updateDisplay();
@@ -60,7 +58,6 @@ void factory_alignment(){
btnWaitForClick();
printLine2("#5:Test 14MHz");
cwMode = 0;
isUSB = true;
setFrequency(14000000l);
updateDisplay();
@@ -82,7 +79,6 @@ void factory_alignment(){
printLine2("Alignment done");
delay(1000);
cwMode = 0;
isUSB = false;
setFrequency(7150000l);
updateDisplay();

View File

@@ -1,9 +1,8 @@
/**
CW Keyer
CW Key logic change with ron's code (ubitx_keyer.cpp)
Ron's logic has been modified to work with the original uBITX by KD8CEC
Original Comment ----------------------------------------------------------------------------
* CW Keyer
* CW Key logic change with ron's code (ubitx_keyer.cpp) <=== **********************************
* The file you are working on. The code only applies and is still in testing. <==== ***********
*
* The CW keyer handles either a straight key or an iambic / paddle key.
* They all use just one analog input line. This is how it works.
* The analog line has the internal pull-up resistor enabled.
@@ -83,187 +82,204 @@ void cwKeyUp(){
cwTimeout = millis() + cwDelayTime * 10;
}
//Variables for Ron's new logic
/*****************************************************************************
// New logic, by RON
// modified by KD8CEC
******************************************************************************/
#define DIT_L 0x01 // DIT latch
#define DAH_L 0x02 // DAH latch
#define DIT_PROC 0x04 // DIT is being processed
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
static unsigned long ktimer;
static long ktimer;
bool Iambic_Key = true;
unsigned char keyerControl = IAMBICB;
unsigned char keyerState = IDLE;
//Below is a test to reduce the keying error. do not delete lines
//Below is a test to reduce the keying error.
/*
char update_PaddleLatch(byte isUpdateKeyState) {
int paddle = analogRead(ANALOG_KEYER);
unsigned char tmpKeyerControl;
if (paddle > 800) // above 4v is up
tmpKeyerControl = 0;
//else if (paddle > 600) // 4-3v is DASH
else if (paddle > 693 && paddle < 700) // 4-3v is DASH
tmpKeyerControl |= DAH_L;
//else if (paddle > 300) //1-2v is DOT
else if (paddle > 323 && paddle < 328) //1-2v is DOT
tmpKeyerControl |= DIT_L;
//else if (paddle > 50)
else if (paddle > 280 && paddle < 290)
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
else
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
if (isUpdateKeyState == 1) {
keyerControl |= tmpKeyerControl;
}
byte buff[17];
sprintf(buff, "Key : %d", paddle);
if (tmpKeyerControl > 0)
printLine2(buff);
return tmpKeyerControl;
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
}
*/
//create by KD8CEC for compatible with new CW Logic
char update_PaddleLatch(byte isUpdateKeyState) {
unsigned char tmpKeyerControl = 0;
int paddle = analogRead(ANALOG_KEYER);
unsigned char tmpKeyerControl;
if (paddle >= cwAdcDashFrom && paddle <= cwAdcDashTo)
if (paddle > 800) // above 4v is up
tmpKeyerControl = 0;
else if (paddle > 600) // 4-3v is DASH
tmpKeyerControl |= DAH_L;
else if (paddle >= cwAdcDotFrom && paddle <= cwAdcDotTo)
else if (paddle > 300) //1-2v is DOT
tmpKeyerControl |= DIT_L;
else if (paddle >= cwAdcBothFrom && paddle <= cwAdcBothTo)
tmpKeyerControl |= (DAH_L | DIT_L) ;
else
{
if (Iambic_Key)
tmpKeyerControl = 0 ;
else if (paddle >= cwAdcSTFrom && paddle <= cwAdcSTTo)
tmpKeyerControl = DIT_L ;
else
tmpKeyerControl = 0 ;
}
else if (paddle > 50)
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
else
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
if (isUpdateKeyState == 1)
if (isUpdateKeyState == 1) {
keyerControl |= tmpKeyerControl;
}
return tmpKeyerControl;
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
}
/*****************************************************************************
// New logic, by RON
// modified by KD8CEC
******************************************************************************/
void cwKeyer(void){
byte paddle;
lastPaddle = 0;
int dot,dash;
bool continue_loop = true;
unsigned tmpKeyControl = 0;
if( Iambic_Key ) {
while(continue_loop) {
switch (keyerState) {
case IDLE:
tmpKeyControl = update_PaddleLatch(0);
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
update_PaddleLatch(1);
keyerState = CHK_DIT;
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
stopTx();
}
continue_loop = false;
}
break;
case CHK_DIT:
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = cwSpeed;
keyerState = KEYED_PREP;
}else{
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
ktimer = cwSpeed*3;
keyerState = KEYED_PREP;
}else{
keyerState = IDLE;
}
break;
case KEYED_PREP:
//modified KD8CEC
/*
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
*/
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
cwKeydown();
break;
case KEYED:
if (millis() > ktimer) { // are we at end of key down ?
cwKeyUp();
ktimer = millis() + cwSpeed; // inter-element time
keyerState = INTER_ELEMENT; // next state
}else if (keyerControl & IAMBICB) {
update_PaddleLatch(1); // early paddle latch in Iambic B mode
}
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(1); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
}else{
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
}
break;
}
Check_Cat(2);
} //end of while
}
else{
while(1){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
cwKeydown();
while ( update_PaddleLatch(0) == DIT_L )
delay_background(1, 3);
cwKeyUp();
}
else{
if( Iambic_Key ){
while(continue_loop){
switch (keyerState) {
case IDLE:
tmpKeyControl = update_PaddleLatch(0);
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
//DIT or DASH or current state DIT & DASH
//(analogRead(ANALOG_DOT) < 600) || //DIT
//(analogRead(ANALOG_DASH) < 600) || //DIT
// (keyerControl & 0x03)) {
update_PaddleLatch(1);
keyerState = CHK_DIT;
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
stopTx();
}
//if (!cwTimeout) //removed by KD8CEC
// return;
// got back to the beginning of the loop, if no further activity happens on straight key
// we will time out, and return out of this routine
//delay(5);
//delay_background(5, 3); //removed by KD8CEC
//continue; //removed by KD8CEC
return; //Tx stop control by Main Loop
continue_loop = false;
}
break;
Check_Cat(2);
} //end of while
} //end of elese
case CHK_DIT:
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = cwSpeed;
keyerState = KEYED_PREP;
}else{
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
ktimer = cwSpeed*3;
keyerState = KEYED_PREP;
}else{
keyerState = IDLE;
}
break;
case KEYED_PREP:
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 0);
}
cwKeydown();
break;
case KEYED:
if (millis() > ktimer) { // are we at end of key down ?
cwKeyUp();
ktimer = millis() + cwSpeed; // inter-element time
keyerState = INTER_ELEMENT; // next state
}else if (keyerControl & IAMBICB) {
update_PaddleLatch(1); // early paddle latch in Iambic B mode
}
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(1); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
}else{
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
}
break;
}
} //end of while
}else{
while(1){
//if (analogRead(ANALOG_DOT) < 600){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 0);
}
// start the transmission)
cwKeydown();
//while ( analogRead(ANALOG_DOT) < 600 ) delay(1);
while ( update_PaddleLatch(0) == DIT_L ) delay(1);
cwKeyUp();
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
stopTx();
}
if (!cwTimeout)
return;
// got back to the beginning of the loop, if no further activity happens on straight key
// we will time out, and return out of this routine
delay(5);
continue;
}
} //end of else
}
}
//=======================================================================================

View File

@@ -1,64 +0,0 @@
/*************************************************************************
header file for LCD by KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifndef _UBITX_LCD_HEADER__
#define _UBITX_LCD_HEADER__
//Common Defines *********************************************************
#define LCD_CLEARDISPLAY 0x01
#define LCD_RETURNHOME 0x02
#define LCD_ENTRYMODESET 0x04
#define LCD_DISPLAYCONTROL 0x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET 0x20
#define LCD_SETCGRAMADDR 0x40
#define LCD_SETDDRAMADDR 0x80
// flags for display entry mode
#define LCD_ENTRYRIGHT 0x00
#define LCD_ENTRYLEFT 0x02
#define LCD_ENTRYSHIFTINCREMENT 0x01
#define LCD_ENTRYSHIFTDECREMENT 0x00
// flags for display on/off control
#define LCD_DISPLAYON 0x04
#define LCD_DISPLAYOFF 0x00
#define LCD_CURSORON 0x02
#define LCD_CURSOROFF 0x00
#define LCD_BLINKON 0x01
#define LCD_BLINKOFF 0x00
// flags for display/cursor shift
#define LCD_DISPLAYMOVE 0x08
#define LCD_CURSORMOVE 0x00
#define LCD_MOVERIGHT 0x04
#define LCD_MOVELEFT 0x00
// flags for function set
#define LCD_8BITMODE 0x10
#define LCD_4BITMODE 0x00
#define LCD_2LINE 0x08
#define LCD_1LINE 0x00
#define LCD_5x10DOTS 0x04
#define LCD_5x8DOTS 0x00
// flags for backlight control
#define LCD_BACKLIGHT 0x08
#define LCD_NOBACKLIGHT 0x00
#endif //end of if header define

View File

@@ -1,786 +0,0 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD1602 Parrel
1.This is the display code for the default LCD mounted in uBITX.
2.Some functions moved from uBITX_Ui.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#include "ubitx_lcd.h"
//========================================================================
//Begin of TinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602P
/*************************************************************************
LCD1602_TINY Library for 16 x 2 LCD
Referecnce Source : LiquidCrystal.cpp
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
**************************************************************************/
#define LCD_Command(x) (LCD_Send(x, LOW))
#define LCD_Write(x) (LCD_Send(x, HIGH))
#define UBITX_DISPLAY_LCD1602_BASE
//Define connected PIN
#define LCD_PIN_RS 8
#define LCD_PIN_EN 9
uint8_t LCD_PIN_DAT[4] = {10, 11, 12, 13};
void write4bits(uint8_t value)
{
for (int i = 0; i < 4; i++)
digitalWrite(LCD_PIN_DAT[i], (value >> i) & 0x01);
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(1);
digitalWrite(LCD_PIN_EN, HIGH);
delayMicroseconds(1); // enable pulse must be >450ns
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(100); // commands need > 37us to settle
}
void LCD_Send(uint8_t value, uint8_t mode)
{
digitalWrite(LCD_PIN_RS, mode);
write4bits(value>>4);
write4bits(value);
}
void LCD1602_Init()
{
pinMode(LCD_PIN_RS, OUTPUT);
pinMode(LCD_PIN_EN, OUTPUT);
for (int i = 0; i < 4; i++)
pinMode(LCD_PIN_DAT[i], OUTPUT);
delayMicroseconds(50);
// Now we pull both RS and R/W low to begin commands
digitalWrite(LCD_PIN_RS, LOW);
digitalWrite(LCD_PIN_EN, LOW);
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(2000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
}
#endif
//========================================================================
//End of TinyLCD Library by KD8CEC
//========================================================================
//========================================================================
//Begin of I2CTinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602I
#include <Wire.h>
/*************************************************************************
I2C Tiny LCD Library
Referecnce Source : LiquidCrystal_I2C.cpp // Based on the work by DFRobot
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal_I2C Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
Ian KD8CEC
**************************************************************************/
#define UBITX_DISPLAY_LCD1602_BASE
#define En B00000100 // Enable bit
#define Rw B00000010 // Read/Write bit
#define Rs B00000001 // Register select bit
#define LCD_Command(x) (LCD_Send(x, 0))
#define LCD_Write(x) (LCD_Send(x, Rs))
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _numlines;
uint8_t _cols;
uint8_t _rows;
uint8_t _backlightval;
#define printIIC(args) Wire.write(args)
void expanderWrite(uint8_t _data)
{
Wire.beginTransmission(_Addr);
printIIC((int)(_data) | _backlightval);
Wire.endTransmission();
}
void pulseEnable(uint8_t _data){
expanderWrite(_data | En); // En high
delayMicroseconds(1); // enable pulse must be >450ns
expanderWrite(_data & ~En); // En low
delayMicroseconds(50); // commands need > 37us to settle
}
void write4bits(uint8_t value)
{
expanderWrite(value);
pulseEnable(value);
}
void LCD_Send(uint8_t value, uint8_t mode)
{
uint8_t highnib=value&0xf0;
uint8_t lownib=(value<<4)&0xf0;
write4bits((highnib)|mode);
write4bits((lownib)|mode);
}
// Turn the (optional) backlight off/on
void noBacklight(void) {
_backlightval=LCD_NOBACKLIGHT;
expanderWrite(0);
}
void backlight(void) {
_backlightval=LCD_BACKLIGHT;
expanderWrite(0);
}
void LCD1602_Init()
{
//I2C Init
_Addr = I2C_LCD_MASTER_ADDRESS;
_cols = 16;
_rows = 2;
_backlightval = LCD_NOBACKLIGHT;
Wire.begin();
delay(50);
// Now we pull both RS and R/W low to begin commands
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
delay(1000);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
}
/*
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row * 0x40)); //0 : 0x00, 1 : 0x40, only for 16 x 2 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
*/
#endif
//========================================================================
//End of I2CTinyLCD Library by KD8CEC
//========================================================================
//========================================================================
// 16 X 02 LCD Routines
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602_BASE
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
#define OPTION_SKINNYBARS
char c[30], b[30];
char printBuff[2][17]; //mirrors what is showing on the two lines of the display
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row * 0x40)); //0 : 0x00, 1 : 0x40, only for 16 x 2 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
void LCD_Init(void)
{
LCD1602_Init();
initMeter(); //for Meter Display
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 16; i++) { // add white spaces until the end of the 16 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[17];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 17; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 16; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[17];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
//warning : unused parameter 'displayType' <-- ignore, this is reserve
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'M';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'M';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
if (isIFShift)
{
// if (isDirectCall == 1)
// for (int i = 0; i < 16; i++)
// line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
//if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step & Key Type display
{
//if (isDirectCall != 0)
// return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (sdrModeOn == 1)
{
line2Buffer[13] = 'S';
line2Buffer[14] = 'D';
line2Buffer[15] = 'R';
}
else if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue);
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
LCD_SetCursor(drawPosition, lineNumber);
LCD_Write(lcdMeter[0]);
LCD_Write(lcdMeter[1]);
LCD_Write(lcdMeter[2]);
}
}
char checkCount = 0;
char checkCountSMeter = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
}
//S-Meter Display
if (((displayOption1 & 0x08) == 0x08 && (sdrModeOn == 0)) && (++checkCountSMeter > SMeterLatency))
{
int newSMeter;
//VK2ETA S-Meter from MAX9814 TC pin / divide 4 by KD8CEC for reduce EEPromSize
newSMeter = analogRead(ANALOG_SMETER) / 4;
//Faster attack, Slower release
//currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10) / 4;
currentSMeter = newSMeter;
scaledSMeter = 0;
for (byte s = 8; s >= 1; s--) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
DisplayMeter(0, scaledSMeter, 13);
checkCountSMeter = 0; //Reset Latency time
} //end of S-Meter
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(byte textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(textIndex));
LCD_Write(':');
}
void DisplayCallsign(byte callSignLength)
{
printLineFromEEPRom(0, 0, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
//delay(500);
}
void DisplayVersionInfo(const __FlashStringHelper * fwVersionInfo)
{
printLineF(1, fwVersionInfo);
}
#endif

View File

@@ -1,724 +0,0 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD1602 Dual LCD
1.This is the display code for the 16x02 Dual LCD
2.Some functions moved from uBITX_Ui.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#include "ubitx_lcd.h"
//========================================================================
//Begin of I2CTinyLCD Library for Dual LCD by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602I_DUAL
#include <Wire.h>
/*************************************************************************
I2C Tiny LCD Library
Referecnce Source : LiquidCrystal_I2C.cpp // Based on the work by DFRobot
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal_I2C Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
Ian KD8CEC
**************************************************************************/
#define UBITX_DISPLAY_LCD1602_BASE
#define En B00000100 // Enable bit
#define Rw B00000010 // Read/Write bit
#define Rs B00000001 // Register select bit
#define LCD_Command(x) (LCD_Send(x, 0))
#define LCD_Write(x) (LCD_Send(x, Rs))
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _numlines;
uint8_t _cols;
uint8_t _rows;
uint8_t _backlightval;
#define printIIC(args) Wire.write(args)
void expanderWrite(uint8_t _data)
{
Wire.beginTransmission(_Addr);
printIIC((int)(_data) | _backlightval);
Wire.endTransmission();
}
void pulseEnable(uint8_t _data){
expanderWrite(_data | En); // En high
delayMicroseconds(1); // enable pulse must be >450ns
expanderWrite(_data & ~En); // En low
delayMicroseconds(50); // commands need > 37us to settle
}
void write4bits(uint8_t value)
{
expanderWrite(value);
pulseEnable(value);
}
void LCD_Send(uint8_t value, uint8_t mode)
{
uint8_t highnib=value&0xf0;
uint8_t lownib=(value<<4)&0xf0;
write4bits((highnib)|mode);
write4bits((lownib)|mode);
}
// Turn the (optional) backlight off/on
void noBacklight(void) {
_backlightval=LCD_NOBACKLIGHT;
expanderWrite(0);
}
void backlight(void) {
_backlightval=LCD_BACKLIGHT;
expanderWrite(0);
}
void LCD1602_Dual_Init()
{
//I2C Init
_cols = 16;
_rows = 2;
_backlightval = LCD_NOBACKLIGHT;
Wire.begin();
delay(50);
// Now we pull both RS and R/W low to begin commands
_Addr = I2C_LCD_MASTER_ADDRESS;
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
_Addr = I2C_LCD_SECOND_ADDRESS;
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
delay(1000);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
_Addr = I2C_LCD_MASTER_ADDRESS;
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
_Addr = I2C_LCD_SECOND_ADDRESS;
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
//Change to Default LCD (Master)
_Addr = I2C_LCD_MASTER_ADDRESS;
}
//========================================================================
// 16 X 02 LCD Routines
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
const int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row_offsets[row])); //0 : 0x00, 1 : 0x40, only for 20 x 4 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
//#define OPTION_SKINNYBARS
char c[30], b[30];
char printBuff[4][20]; //mirrors what is showing on the two lines of the display
void LCD_Init(void)
{
LCD1602_Dual_Init();
_Addr = I2C_LCD_SECOND_ADDRESS;
initMeter(); //for Meter Display //when dual LCD, S.Meter on second LCD
_Addr = I2C_LCD_MASTER_ADDRESS;
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 20; i++) { // add white spaces until the end of the 20 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[21];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 21; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 20
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 20; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
// i also Very TNX Purdum for good source code
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[20];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
//warning : unused parameter 'displayType' <-- ignore, this is reserve
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
memset(&line2Buffer[10], ' ', 10);
if (isIFShift)
{
line2Buffer[6] = 'M';
line2Buffer[7] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
for (int i = 12; i < 17; i++)
{
if (line2Buffer[i] == 0)
line2Buffer[i] = ' ';
}
} // end of display IF
else // step & Key Type display
{
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 13; i >= 11 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[14] = 'H';
line2Buffer[15] = 'z';
}
}
//line2Buffer[17] = ' ';
/* ianlee
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[18] = 'S';
line2Buffer[19] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'A';
}
else
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'B';
}
*/
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue);
LCD_SetCursor(drawPosition, 0);
LCD_Write('S');
LCD_Write(':');
for (int i = 0; i < 7; i++)
LCD_Write(lcdMeter[i]);
}
}
char checkCount = 0;
char checkCountSMeter = 0;
char beforeKeyType = -1;
char displaySDRON = 0;
//execute interval : 0.25sec
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
//check change CW Key Type
if (beforeKeyType != cwKeyType)
{
_Addr = I2C_LCD_SECOND_ADDRESS;
LCD_SetCursor(10, 0);
LCD_Write('K');
LCD_Write('E');
LCD_Write('Y');
LCD_Write(':');
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
LCD_Write('S');
LCD_Write('T');
}
else if (cwKeyType == 1)
{
LCD_Write('I');
LCD_Write('A');
}
else
{
LCD_Write('I');
LCD_Write('B');
}
beforeKeyType = cwKeyType;
_Addr = I2C_LCD_MASTER_ADDRESS;
} //Display Second Screen
}
}
//EX for Meters
//S-Meter Display
_Addr = I2C_LCD_SECOND_ADDRESS;
if (sdrModeOn == 1)
{
if (displaySDRON == 0) //once display
{
displaySDRON = 1;
LCD_SetCursor(0, 0);
LCD_Write('S');
LCD_Write('D');
LCD_Write('R');
LCD_Write(' ');
LCD_Write('M');
LCD_Write('O');
LCD_Write('D');
LCD_Write('E');
}
}
else if (((displayOption1 & 0x08) == 0x08) && (++checkCountSMeter > 3))
{
int newSMeter;
displaySDRON = 0;
//VK2ETA S-Meter from MAX9814 TC pin / divide 4 by KD8CEC for reduce EEPromSize
newSMeter = analogRead(ANALOG_SMETER) / 4;
//Faster attack, Slower release
//currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10);
//currentSMeter = (currentSMeter * 3 + newSMeter * 7) / 10; //remarked becaused of have already Latency time
currentSMeter = newSMeter;
scaledSMeter = 0;
for (byte s = 8; s >= 1; s--) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
DisplayMeter(0, scaledSMeter, 0);
checkCountSMeter = 0;
} //end of S-Meter
_Addr = I2C_LCD_MASTER_ADDRESS;
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(byte textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(textIndex));
LCD_Write(':');
}
void DisplayCallsign(byte callSignLength)
{
_Addr = I2C_LCD_SECOND_ADDRESS;
printLineFromEEPRom(1, 16 - userCallsignLength, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
_Addr = I2C_LCD_MASTER_ADDRESS;
}
void DisplayVersionInfo(const __FlashStringHelper * fwVersionInfo)
{
_Addr = I2C_LCD_SECOND_ADDRESS;
printLineF(1, fwVersionInfo);
_Addr = I2C_LCD_MASTER_ADDRESS;
}
#endif

View File

@@ -1,739 +0,0 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD2004 Parrel & I2C
1.This is the display code for the 20x04 LCD
2.Some functions moved from uBITX_Ui.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#include "ubitx_lcd.h"
//========================================================================
//Begin of TinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD2004P
/*************************************************************************
LCD2004TINY Library for 20 x 4 LCD
Referecnce Source : LiquidCrystal.cpp
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
**************************************************************************/
#define LCD_Command(x) (LCD_Send(x, LOW))
#define LCD_Write(x) (LCD_Send(x, HIGH))
#define UBITX_DISPLAY_LCD2004_BASE
//Define connected PIN
#define LCD_PIN_RS 8
#define LCD_PIN_EN 9
uint8_t LCD_PIN_DAT[4] = {10, 11, 12, 13};
void write4bits(uint8_t value)
{
for (int i = 0; i < 4; i++)
digitalWrite(LCD_PIN_DAT[i], (value >> i) & 0x01);
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(1);
digitalWrite(LCD_PIN_EN, HIGH);
delayMicroseconds(1); // enable pulse must be >450ns
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(100); // commands need > 37us to settle
}
void LCD_Send(uint8_t value, uint8_t mode)
{
digitalWrite(LCD_PIN_RS, mode);
write4bits(value>>4);
write4bits(value);
}
void LCD2004_Init()
{
pinMode(LCD_PIN_RS, OUTPUT);
pinMode(LCD_PIN_EN, OUTPUT);
for (int i = 0; i < 4; i++)
pinMode(LCD_PIN_DAT[i], OUTPUT);
delayMicroseconds(50);
// Now we pull both RS and R/W low to begin commands
digitalWrite(LCD_PIN_RS, LOW);
digitalWrite(LCD_PIN_EN, LOW);
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(2000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
}
#endif
//========================================================================
//End of TinyLCD Library by KD8CEC
//========================================================================
//========================================================================
//Begin of I2CTinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD2004I
#include <Wire.h>
/*************************************************************************
I2C Tiny LCD Library
Referecnce Source : LiquidCrystal_I2C.cpp // Based on the work by DFRobot
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal_I2C Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
Ian KD8CEC
**************************************************************************/
#define UBITX_DISPLAY_LCD2004_BASE
#define En B00000100 // Enable bit
#define Rw B00000010 // Read/Write bit
#define Rs B00000001 // Register select bit
#define LCD_Command(x) (LCD_Send(x, 0))
#define LCD_Write(x) (LCD_Send(x, Rs))
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _numlines;
uint8_t _cols;
uint8_t _rows;
uint8_t _backlightval;
#define printIIC(args) Wire.write(args)
void expanderWrite(uint8_t _data)
{
Wire.beginTransmission(_Addr);
printIIC((int)(_data) | _backlightval);
Wire.endTransmission();
}
void pulseEnable(uint8_t _data){
expanderWrite(_data | En); // En high
delayMicroseconds(1); // enable pulse must be >450ns
expanderWrite(_data & ~En); // En low
delayMicroseconds(50); // commands need > 37us to settle
}
void write4bits(uint8_t value)
{
expanderWrite(value);
pulseEnable(value);
}
void LCD_Send(uint8_t value, uint8_t mode)
{
uint8_t highnib=value&0xf0;
uint8_t lownib=(value<<4)&0xf0;
write4bits((highnib)|mode);
write4bits((lownib)|mode);
}
// Turn the (optional) backlight off/on
void noBacklight(void) {
_backlightval=LCD_NOBACKLIGHT;
expanderWrite(0);
}
void backlight(void) {
_backlightval=LCD_BACKLIGHT;
expanderWrite(0);
}
void LCD2004_Init()
{
//I2C Init
_Addr = I2C_LCD_MASTER_ADDRESS;
_cols = 20;
_rows = 4;
_backlightval = LCD_NOBACKLIGHT;
Wire.begin();
delay(50);
// Now we pull both RS and R/W low to begin commands
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
delay(1000);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
}
#endif
//========================================================================
//End of I2CTinyLCD Library by KD8CEC
//========================================================================
//========================================================================
// 20 X 04 LCD Routines
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
#ifdef UBITX_DISPLAY_LCD2004_BASE
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
const int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row_offsets[row])); //0 : 0x00, 1 : 0x40, only for 20 x 4 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
//#define OPTION_SKINNYBARS
char c[30], b[30];
char printBuff[4][21]; //mirrors what is showing on the two lines of the display
void LCD_Init(void)
{
LCD2004_Init();
initMeter(); //for Meter Display
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 20; i++) { // add white spaces until the end of the 20 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[21];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 21; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 20
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 20; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
// i also Very TNX Purdum for good source code
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
if (sdrModeOn)
strcat(c, " SDR");
else
strcat(c, " SPK");
//remarked by KD8CEC
//already RX/TX status display, and over index (20 x 4 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[20];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
//warning : unused parameter 'displayType' <-- ignore, this is reserve
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
memset(&line2Buffer[10], ' ', 10);
if (isIFShift)
{
line2Buffer[6] = 'M';
line2Buffer[7] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
for (int i = 12; i < 17; i++)
{
if (line2Buffer[i] == 0)
line2Buffer[i] = ' ';
}
} // end of display IF
else // step & Key Type display
{
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 14; i >= 12 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[15] = 'H';
line2Buffer[16] = 'z';
}
}
line2Buffer[17] = ' ';
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[18] = 'S';
line2Buffer[19] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'A';
}
else
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'B';
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue);
LCD_SetCursor(drawPosition, 2);
LCD_Write('S');
LCD_Write(':');
for (int i = 0; i < 7; i++) //meter 5 + +db 1 = 6
LCD_Write(lcdMeter[i]);
}
}
char checkCount = 0;
char checkCountSMeter = 0;
//execute interval : 0.25sec
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 0);
if (testValue > 30)
testValue = 0;
*/
//Sample
//DisplayMeter(0, analogRead(ANALOG_SMETER) / 30, 0);
//DisplayMeter(0, analogRead(ANALOG_SMETER) / 10, 0);
//delay_background(10, 0);
//DisplayMeter(0, analogRead(ANALOG_SMETER), 0);
//if (testValue > 30)
// testValue = 0;
//S-Meter Display
if (((displayOption1 & 0x08) == 0x08 && (sdrModeOn == 0)) && (++checkCountSMeter > SMeterLatency))
{
int newSMeter;
//VK2ETA S-Meter from MAX9814 TC pin
newSMeter = analogRead(ANALOG_SMETER) / 4;
//Faster attack, Slower release
//currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10);
//currentSMeter = ((currentSMeter * 7 + newSMeter * 3) + 5) / 10;
currentSMeter = newSMeter;
scaledSMeter = 0;
for (byte s = 8; s >= 1; s--) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
DisplayMeter(0, scaledSMeter, 0);
checkCountSMeter = 0; //Reset Latency time
} //end of S-Meter
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(byte textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(textIndex));
LCD_Write(':');
}
void DisplayCallsign(byte callSignLength)
{
printLineFromEEPRom(3, 20 - userCallsignLength, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
}
void DisplayVersionInfo(const __FlashStringHelper * fwVersionInfo)
{
printLineF(3, fwVersionInfo);
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,20 +1,5 @@
/************************************************************************************
* KD8CEC
* kd8cec@gmail.com http://www.hamskey.com
*
* Merge two SI5351 Librarys
* KE7ER's fixed vco and variable Clocks Configure values
* G3ZIL's fixed Clock Configure Value and variable VCO
* * I have combined the two libraries above. All licenses follow the above library.
*
* PLL-A is generated by fixing 850Mhz clock. All output clocks use PLL-A to
* generate the frequency. This is the method used in QRP radios such as uBITX.
* When switching to WSPR transmission mode, PLL-B operates for the base frequency to transmit WSPR.
* The output clock channel that controls the frequency is connected to the PLL-B.
* The WSPR protocol is generated by changing the clock of the PLL-B.
************************************************************************************/
// ************* SI5315 routines - tks Jerry Gaffke, KE7ER ***********************
// An minimalist standalone set of Si5351 routines.
// VCOA is fixed at 875mhz, VCOB not used.
// The output msynth dividers are used to generate 3 independent clocks
@@ -75,7 +60,6 @@ void i2cWriten(uint8_t reg, uint8_t *vals, uint8_t vcnt) { // write array
Wire.endTransmission();
}
uint8_t si5351Val[8] = {0, 1, 0, 0, 0, 0, 0, 0}; //for reduce program memory size
void si5351bx_init() { // Call once at power-up, start PLLA
uint32_t msxp1;
@@ -84,13 +68,11 @@ void si5351bx_init() { // Call once at power-up, start PLLA
i2cWrite(3, si5351bx_clken); // Disable all CLK output drivers
i2cWrite(183, SI5351BX_XTALPF << 6); // Set 25mhz crystal load capacitance
msxp1 = 128 * SI5351BX_MSA - 512; // and msxp2=0, msxp3=1, not fractional
//uint8_t vals[8] = {0, 1, BB2(msxp1), BB1(msxp1), BB0(msxp1), 0, 0, 0};
si5351Val[2] = BB2(msxp1);
si5351Val[3] = BB1(msxp1);
si5351Val[4] = BB0(msxp1);
i2cWriten(26, si5351Val, 8); // Write to 8 PLLA msynth regs
uint8_t vals[8] = {0, 1, BB2(msxp1), BB1(msxp1), BB0(msxp1), 0, 0, 0};
i2cWriten(26, vals, 8); // Write to 8 PLLA msynth regs
i2cWrite(177, 0x20); // Reset PLLA (0x80 resets PLLB)
// for (reg=16; reg<=23; reg++) i2cWrite(reg, 0x80); // Powerdown CLK's
// i2cWrite(187, 0); // No fannout of clkin, xtal, ms0, ms4
}
void si5351bx_setfreq(uint8_t clknum, uint32_t fout) { // Set a CLK to fout Hz
@@ -123,50 +105,11 @@ void si5351_set_calibration(int32_t cal){
si5351bx_setfreq(0, usbCarrier);
}
void SetCarrierFreq()
{
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
//si5351bx_setfreq(0, (sdrModeOn ? 0 : appliedCarrier));
si5351bx_setfreq(0, ((sdrModeOn && (inTx == 0)) ? 0 : appliedCarrier)); //found bug by KG4GEK
/*
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0));
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0));
*/
}
void initOscillators(){
//initialize the SI5351
si5351bx_init();
si5351bx_vcoa = (SI5351BX_XTAL * SI5351BX_MSA) + calibration; // apply the calibration correction factor
SetCarrierFreq();
}
//============================================================
// ADD FUNCTIONS by KD8CEC
//============================================================
uint8_t Wspr_Reg1[8] = {0xFF,0xFE, 0x00, 0, 0, 0, 0, 0}; //3, 4, 5, 6, 7
uint8_t Wspr_Reg2[8] = {0, 1, 0, 0, 0, 0, 0, 0}; //2, 3, 4
void Set_WSPR_Param(void)
{
i2cWrite(18, 128);
i2cWriten(34, Wspr_Reg1, 8);
i2cWriten(58, Wspr_Reg2, 8);
i2cWrite(177, 128);
i2cWrite(18, 111);
si5351bx_clken &= ~(1 << 2);
i2cWrite(3, si5351bx_clken);
}
void TXSubFreq(unsigned long P2)
{
i2cWrite(40, (P2 & 65280) >> 8);
i2cWrite(41, P2 & 255);
si5351bx_setfreq(0, usbCarrier);
}

View File

@@ -5,47 +5,37 @@
* of the radio. Occasionally, it is used to provide a two-line information that is
* quickly cleared up.
*/
//#define printLineF1(x) (printLineF(1, x))
//#define printLineF2(x) (printLineF(0, x))
//returns true if the button is pressed
int btnDown(){
if (digitalRead(FBUTTON) == HIGH)
return 0;
else
return 1;
}
/*
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100 , //custom 3
B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110 , //custom 4
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
/**
* Meter (not used in this build for anything)
* the meter is drawn using special characters. Each character is composed of 5 x 8 matrix.
* The s_meter array holds the definition of the these characters.
* each line of the array is is one character such that 5 bits of every byte
* makes up one line of pixels of the that character (only 5 bits are used)
* The current reading of the meter is assembled in the string called meter
*/
//char meter[17];
const PROGMEM uint8_t s_meter_bitmap[] = {
B00000,B00000,B00000,B00000,B00000,B00100,B00100,B11011,
B10000,B10000,B10000,B10000,B10100,B10100,B10100,B11011,
B01000,B01000,B01000,B01000,B01100,B01100,B01100,B11011,
B00100,B00100,B00100,B00100,B00100,B00100,B00100,B11011,
B00010,B00010,B00010,B00010,B00110,B00110,B00110,B11011,
B00001,B00001,B00001,B00001,B00101,B00101,B00101,B11011
};
*/
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
#ifdef OPTION_SKINNYBARS //We want skninny bars with more text
//VK2ETA modded "Skinny" bitmaps
const PROGMEM uint8_t meters_bitmap[] = {
// B01110, B10001, B10001, B11111, B11011, B11011, B11111, B00000, //Padlock Symbol, for merging. Not working, see below
B00000, B00000, B00000, B00000, B00000, B00000, B00000, B10000, //shortest bar
B00000, B00000, B00000, B00000, B00000, B00000, B00100, B10100,
B00000, B00000, B00000, B00000, B00000, B00001, B00101, B10101,
B00000, B00000, B00000, B00000, B10000, B10000, B10000, B10000,
B00000, B00000, B00000, B00100, B10100, B10100, B10100, B10100,
B00000, B00000, B00001, B00101, B10101, B10101, B10101, B10101, //tallest bar
B00000, B00010, B00111, B00010, B01000, B11100, B01000, B00000, // ++ sign
};
#else
//VK2ETA "Fat" bars, easy to read, with less text
const PROGMEM uint8_t meters_bitmap[] = {
// B01110, B10001, B10001, B11111, B11011, B11011, B11111, B00000, //Padlock Symbol, for merging. Not working, see below
B00000, B00000, B00000, B00000, B00000, B00000, B00000, B11111, //shortest bar
B00000, B00000, B00000, B00000, B00000, B00000, B11111, B11111,
B00000, B00000, B00000, B00000, B00000, B11111, B11111, B11111,
B00000, B00000, B00000, B00000, B11111, B11111, B11111, B11111,
B00000, B00000, B00000, B11111, B11111, B11111, B11111, B11111,
B00000, B00000, B11111, B11111, B11111, B11111, B11111, B11111, //tallest bar
B00000, B00010, B00111, B00010, B01000, B11100, B01000, B00000, // ++ sign
};
#endif //OPTION_SKINNYBARS
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
PGM_P ps_meter_bitmap = reinterpret_cast<PGM_P>(s_meter_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = {
0b01110,
@@ -67,146 +57,231 @@ void initMeter(){
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(plock_bitmap + i);
LCD_CreateChar(0, tmpbytes);
lcd.createChar(0, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
LCD_CreateChar(1, tmpbytes);
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i);
lcd.createChar(1, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
LCD_CreateChar(2, tmpbytes);
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 8);
lcd.createChar(2, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
LCD_CreateChar(3, tmpbytes);
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 16);
lcd.createChar(3, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
LCD_CreateChar(4, tmpbytes);
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 24);
lcd.createChar(4, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
LCD_CreateChar(5, tmpbytes);
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 28);
lcd.createChar(5, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
LCD_CreateChar(6, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 48);
LCD_CreateChar(7, tmpbytes);
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 32);
lcd.createChar(6, tmpbytes);
}
/**
* The meter is drawn with special characters.
* character 1 is used to simple draw the blocks of the scale of the meter
* characters 2 to 6 are used to draw the needle in positions 1 to within the block
* This displays a meter from 0 to 100, -1 displays nothing
*/
//by KD8CEC
//0 ~ 25 : 30 over : + 10
/*
void drawMeter(int needle) {
//5Char + O over
int i;
/*
void drawMeter(int8_t needle){
int16_t best, i, s;
for (i = 0; i < 5; i++) {
if (needle >= 5)
lcdMeter[i] = 5; //full
else if (needle > 0)
lcdMeter[i] = needle; //full
else //0
lcdMeter[i] = 0x20;
needle -= 5;
if (needle < 0)
return;
s = (needle * 4)/10;
for (i = 0; i < 8; i++){
if (s >= 5)
meter[i] = 1;
else if (s >= 0)
meter[i] = 2 + s;
else
meter[i] = 1;
s = s - 5;
}
if (needle > 0)
lcdMeter[5] = 6;
else
lcdMeter[5] = 0x20;
if (needle >= 40)
meter[i-1] = 6;
meter[i] = 0;
}
*/
//VK2ETA meter for S.Meter, power and SWR
void drawMeter(int needle)
{
#ifdef OPTION_SKINNYBARS
//Fill buffer with growing set of bars, up to needle value
lcdMeter[0] = 0x20;
lcdMeter[1] = 0x20;
for (int i = 0; i < 6; i++) {
if (needle > i)
lcdMeter[i / 3] = byte(i + 1); //Custom characters above
//else if (i == 1 || i == 4) {
// lcdMeter[i / 3] = 0x20; //blank
//}
}
if (needle > 7) {
lcdMeter[2] = byte(7); //Custom character "++"
} else if (needle > 6) {
lcdMeter[2] = '+'; //"+"
} else lcdMeter[2] = 0x20;
#else //Must be "fat" bars
//Fill buffer with growing set of bars, up to needle value
for (int i = 0; i < 6; i++) {
if (needle > i)
lcdMeter[i] = byte(i + 1); //Custom characters above
else
lcdMeter[i] = 0x20; //blank
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
lcd.print(c);
strcpy(printBuff[linenmbr], c);
if (needle > 7) {
lcdMeter[6] = byte(7); //Custom character "++"
} else if (needle > 6) {
lcdMeter[6] = '+'; //"+"
} else lcdMeter[6] = 0x20;
#endif //OPTION_FATBARS
for (byte i = strlen(c); i < 16; i++) { // add white spaces until the end of the 16 characters line is reached
lcd.print(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[17];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 17; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
char byteToChar(byte srcByte){
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex) {
lcd.setCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
lcd.write(EEPROM.read(USER_CALLSIGN_DAT + i));
else
break;
}
for (byte i = lcdColumn; i < 16; i++) //Right Padding by Space
lcd.write(' ');
}
// short cut to print to the first line
void printLine1(const char *c){
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c){
printLine(0,c);
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
updateDisplay();
}
//012...89ABC...Z
char byteToChar(byte srcByte){
if (srcByte < 10)
return 0x30 + srcByte;
else
return 'A' + srcByte - 10;
}
//returns true if the button is pressed
int btnDown(void){
#ifdef EXTEND_KEY_GROUP1
if (analogRead(FBUTTON) > FUNCTION_KEY_ADC)
return 0;
else
return 1;
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
#else
if (digitalRead(FBUTTON) == HIGH)
return 0;
else
return 1;
#endif
}
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
#ifdef EXTEND_KEY_GROUP1
int getBtnStatus(void){
int readButtonValue = analogRead(FBUTTON);
if (analogRead(FBUTTON) < FUNCTION_KEY_ADC)
return FKEY_PRESS;
else
{
readButtonValue = readButtonValue / 4;
//return FKEY_VFOCHANGE;
for (int i = 0; i < 16; i++)
if (KeyValues[i][2] != 0 && KeyValues[i][0] <= readButtonValue && KeyValues[i][1] >= readButtonValue)
return KeyValues[i][2];
//return i;
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
return -1;
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
lcd.setCursor(5,1);
lcd.write((uint8_t)0);
}
else if (isCWAutoMode == 2){
lcd.setCursor(5,1);
lcd.write(0x7E);
}
else
{
lcd.setCursor(5,1);
lcd.write(":");
}
/*
//now, the second line
memset(c, 0, sizeof(c));
memset(b, 0, sizeof(b));
if (inTx)
strcat(c, "TX ");
else if (ritOn)
strcpy(c, "RIT");
strcpy(c, " \xff");
drawMeter(meter_reading);
strcat(c, meter);
strcat(c, "\xff");
printLine2(c);*/
}
#endif
int enc_prev_state = 3;

View File

@@ -1,192 +0,0 @@
/**********************************************************************************
WSPR SENDER for uBITX by KD8CEC
Some of the code that sends WSPR referenced the code in G3ZIL.
Thanks to G3ZIL for sharing great code.
Due to the limited memory of uBITX, I have implemented at least only a few of the codes in uBITX.
Thanks for testing
Beta Tester :
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************************/
#include <EEPROM.h>
#include "ubitx.h"
//begin of test
byte WsprToneCode[164];
unsigned long lastTime=0;
unsigned long TX_MSNB_P2; // Si5351 register MSNB_P2 PLLB for Tx
unsigned long TX_P2; // Variable values for MSNB_P2 which defines the frequencies for the data
extern int enc_read(void);
byte WsprMSGCount = 0;
#define WSPR_BAND1 401
extern uint8_t Wspr_Reg1[8]; //3, 4, 5, 6, 7
extern uint8_t Wspr_Reg2[8]; //2, 3, 4
void SendWSPRManage()
{
int knob = 0;
byte knobPosition = 0;
//char isNeedDisplayInfo = 0;
char nowSelectedIndex = 0;
char nowWsprStep = 0; //0 : select Message, 1 : select band, 2 : send
char selectedWsprMessageIndex = -1;
char selectedWsprBandIndex = -1;
unsigned long WsprTXFreq = 0;
unsigned int WsprMultiChan = 0;
//unsigned long prevFreq;
byte loopIndex;
delay_background(500, 0);
//Readed WsprMSGCount, WsprTone
while(1)
{
knob = enc_read();
if (knobPosition > 0 && knob < 0)
knobPosition--;
else if (knob > 0 && (knobPosition <= (nowWsprStep == 0 ? WsprMSGCount : WSPR_BAND_COUNT) * 10 -2))
knobPosition++;
nowSelectedIndex = knobPosition / 10;
if (nowWsprStep == 0) //select Message status
{
printLineF2(F("WSPR:"));
if (selectedWsprMessageIndex != nowSelectedIndex)
{
selectedWsprMessageIndex = nowSelectedIndex;
int wsprMessageBuffIndex = selectedWsprMessageIndex * 46;
//Display WSPR Name tag
printLineFromEEPRom(0, 6, wsprMessageBuffIndex, wsprMessageBuffIndex + 4, 1);
//Load WSPR Tonecode
//Read Tone Code
for (int i = 0; i < 41; i++)
{
byte readData = EEPROM.read(WSPR_MESSAGE1 + 5 + (wsprMessageBuffIndex) + i); //NAME TAG 5, MESSAGE 41 = 46
WsprToneCode[i * 4 + 0] = readData & 3;
WsprToneCode[i * 4 + 1] = (readData >> 2) & 3;
WsprToneCode[i * 4 + 2] = (readData >> 4) & 3;
WsprToneCode[i * 4 + 3] = (readData >> 6) & 3;
}
}
else if (btnDown())
{
nowWsprStep = 1; //Change Status to Select Band
knobPosition = 0;
nowSelectedIndex = 0;
delay_background(500, 0);
}
}
else if (nowWsprStep == 1)
{
//printLineF2(F("Select Band"));
if (selectedWsprBandIndex != nowSelectedIndex)
{
selectedWsprBandIndex = nowSelectedIndex;
int bandBuffIndex = WSPR_BAND1 + selectedWsprBandIndex * 14;
EEPROM.get(bandBuffIndex, WsprTXFreq);
EEPROM.get(bandBuffIndex + 4, WsprMultiChan);
for (loopIndex = 3; loopIndex < 8; loopIndex++)
Wspr_Reg1[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 3);
//2, 3, 4
for (loopIndex = 2; loopIndex < 5; loopIndex++)
Wspr_Reg2[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 9);
TX_MSNB_P2 = ((unsigned long)Wspr_Reg1[5] & 0x0F) << 16 | ((unsigned long)Wspr_Reg1[6]) << 8 | Wspr_Reg1[7];
}
if (digitalRead(PTT) == 0)
strcpy(c, "SEND: ");
else
strcpy(c, "PTT-> ");
//ltoa(WsprTXFreq, b, DEC);
//strcat(c, b);
//display frequency, Frequency to String for KD8CEC
unsigned long tmpFreq = WsprTXFreq;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
printLine1(c);
if (digitalRead(PTT) == 0)
{
//SEND WSPR
//If you need to consider the Rit and Sprite modes, uncomment them below.
//remark = To reduce the size of the program
//prevFreq = frequency;
//frequency = WsprTXFreq;
startTx(TX_CW, 0);
setTXFilters(WsprTXFreq);
//Start WSPR
Set_WSPR_Param();
digitalWrite(CW_KEY, 1);
for (int i = 0; i < 162; i++)
{ // Now this is the message loop
lastTime = millis(); // Store away the time when the last message symbol was sent
TX_P2 = TX_MSNB_P2 + WsprMultiChan * WsprToneCode[i]; // This represents the 1.46 Hz shift and is correct only for the bands specified in the array
TXSubFreq(TX_P2); // TX at the appropriate channel frequency for....
//if (btnDown())
// break;
while (millis() < lastTime + 683){} // .... 0,683 seconds
}
digitalWrite(CW_KEY, 0);
stopTx(); //call setFrequency -> recovery TX Filter
//frequency = prevFreq;
selectedWsprBandIndex = -1;
} //end of PTT Check
else if (btnDown())
{
return;
}
} //end of status check
//delay_background(50, 1);
} //end of while
}