Compare commits

...

26 Commits

Author SHA1 Message Date
phdlee
65d21aba77 Fixed Band Select Bug 2018-05-09 16:53:49 +09:00
phdlee
6a2369bc27 Fixed Band Select Bug 2018-05-09 16:53:40 +09:00
phdlee
76d5c362d0 complete test for Factory Recovery 2018-05-07 14:08:22 +09:00
phdlee
70fc6aeba8 Add Factory Recovery function 2018-05-07 13:56:46 +09:00
phdlee
1d28f3e7e9 update versioninfo.txt 2018-05-03 21:23:10 +09:00
phdlee
51f690ef85 change frequency display in WSPR Menu 2018-05-03 17:57:06 +09:00
phdlee
12984486a6 Modfied SMeter and CAT 2018-05-03 16:20:09 +09:00
phdlee
e961cd8ac9 reduce compiller warning 2018-04-24 18:00:41 +09:00
phdlee
6add092391 Extended key (select key type) 2018-04-24 17:26:34 +09:00
phdlee
6be127d811 test lcd 2018-04-23 21:40:45 +09:00
phdlee
5b13ede65b test of extended key and dual lcd 2018-04-23 08:29:19 +09:00
phdlee
0aafe32e27 Added Dual LCD 2018-04-21 16:09:21 +09:00
phdlee
5611e1c0ff lcdtest and extended ubutton tested 2018-04-18 20:22:52 +09:00
phdlee
f600c18541 add extended Keys (mode, band, tunestep) and i2clcd working 2018-04-17 21:26:29 +09:00
phdlee
0e245fc488 Add 20x04LCD and S.Meter 2018-04-16 23:56:32 +09:00
phdlee
d721816039 LCD Work step1 2018-04-12 22:08:43 +09:00
phdlee
34be2d0845 Improve receive perforamnce for USB, CWU, custom uBITX 2018-04-09 23:35:13 +09:00
phdlee
689cfda09e Add Support SDR Receiver and improve ATT 2018-04-07 21:32:01 +09:00
phdlee
23f1b7cd5c Added IF Tune, ATT, SDR Functions 2018-04-06 21:43:36 +09:00
phdlee
d4ed0589e5 Applied 1602 Tiny LCD Library for reduce program Memory 2018-04-05 22:57:07 +09:00
phdlee
5f906a4497 To Support various LCD Type 2018-04-05 22:16:54 +09:00
phdlee
1210f56cd1 move display routine ui to idle 2018-04-05 21:30:35 +09:00
phdlee
e8d6792073 complete setup menu ui for reduce program memory 2018-04-05 17:36:16 +09:00
phdlee
02f22d66e5 Change Menu codes 2018-04-05 09:50:29 +09:00
phdlee
11e47fdccc Added Version Info at top of ubitx_20.ino 2018-04-04 22:20:04 +09:00
phdlee
7aafed9e95 rename ubitx_wspr.cpp to ubitx_wspr.ino 2018-04-04 20:29:27 +09:00
15 changed files with 4040 additions and 1424 deletions

30
VersionInfo.txt Normal file
View File

@@ -0,0 +1,30 @@
This file will guide you to change the source code file.
For Windows-based Arduino IDE users, the directory name and the Main source file name must be the same.
You do not need to learn github to download .hex files or source code that I release.
However, if you want to see what I'm doing right now, you should use the github homepage.
You do not need to learn git to suggest source code. If you give me an e-mail, I will correct it at any time.
If you have not joined the BITX Group, join group. There will be discussions on various topics every day.
I am getting a lot of hints from the group.
Ian KD8CEC
kd8cec@gmail.com
==================================================================
Files modified in Version1.075 Beta
1.Delted Files.
2.Added Files
3.Modified Files
- ubitx_20.ino
- ubitx_ui.ino
- cat_libs.ino
- ubitx.h
- ubitx_eemap.h
- ubitx_lcd_1602.ino
- ubitx_lcd_1602Dual.ino
- ubitx_lcd_2004.ino
- ubitx_wspr.ino

View File

@@ -31,8 +31,8 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
#include "ubitx.h"
//for broken protocol
#define CAT_RECEIVE_TIMEOUT 500
@@ -278,7 +278,19 @@ void WriteEEPRom(void) //for remove warning
}
else
{
EEPROM.write(eepromStartIndex, write1Byte);
//Special Command
if (eepromStartIndex == 13131) //Magic Key
{
if (write1Byte == 0x51) //Restart
{
asm volatile (" jmp 0");
}
}
else
{
EEPROM.write(eepromStartIndex, write1Byte);
}
Serial.write(0x77); //OK
Serial.write(ACK);
}
@@ -611,10 +623,38 @@ void WriteEEPRom_FT817(byte fromType)
Serial.write(ACK);
}
const byte anlogPinIndex[6] = {A0, A1, A2, A3, A6, A7};
//Read ADC Value by uBITX Manager Software
void ReadADCValue(void)
{
//ADC MAP for uBITX
int readedADCValue;
//5BYTES
//CAT_BUFF[0] [1] [2] [3] [4] //4 COMMAND
//0 READ ADDRESS
readedADCValue = analogRead(anlogPinIndex[CAT_BUFF[0]]);
CAT_BUFF[0] = readedADCValue >> 8;
CAT_BUFF[1] = readedADCValue;
SendCatData(2);
Serial.write(ACK);
}
void SetIFSValue(void)
{
//Set IFShift Value
isIFShift = CAT_BUFF[0];
ifShiftValue = CAT_BUFF[1] + CAT_BUFF[2] * 256;
setFrequency(frequency);
SetCarrierFreq();
updateLine2Buffer(1); //option, perhap not need
Serial.write(ACK);
}
//void CatRxStatus(byte fromType)
void CatRxStatus(void) //for remove warning
{
byte sMeterValue = 1;
byte sMeterValue = 0;
/*
http://www.ka7oei.com/ft817_meow.html
@@ -627,6 +667,33 @@ void CatRxStatus(void) //for remove warning
Bit 7 is 0 if there is a signal present, or 1 if the receiver is squelched.
*/
// The lower 4 bits (0-3) of this byte indicate the current S-meter reading. 00 refers to an S-Zero reading, 04 = S4, 09 = S9, 0A = "10 over," 0B = "20 over" and so on up to 0F.
//0~8
switch (scaledSMeter)
{
case 8 : sMeterValue = 0x0B;
break;
case 7 : sMeterValue = 0x0A;
break;
case 6 : sMeterValue = 0x09;
break;
case 5 : sMeterValue = 0x07;
break;
case 4 : sMeterValue = 0x05;
break;
case 3 : sMeterValue = 0x04;
break;
case 2 : sMeterValue = 0x02;
break;
case 1 : sMeterValue = 0x01;
break;
}
/*
sMeterValue = (scaledSMeter * 2) -1;
if (sMeterValue > 0)
sMeterValue--;
*/
CAT_BUFF[0] = sMeterValue & 0b00001111;
SendCatData(1);
}
@@ -768,6 +835,14 @@ void Check_Cat(byte fromType)
WriteEEPRom_FT817(fromType);
break;
case 0xDD: //Read uBITX ADC Data
ReadADCValue(); //Call by uBITX Manager Program
break;
case 0xDE: //IF-Shift Control by CAT
SetIFSValue(); //
break;
case 0xE7 : //Read RX Status
CatRxStatus();
break;

View File

@@ -299,13 +299,14 @@ void controlAutoCW(){
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ, 0);
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
lcd.setCursor(0, diplayAutoCWLine);
lcd.write(byteToChar(selectedCWTextIndex));
lcd.write(':');
//byte diplayAutoCWLine = 0;
//if ((displayOption1 & 0x01) == 0x01)
// diplayAutoCWLine = 1;
Display_AutoKeyTextIndex(selectedCWTextIndex);
//lcd.setCursor(0, diplayAutoCWLine);
//lcd.write(byteToChar(selectedCWTextIndex));
//lcd.write(':');
isNeedScroll = (cwEndIndex - cwStartIndex) > 14 ? 1 : 0;
scrollDispayTime = millis() + scrollSpeed;
beforeCWTextIndex = selectedCWTextIndex;

View File

@@ -14,31 +14,81 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#define WSPR_COUNT 443 //WSPR_MESSAGE_COUNT
#define WSPR_MESSAGE1 444 //
#define WSPR_MESSAGE2 490 //
#define WSPR_MESSAGE3 536 //
#define WSPR_MESSAGE4 582 //
#ifndef _UBITX_HEADER__
#define _UBITX_HEADER__
#define WSPR_BAND_COUNT 3
#include <Arduino.h> //for Linux, On Linux it is case sensitive.
#define TX_SSB 0
#define TX_CW 1
//==============================================================================
// Compile Option
//==============================================================================
//Depending on the type of LCD mounted on the uBITX, uncomment one of the options below.
//You must select only one.
#define UBITX_DISPLAY_LCD1602P //LCD mounted on unmodified uBITX
//#define UBITX_DISPLAY_LCD1602I //I2C type 16 x 02 LCD
//#define UBITX_DISPLAY_LCD1602I_DUAL
//#define UBITX_DISPLAY_LCD2004P //24 x 04 LCD (Parallel)
//#define UBITX_DISPLAY_LCD2004I //I2C type 24 x 04 LCD
#define I2C_LCD_MASTER_ADDRESS_DEFAULT 0x3F //0x27 //DEFAULT, if Set I2C Address by uBITX Manager, read from EEProm
#define I2C_LCD_SECOND_ADDRESS_DEFAULT 0x27 //0x27 //only using Dual LCD Mode
extern void printLine1(const char *c);
extern void printLine2(const char *c);
extern void printLineF(char linenmbr, const __FlashStringHelper *c);
extern void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetType);
extern byte delay_background(unsigned delayTime, byte fromType);
extern int btnDown(void);
extern char c[30];
extern char b[30];
#define EXTEND_KEY_GROUP1 //MODE, BAND(-), BAND(+), STEP
//#define EXTEND_KEY_GROUP2 //Numeric (0~9), Point(.), Enter //Not supported in Version 1.0x
extern unsigned long frequency;
//#define ENABLE_FACTORYALIGN
#define FACTORY_RECOVERY_BOOTUP //Whether to enter Factory Recovery mode by pressing FKey and turning on power
#define ENABLE_ADCMONITOR //Starting with Version 1.07, you can read ADC values directly from uBITX Manager. So this function is not necessary.
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
extern byte I2C_LCD_MASTER_ADDRESS; //0x27 //if Set I2C Address by uBITX Manager, read from EEProm
extern byte I2C_LCD_SECOND_ADDRESS; //only using Dual LCD Mode
#define SMeterLatency 3 //1 is 0.25 sec
#ifdef UBITX_DISPLAY_LCD1602I
#define USE_I2C_LCD
#elif defined(UBITX_DISPLAY_LCD1602I_DUAL)
#define USE_I2C_LCD
#elif defined(UBITX_DISPLAY_LCD2004I)
#define USE_I2C_LCD
#endif
//==============================================================================
// Hardware, Define PIN Usage
//==============================================================================
/**
* We need to carefully pick assignment of pin for various purposes.
* There are two sets of completely programmable pins on the Raduino.
* First, on the top of the board, in line with the LCD connector is an 8-pin connector
* that is largely meant for analog inputs and front-panel control. It has a regulated 5v output,
* ground and six pins. Each of these six pins can be individually programmed
* either as an analog input, a digital input or a digital output.
* The pins are assigned as follows (left to right, display facing you):
* Pin 1 (Violet), A7, SPARE
* Pin 2 (Blue), A6, KEYER (DATA)
* Pin 3 (Green), +5v
* Pin 4 (Yellow), Gnd
* Pin 5 (Orange), A3, PTT
* Pin 6 (Red), A2, F BUTTON
* Pin 7 (Brown), A1, ENC B
* Pin 8 (Black), A0, ENC A
*Note: A5, A4 are wired to the Si5351 as I2C interface
* *
* Though, this can be assigned anyway, for this application of the Arduino, we will make the following
* assignment
* A2 will connect to the PTT line, which is the usually a part of the mic connector
* A3 is connected to a push button that can momentarily ground this line. This will be used for RIT/Bandswitching, etc.
* A6 is to implement a keyer, it is reserved and not yet implemented
* A7 is connected to a center pin of good quality 100K or 10K linear potentiometer with the two other ends connected to
* ground and +5v lines available on the connector. This implments the tuning mechanism
*/
#define ENC_A (A0)
#define ENC_B (A1)
#define FBUTTON (A2)
#define PTT (A3)
#define ANALOG_KEYER (A6)
#define ANALOG_SPARE (A7)
#define ANALOG_SMETER (A7) //by KD8CEC
/**
@@ -50,19 +100,70 @@ extern unsigned long frequency;
* - TX_RX line : Switches between Transmit and Receive after sensing the PTT or the morse keyer
* - CW_KEY line : turns on the carrier for CW
*/
#define TX_RX (7) //Relay
#define CW_TONE (6)
#define TX_LPF_A (5) //Relay
#define TX_LPF_B (4) //Relay
#define TX_LPF_C (3) //Relay
#define CW_KEY (2)
#define TX_RX (7)
#define CW_TONE (6)
#define TX_LPF_A (5)
#define TX_LPF_B (4)
#define TX_LPF_C (3)
#define CW_KEY (2)
//==============================================================================
// for public, Variable, functions
//==============================================================================
#define WSPR_BAND_COUNT 3
#define TX_SSB 0
#define TX_CW 1
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
//we directly generate the CW by programmin the Si5351 to the cw tx frequency, hence, both are different modes
//these are the parameter passed to startTx
#define TX_SSB 0
#define TX_CW 1
//0x00 : None, 0x01 : MODE, 0x02:BAND+, 0x03:BAND-, 0x04:TUNE_STEP, 0x05:VFO Toggle, 0x06:SplitOn/Off, 0x07:TX/ON-OFF, 0x08:SDR Mode On / Off, 0x09:Rit Toggle
#define FUNCTION_KEY_ADC 80 //MODE, BAND(-), BAND(+), STEP
#define FKEY_PRESS 0x78
#define FKEY_MODE 0x01
#define FKEY_BANDUP 0x02
#define FKEY_BANDDOWN 0x03
#define FKEY_STEP 0x04
#define FKEY_VFOCHANGE 0x05
#define FKEY_SPLIT 0x06
#define FKEY_TXOFF 0x07
#define FKEY_SDRMODE 0x08
#define FKEY_RIT 0x09
#define FKEY_ENTER 0x0A
#define FKEY_POINT 0x0B
#define FKEY_DELETE 0x0C
#define FKEY_CANCEL 0x0D
#define FKEY_NUM0 0x10
#define FKEY_NUM1 0x11
#define FKEY_NUM2 0x12
#define FKEY_NUM3 0x13
#define FKEY_NUM4 0x14
#define FKEY_NUM5 0x15
#define FKEY_NUM6 0x16
#define FKEY_NUM7 0x17
#define FKEY_NUM8 0x18
#define FKEY_NUM9 0x19
#define FKEY_TYPE_MAX 0x1F
extern unsigned long frequency;
extern byte WsprMSGCount;
extern byte sMeterLevels[9];
extern int currentSMeter; //ADC Value for S.Meter
extern byte scaledSMeter; //Calculated S.Meter Level
extern byte KeyValues[16][3]; //Set : Start Value, End Value, Key Type, 16 Set (3 * 16 = 48)
extern void printLine1(const char *c);
extern void printLine2(const char *c);
extern void printLineF(char linenmbr, const __FlashStringHelper *c);
extern void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetType);
extern byte delay_background(unsigned delayTime, byte fromType);
extern int btnDown(void);
extern char c[30];
extern char b[30];
extern int enc_read(void);
extern void si5351bx_init(void);
extern void si5351bx_setfreq(uint8_t clknum, uint32_t fout);
extern void si5351_set_calibration(int32_t cal);
@@ -75,6 +176,10 @@ extern void stopTx(void);
extern void setTXFilters(unsigned long freq);
extern void SendWSPRManage(void);
extern byte WsprMSGCount;
extern char byteToChar(byte srcByte);
extern void DisplayCallsign(byte callSignLength);
extern void DisplayVersionInfo(const char* fwVersionInfo);
#endif //end of if header define

View File

@@ -1,8 +1,20 @@
//Firmware Version
//+ : This symbol identifies the firmware.
// It was originally called 'CEC V1.072' but it is too long to waste the LCD window.
// I do not want to make this Firmware users's uBITX messy with my callsign.
// Putting one alphabet in front of 'v' has a different meaning.
// So I put + in the sense that it was improved one by one based on Original Firmware.
// This firmware has been gradually changed based on the original firmware created by Farhan, Jack, Jerry and others.
#define FIRMWARE_VERSION_INFO F("+v1.075")
#define FIRMWARE_VERSION_NUM 0x03 //1st Complete Project : 1 (Version 1.061), 2st Project : 2
/**
Since KD8CEC Version 0.29, most of the original code is no longer available.
Cat Suppoort uBITX CEC Version
This firmware has been gradually changed based on the original firmware created by Farhan, Jack, Jerry and others.
Most features(TX, Frequency Range, Ham Band, TX Control, CW delay, start Delay... more) have been added by KD8CEC.
However, the license rules are subject to the original source rules.
DE Ian KD8CEC
My wish is to keep the original author's Comment as long as the meaning does not change much, even if the code looks a bit long.
Ian KD8CEC
Original source comment -------------------------------------------------------------
* This source file is under General Public License version 3.
@@ -39,177 +51,8 @@
#include <Wire.h>
#include <EEPROM.h>
#include "ubitx.h"
#include "ubitx_eemap.h"
/**
The main chip which generates upto three oscillators of various frequencies in the
Raduino is the Si5351a. To learn more about Si5351a you can download the datasheet
from www.silabs.com although, strictly speaking it is not a requirment to understand this code.
We no longer use the standard SI5351 library because of its huge overhead due to many unused
features consuming a lot of program space. Instead of depending on an external library we now use
Jerry Gaffke's, KE7ER, lightweight standalone mimimalist "si5351bx" routines (see further down the
code). Here are some defines and declarations used by Jerry's routines:
*/
/**
* We need to carefully pick assignment of pin for various purposes.
* There are two sets of completely programmable pins on the Raduino.
* First, on the top of the board, in line with the LCD connector is an 8-pin connector
* that is largely meant for analog inputs and front-panel control. It has a regulated 5v output,
* ground and six pins. Each of these six pins can be individually programmed
* either as an analog input, a digital input or a digital output.
* The pins are assigned as follows (left to right, display facing you):
* Pin 1 (Violet), A7, SPARE
* Pin 2 (Blue), A6, KEYER (DATA)
* Pin 3 (Green), +5v
* Pin 4 (Yellow), Gnd
* Pin 5 (Orange), A3, PTT
* Pin 6 (Red), A2, F BUTTON
* Pin 7 (Brown), A1, ENC B
* Pin 8 (Black), A0, ENC A
*Note: A5, A4 are wired to the Si5351 as I2C interface
* *
* Though, this can be assigned anyway, for this application of the Arduino, we will make the following
* assignment
* A2 will connect to the PTT line, which is the usually a part of the mic connector
* A3 is connected to a push button that can momentarily ground this line. This will be used for RIT/Bandswitching, etc.
* A6 is to implement a keyer, it is reserved and not yet implemented
* A7 is connected to a center pin of good quality 100K or 10K linear potentiometer with the two other ends connected to
* ground and +5v lines available on the connector. This implments the tuning mechanism
*/
#define ENC_A (A0)
#define ENC_B (A1)
#define FBUTTON (A2)
#define PTT (A3)
#define ANALOG_KEYER (A6)
#define ANALOG_SPARE (A7)
#define ANALOG_SMETER (A7) //by KD8CEC
/**
* The Raduino board is the size of a standard 16x2 LCD panel. It has three connectors:
*
* First, is an 8 pin connector that provides +5v, GND and six analog input pins that can also be
* configured to be used as digital input or output pins. These are referred to as A0,A1,A2,
* A3,A6 and A7 pins. The A4 and A5 pins are missing from this connector as they are used to
* talk to the Si5351 over I2C protocol.
*
* Second is a 16 pin LCD connector. This connector is meant specifically for the standard 16x2
* LCD display in 4 bit mode. The 4 bit mode requires 4 data lines and two control lines to work:
* Lines used are : RESET, ENABLE, D4, D5, D6, D7
* We include the library and declare the configuration of the LCD panel too
*/
#include <LiquidCrystal.h>
LiquidCrystal lcd(8,9,10,11,12,13);
#define VERSION_NUM 0x01 //for KD8CEC'S firmware and for memory management software
/**
* The Arduino, unlike C/C++ on a regular computer with gigabytes of RAM, has very little memory.
* We have to be very careful with variables that are declared inside the functions as they are
* created in a memory region called the stack. The stack has just a few bytes of space on the Arduino
* if you declare large strings inside functions, they can easily exceed the capacity of the stack
* and mess up your programs.
* We circumvent this by declaring a few global buffers as kitchen counters where we can
* slice and dice our strings. These strings are mostly used to control the display or handle
* the input and output from the USB port. We must keep a count of the bytes used while reading
* the serial port as we can easily run out of buffer space. This is done in the serial_in_count variable.
*/
char c[30], b[30];
char printBuff[2][17]; //mirrors what is showing on the two lines of the display
int count = 0; //to generally count ticks, loops, etc
/**
* The second set of 16 pins on the Raduino's bottom connector are have the three clock outputs and the digital lines to control the rig.
* This assignment is as follows :
* Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
* GND +5V CLK0 GND GND CLK1 GND GND CLK2 GND D2 D3 D4 D5 D6 D7
* These too are flexible with what you may do with them, for the Raduino, we use them to :
* - TX_RX line : Switches between Transmit and Receive after sensing the PTT or the morse keyer
* - CW_KEY line : turns on the carrier for CW
*/
#define TX_RX (7)
#define CW_TONE (6)
#define TX_LPF_A (5)
#define TX_LPF_B (4)
#define TX_LPF_C (3)
#define CW_KEY (2)
/**
* These are the indices where these user changable settinngs are stored in the EEPROM
*/
#define MASTER_CAL 0
#define LSB_CAL 4
#define USB_CAL 8
#define SIDE_TONE 12
//these are ids of the vfos as well as their offset into the eeprom storage, don't change these 'magic' values
#define VFO_A 16
#define VFO_B 20
#define CW_SIDETONE 24
#define CW_SPEED 28
//AT328 has 1KBytes EEPROM
#define CW_CAL 252
#define VFO_A_MODE 256
#define VFO_B_MODE 257
#define CW_DELAY 258
#define CW_START 259
#define HAM_BAND_COUNT 260 //
#define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) //1STEP :
//for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
#define CW_ADC_ST_FROM 349 //CW ADC Range STRAIGHT KEY from (Lower 8 bit)
#define CW_ADC_ST_TO 350 //CW ADC Range STRAIGHT KEY to (Lower 8 bit)
#define CW_ADC_DOT_FROM 351 //CW ADC Range DOT from (Lower 8 bit)
#define CW_ADC_DOT_TO 352 //CW ADC Range DOT to (Lower 8 bit)
#define CW_ADC_MOST_BIT2 353 //most 2bits of BOTH_TO, BOTH_FROM, DASH_TO, DASH_FROM
#define CW_ADC_DASH_FROM 354 //CW ADC Range DASH from (Lower 8 bit)
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
#define CW_KEY_TYPE 358
#define CW_DISPLAY_SHIFT 359 //Transmits on CWL, CWU Mode, LCD Frequency shifts Sidetone Frequency.
//(7:Enable / Disable //0: enable, 1:disable, (default is applied shift)
//6 : 0 : Adjust Pulus, 1 : Adjust Minus
//0~5: Adjust Value : * 10 = Adjust Value (0~300)
#define COMMON_OPTION0 360 //0: Confirm : CW Frequency Shift
//1 : IF Shift Save
//
//
//
#define IF_SHIFTVALUE 363
#define DISPLAY_OPTION1 361 //Display Option1
#define DISPLAY_OPTION2 362 //Display Option2
#define CHANNEL_FREQ 630 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define CHANNEL_DESC 710 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define RESERVE3 770 //Reserve3 between Channel and Firmware id check
//Check Firmware type and version
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
#define VERSION_ADDRESS 779 //check Firmware version
//USER INFORMATION
#define USER_CALLSIGN_KEY 780 //0x59
#define USER_CALLSIGN_LEN 781 //1BYTE (OPTION + LENGTH) + CALLSIGN (MAXIMUM 18)
#define USER_CALLSIGN_DAT 782 //CALL SIGN DATA //direct EEPROM to LCD basic offset
//AUTO KEY STRUCTURE
//AUTO KEY USE 800 ~ 1023
#define CW_AUTO_MAGIC_KEY 800 //0x73
#define CW_AUTO_COUNT 801 //0 ~ 255
#define CW_AUTO_DATA 803 //[INDEX, INDEX, INDEX,DATA,DATA, DATA (Positon offset is CW_AUTO_DATA
#define CW_DATA_OFSTADJ CW_AUTO_DATA - USER_CALLSIGN_DAT //offset adjust for ditect eeprom to lcd (basic offset is USER_CALLSIGN_DAT
#define CW_STATION_LEN 1023 //value range : 4 ~ 30
/**
* The uBITX is an upconnversion transceiver. The first IF is at 45 MHz.
* The first IF frequency is not exactly at 45 Mhz but about 5 khz lower,
@@ -241,11 +84,6 @@ int count = 0; //to generally count ticks, loops, etc
#define LOWEST_FREQ_DIAL (3000l)
#define HIGHEST_FREQ_DIAL (60000000l)
//we directly generate the CW by programmin the Si5351 to the cw tx frequency, hence, both are different modes
//these are the parameter passed to startTx
#define TX_SSB 0
#define TX_CW 1
char ritOn = 0;
char vfoActive = VFO_A;
int8_t meter_reading = 0; // a -1 on meter makes it invisible
@@ -332,10 +170,26 @@ unsigned long dbgCount = 0; //not used now
unsigned char txFilter = 0; //which of the four transmit filters are in use
boolean modeCalibrate = false;//this mode of menus shows extended menus to calibrate the oscillators and choose the proper
//beat frequency
byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2~Bit3 : dynamic sdr frequency, bit 7: IFTune_Value Reverse for DIY uBITX
byte attLevel = 0; //ATT : RF Gain Control (Receive) <-- IF1 Shift, 0 : Off, ShiftValue is attLevel * 100; attLevel 150 = 15K
byte if1TuneValue = 0; //0 : OFF, IF1 + if1TuneValue * 100; // + - 12500;
byte sdrModeOn = 0; //SDR MODE ON / OFF
unsigned long SDR_Center_Freq; //
unsigned long beforeIdle_ProcessTime = 0; //for check Idle time
byte line2DisplayStatus = 0; //0:Clear, 1 : menu, 1: DisplayFrom Idle,
char lcdMeter[17];
byte sMeterLevels[9];
//Current ADC Value for S.Meter, and S Meter Level
int currentSMeter = 0;
byte scaledSMeter = 0;
byte I2C_LCD_MASTER_ADDRESS; //0x27 //if Set I2C Address by uBITX Manager, read from EEProm
byte I2C_LCD_SECOND_ADDRESS; //only using Dual LCD Mode
byte KeyValues[16][3];
byte isIFShift = 0; //1 = ifShift, 2 extend
int ifShiftValue = 0; //
@@ -347,8 +201,8 @@ int ifShiftValue = 0; //
//Ham Band
#define MAX_LIMIT_RANGE 10 //because limited eeprom size
byte useHamBandCount = 0; //0 use full range frequency
byte tuneTXType = 0; //0 : use full range, 1 : just Change Dial speed, 2 : just ham band change, but can general band by tune, 3 : only ham band (just support 0, 2 (0.26 version))
byte useHamBandCount = 0; //0 use full range frequency
byte tuneTXType = 0; //0 : use full range, 1 : just Change Dial speed, 2 : just ham band change, but can general band by tune, 3 : only ham band (just support 0, 2 (0.26 version))
//100 : use full range but not TX on general band, 101 : just change dial speed but.. 2 : jut... but.. 3 : only ham band (just support 100, 102 (0.26 version))
unsigned int hamBandRange[MAX_LIMIT_RANGE][2]; // = //Khz because reduce use memory
@@ -400,8 +254,8 @@ void setNextHamBandFreq(unsigned long f, char moveDirection)
if ((resultFreq / 1000) < hamBandRange[(unsigned char)findedIndex][0] || (resultFreq / 1000) > hamBandRange[(unsigned char)findedIndex][1])
resultFreq = (unsigned long)(hamBandRange[(unsigned char)findedIndex][0]) * 1000;
setFrequency(resultFreq);
byteToMode(loadMode, 1);
setFrequency(resultFreq);
}
void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) {
@@ -502,27 +356,85 @@ void setFrequency(unsigned long f){
setTXFilters(f);
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
int appliedTuneValue = 0;
if (cwMode == 0)
//applied if tune
//byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency0, Bit3 : dynamic sdr frequency1, bit 7: IFTune_Value Reverse for DIY uBITX
if ((advancedFreqOption1 & 0x01) != 0x00)
{
if (isUSB){
si5351bx_setfreq(2, SECOND_OSC_USB - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
appliedTuneValue = if1TuneValue;
//In the LSB state, the optimum reception value was found. To apply to USB, 3Khz decrease is required.
if (sdrModeOn && (inTx == 0))
appliedTuneValue -= 15; //decrease 1.55Khz
//if (isUSB)
if (cwMode == 2 || (cwMode == 0 && (isUSB)))
appliedTuneValue -= 30; //decrease 3Khz
}
//if1Tune RX, TX Enabled, ATT : only RX Mode
//The IF Tune shall be measured at the LSB. Then, move the 3Khz down for USB.
long if1AdjustValue = ((inTx == 0) ? (attLevel * 100) : 0) + (appliedTuneValue * 100); //if1Tune RX, TX Enabled, ATT : only RX Mode //5600
//for DIY uBITX (custom filter)
if ((advancedFreqOption1 & 0x80) != 0x00) //Reverse IF Tune (- Value for DIY uBITX)
if1AdjustValue *= -1;
if (sdrModeOn && (inTx == 0)) //IF SDR MODE
{
//Fixed Frequency SDR (Default Frequency : 32Mhz, available change sdr Frequency by uBITX Manager)
//Dynamic Frequency is for SWL without cat
//byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency0, Bit3 : dynamic sdr frequency1, bit 7: IFTune_Value Reverse for DIY uBITX
long moveFrequency = 0;
//7 6 5 4 3 2 1 0
// _ _ <-- SDR Freuqncy Option
byte sdrOption = (advancedFreqOption1 >> 2) & 0x03;
if (sdrOption == 1) // SDR Frequency + frequenc
{
//example : offset Freq : 20 Mhz and frequency = 7.080 => 27.080 Mhz
//example : offset Freq : 0 Mhz and frequency = 7.080 => 7.080 Mhz
//for available HF, SDR
moveFrequency = f;
}
else{
si5351bx_setfreq(2, SECOND_OSC_LSB + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
else if (sdrOption == 2) //Mhz move
{
//Offset Frequency + Mhz,
//Example : Offset Frequency : 30Mhz and current Frequncy is 7.080 => 37.080Mhz
// Offset Frequency : 30Mhz and current Frequncy is 14.074 => 34.074Mhz
moveFrequency = (f % 10000000);
}
else if (sdrOption == 3) //Khz move
{
//Offset Frequency + Khz,
//Example : Offset Frequency : 30Mhz and current Frequncy is 7.080 => 30.080Mhz
// Offset Frequency : 30Mhz and current Frequncy is 14.074 => 30.074Mhz
moveFrequency = (f % 1000000);
}
si5351bx_setfreq(2, 44991500 + if1AdjustValue + f);
si5351bx_setfreq(1, 44991500
+ if1AdjustValue
+ SDR_Center_Freq
//+ ((advancedFreqOption1 & 0x04) == 0x00 ? 0 : (f % 10000000))
+ moveFrequency
+ 2390);
}
else
{
if (cwMode == 1){ //CWL
si5351bx_setfreq(2, SECOND_OSC_LSB + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
if (cwMode == 1 || (cwMode == 0 && (!isUSB))) //cwl or lsb
{
//CWL(cwMode == 1) or LSB (cwMode == 0 && (!isUSB))
si5351bx_setfreq(2, SECOND_OSC_LSB + if1AdjustValue + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB + if1AdjustValue);
}
else{ //CWU
si5351bx_setfreq(2, SECOND_OSC_USB - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
else //cwu or usb
{
//CWU (cwMode == 2) or USB (cwMode == 0 and isUSB)
si5351bx_setfreq(2, SECOND_OSC_USB + if1AdjustValue - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB + if1AdjustValue);
}
}
@@ -606,13 +518,6 @@ void stopTx(void){
inTx = 0;
digitalWrite(TX_RX, 0); //turn off the tx
/*
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
*/
SetCarrierFreq();
if (ritOn)
@@ -669,7 +574,7 @@ void ritDisable(){
* flip the T/R line to T and update the display to denote transmission
*/
void checkPTT(){
void checkPTT(){
//we don't check for ptt when transmitting cw
if (cwTimeout > 0)
return;
@@ -678,11 +583,172 @@ void checkPTT(){
startTx(TX_SSB, 1);
delay(50); //debounce the PTT
}
if (digitalRead(PTT) == 1 && inTx == 1)
stopTx();
}
#ifdef EXTEND_KEY_GROUP1
void checkButton(){
char currentBandIndex = -1;
//only if the button is pressed
int keyStatus = getBtnStatus();
if (keyStatus == -1)
return;
delay(50);
keyStatus = getBtnStatus(); //will be remove 3 lines
if (keyStatus == -1)
return;
if (keyStatus == FKEY_PRESS) //Menu Key
doMenu();
else if (keyStatus <= FKEY_TYPE_MAX) //EXTEND KEY GROUP #1
{
switch(keyStatus)
{
case FKEY_MODE :
if (cwMode == 1)
{
cwMode = 2;
}
else if (cwMode == 2)
{
cwMode = 0;
isUSB = 0;
}
else if (isUSB == 0)
{
isUSB = 1;
}
else
{
cwMode = 1;
}
break;
case FKEY_BANDUP :
case FKEY_BANDDOWN :
//Save Band Information
if (tuneTXType == 2 || tuneTXType == 3 || tuneTXType == 102 || tuneTXType == 103) { //only ham band move
currentBandIndex = getIndexHambanBbyFreq(frequency);
if (currentBandIndex >= 0) {
saveBandFreqByIndex(frequency, modeToByte(), currentBandIndex);
}
}
setNextHamBandFreq(frequency, keyStatus == FKEY_BANDDOWN ? -1 : 1); //Prior Band
break;
case FKEY_STEP :
if (++tuneStepIndex > 5)
tuneStepIndex = 1;
EEPROM.put(TUNING_STEP, tuneStepIndex);
printLine2ClearAndUpdate();
break;
case FKEY_VFOCHANGE :
menuVfoToggle(1); //Vfo Toggle
break;
case FKEY_SPLIT :
menuSplitOnOff(1);
break;
case FKEY_TXOFF:
menuTxOnOff(1, 0x01);
break;
case FKEY_SDRMODE :
menuSDROnOff(1);
break;
case FKEY_RIT :
menuRitToggle(1);
break;
}
/*
if (keyStatus == FKEY_MODE) //Press Mode Key
{
if (cwMode == 1)
{
cwMode = 2;
}
else if (cwMode == 2)
{
cwMode = 0;
isUSB = 0;
}
else if (isUSB == 0)
{
isUSB = 1;
}
else
{
cwMode = 1;
}
}
else if (keyStatus == FKEY_BANDUP || keyStatus == FKEY_BANDDOWN) //Press Mode Key
{
char currentBandIndex = -1;
//Save Band Information
if (tuneTXType == 2 || tuneTXType == 3 || tuneTXType == 102 || tuneTXType == 103) { //only ham band move
currentBandIndex = getIndexHambanBbyFreq(frequency);
if (currentBandIndex >= 0) {
saveBandFreqByIndex(frequency, modeToByte(), currentBandIndex);
}
}
setNextHamBandFreq(frequency, keyStatus == FKEY_BANDDOWN ? -1 : 1); //Prior Band
}
else if (keyStatus == FKEY_STEP) //FKEY_BANDUP
{
if (++tuneStepIndex > 5)
tuneStepIndex = 1;
EEPROM.put(TUNING_STEP, tuneStepIndex);
printLine2ClearAndUpdate();
}
else if (keyStatus == FKEY_VFOCHANGE)
{
menuVfoToggle(1); //Vfo Toggle
}
else if (keyStatus == FKEY_SPLIT)
{
menuSplitOnOff(1);
}
else if (keyStatus == FKEY_TXOFF)
{
menuTxOnOff(1, 0x01);
}
else if (keyStatus == FKEY_SDRMODE)
{
menuSDROnOff(1);
}
else if (keyStatus == FKEY_RIT)
{
menuRitToggle(1);
}
*/
FrequencyToVFO(1);
SetCarrierFreq();
setFrequency(frequency);
//delay_background(delayTime, 0);
updateDisplay();
}
//wait for the button to go up again
while(keyStatus == getBtnStatus()) {
delay(10);
Check_Cat(0);
}
//delay(50);//debounce
}
#else
void checkButton(){
//only if the button is pressed
if (!btnDown())
@@ -700,7 +766,7 @@ void checkButton(){
}
//delay(50);//debounce
}
#endif
/************************************
Replace function by KD8CEC
@@ -862,7 +928,7 @@ void initSettings(){
printLineF(1, F("Init EEProm..."));
//initial all eeprom
for (unsigned int i = 32; i < 1024; i++) //protect Master_cal, usb_cal
for (unsigned int i = 64; i < 1024; i++) //protect Master_cal, usb_cal
EEPROM.write(i, 0);
//Write Firmware ID
@@ -872,8 +938,17 @@ void initSettings(){
}
//Version Write for Memory Management Software
if (EEPROM.read(VERSION_ADDRESS) != VERSION_NUM)
EEPROM.write(VERSION_ADDRESS, VERSION_NUM);
if (EEPROM.read(VERSION_ADDRESS) != FIRMWARE_VERSION_NUM)
EEPROM.write(VERSION_ADDRESS, FIRMWARE_VERSION_NUM);
//Backup Calibration Setting from Factory Setup
//Check Factory Setting Backup Y/N
if (EEPROM.read(FACTORY_BACKUP_YN) != 0x13) {
EEPROM.write(FACTORY_BACKUP_YN, 0x13); //Set Backup Y/N
for (unsigned int i = 0; i < 32; i++) //factory setting range
EEPROM.write(FACTORY_VALUES + i, EEPROM.read(i)); //0~31 => 65~96
}
EEPROM.get(CW_CAL, cwmCarrier);
@@ -901,12 +976,22 @@ void initSettings(){
else
keyerControl |= IAMBICB;
}
EEPROM.get(COMMON_OPTION0, commonOption0);
EEPROM.get(DISPLAY_OPTION1, displayOption1);
EEPROM.get(DISPLAY_OPTION2, displayOption2);
for (byte i = 0; i < 8; i++) {
sMeterLevels[i + 1] = EEPROM.read(S_METER_LEVELS + i);
}
//KeyValues
for (byte i = 0; i < 16; i++) {
KeyValues[i][0] = EEPROM.read(EXTENDED_KEY_RANGE + (i * 3)); //RANGE : Start Value
KeyValues[i][1] = EEPROM.read(EXTENDED_KEY_RANGE + (i * 3) + 1); //RANGE : End Value
KeyValues[i][2] = EEPROM.read(EXTENDED_KEY_RANGE + (i * 3) + 2); //KEY TYPE
}
//User callsign information
if (EEPROM.read(USER_CALLSIGN_KEY) == 0x59)
userCallsignLength = EEPROM.read(USER_CALLSIGN_LEN); //MAXIMUM 18 LENGTH
@@ -964,10 +1049,10 @@ void initSettings(){
{
//Default Setting
arTuneStep[0] = 10;
arTuneStep[1] = 20;
arTuneStep[2] = 50;
arTuneStep[3] = 100;
arTuneStep[4] = 200;
arTuneStep[1] = 50;
arTuneStep[2] = 100;
arTuneStep[3] = 500;
arTuneStep[4] = 1000;
}
if (tuneStepIndex == 0) //New User
@@ -1015,6 +1100,25 @@ void initSettings(){
isIFShift = ifShiftValue != 0;
}
//Advanced Freq control
EEPROM.get(ADVANCED_FREQ_OPTION1, advancedFreqOption1);
//byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency0, Bit3 : dynamic sdr frequency1, bit 7: IFTune_Value Reverse for DIY uBITX
if ((advancedFreqOption1 & 0x01) != 0x00)
{
EEPROM.get(IF1_CAL, if1TuneValue);
//Stored Enabled SDR Mode
if ((advancedFreqOption1 & 0x02) != 0x00)
{
EEPROM.get(ENABLE_SDR, sdrModeOn);
}
}
EEPROM.get(SDR_FREQUNCY, SDR_Center_Freq);
//if (SDR_Center_Freq == 0)
// SDR_Center_Freq = 32000000;
//default Value (for original hardware)
if (cwAdcSTFrom >= cwAdcSTTo)
{
@@ -1121,6 +1225,40 @@ void initPorts(){
digitalWrite(CW_KEY, 0);
}
//Recovery Factory Setting Values
void factory_Recovery()
{
if (EEPROM.read(FACTORY_BACKUP_YN) != 0x13)
return;
if (digitalRead(PTT) == 0) //Do not proceed if PTT is pressed to prevent malfunction.
return;
printLineF2(F("Factory Recovery"));
delay(2000);
if (!btnDown())
return;
printLineF2(F("IF you continue"));
printLineF1(F("release the key"));
delay(2000);
if (btnDown())
return;
printLineF1(F("Press Key PTT"));
delay(2000);
if (digitalRead(PTT) == 0)
{
for (unsigned int i = 0; i < 32; i++) //factory setting range
EEPROM.write(i, EEPROM.read(FACTORY_VALUES + i)); //65~96 => 0~31
//printLineF2(F("CompleteRecovery"));
printLineF1(F("Power Reset!"));
while(1); //Hold
}
}
void setup()
{
/*
@@ -1135,19 +1273,33 @@ void setup()
//while(1);
//end section of test
*/
//Load I2C LCD Address for I2C LCD
//I2C LCD Parametere
#ifdef USE_I2C_LCD
EEPROM.get(I2C_LCD_MASTER, I2C_LCD_MASTER_ADDRESS);
EEPROM.get(I2C_LCD_SECOND, I2C_LCD_SECOND_ADDRESS);
if (I2C_LCD_MASTER_ADDRESS < 0x10 || I2C_LCD_MASTER_ADDRESS > 0xF0)
I2C_LCD_MASTER_ADDRESS = I2C_LCD_MASTER_ADDRESS_DEFAULT;
if (I2C_LCD_SECOND_ADDRESS < 0x10 || I2C_LCD_SECOND_ADDRESS > 0xF0)
I2C_LCD_SECOND_ADDRESS = I2C_LCD_SECOND_ADDRESS_DEFAULT;
#endif
//Serial.begin(9600);
lcd.begin(16, 2);
printLineF(1, F("CE v1.061"));
LCD_Init();
//printLineF(1, FIRMWARE_VERSION_INFO);
DisplayVersionInfo(FIRMWARE_VERSION_INFO);
Init_Cat(38400, SERIAL_8N1);
initMeter(); //not used in this build
initSettings();
if (userCallsignLength > 0 && ((userCallsignLength & 0x80) == 0x80)) {
userCallsignLength = userCallsignLength & 0x7F;
printLineFromEEPRom(0, 0, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
delay(500);
//printLineFromEEPRom(0, 0, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
//delay(500);
DisplayCallsign(userCallsignLength);
}
else {
printLineF(0, F("uBITX v0.20"));
@@ -1157,6 +1309,11 @@ void setup()
initPorts();
#ifdef FACTORY_RECOVERY_BOOTUP
if (btnDown())
factory_Recovery();
#endif
byteToMode(vfoA_mode, 0);
initOscillators();
@@ -1165,8 +1322,11 @@ void setup()
setFrequency(vfoA);
updateDisplay();
#ifdef ENABLE_FACTORYALIGN
if (btnDown())
factory_alignment();
#endif
}
//Auto save Frequency and Mode with Protected eeprom life by KD8CEC

134
ubitx_20/ubitx_eemap.h Normal file
View File

@@ -0,0 +1,134 @@
/*************************************************************************
header file for EEProm Address Map by KD8CEC
It must be protected to protect the factory calibrated calibration.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifndef _UBITX_EEPOM_HEADER__
#define _UBITX_EEPOM_HEADER__
//==============================================================================
// Factory-shipped EEProm address
// (factory Firmware)
// Address : 0 ~ 31
//==============================================================================
#define MASTER_CAL 0
#define LSB_CAL 4
#define USB_CAL 8
#define SIDE_TONE 12
//these are ids of the vfos as well as their offset into the eeprom storage, don't change these 'magic' values
#define VFO_A 16
#define VFO_B 20
#define CW_SIDETONE 24
#define CW_SPEED 28
//==============================================================================
// The spare space available in the original firmware #1
// Address : 32 ~ 63
//==============================================================================
#define RESERVE_FOR_FACTORY1 32
//==============================================================================
// The spare space available in the original firmware #2
// (Enabled if the EEProm address is insufficient)
// Address : 64 ~ 100
//==============================================================================
#define RESERVE_FOR_FACTORY2 64 //use Factory backup from Version 1.075
#define FACTORY_BACKUP_YN 64 //Check Backup //Magic : 0x13
#define FACTORY_VALUES 65 //65 ~ 65 + 32
//==============================================================================
// KD8CEC EEPROM MAP
// Address : 101 ~ 1023
// 256 is the base address
// 256 ~ 1023 (EEProm Section #1)
// 255 ~ 101 (EEProm Section #2)
//==============================================================================
//0x00 : None, 0x01 : MODE, 0x02:BAND+, 0x03:BAND-, 0x04:TUNE_STEP, 0x05:VFO Toggle, 0x06:SplitOn/Off, 0x07:TX/ON-OFF, 0x08:SDR Mode On / Off, 0x09:Rit Toggle
#define EXTENDED_KEY_RANGE 140 //Extended Key => Set : Start Value, End Value, Key Type, 16 Set (3 * 16 = 48)
#define I2C_LCD_MASTER 190
#define I2C_LCD_SECOND 191
#define S_METER_LEVELS 230 //LEVEL0 ~ LEVEL7
#define ADVANCED_FREQ_OPTION1 240 //Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency
#define IF1_CAL 241
#define ENABLE_SDR 242
#define SDR_FREQUNCY 243
#define CW_CAL 252
#define VFO_A_MODE 256
#define VFO_B_MODE 257
#define CW_DELAY 258
#define CW_START 259
#define HAM_BAND_COUNT 260 //
#define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) //1STEP :
//for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
#define CW_ADC_ST_FROM 349 //CW ADC Range STRAIGHT KEY from (Lower 8 bit)
#define CW_ADC_ST_TO 350 //CW ADC Range STRAIGHT KEY to (Lower 8 bit)
#define CW_ADC_DOT_FROM 351 //CW ADC Range DOT from (Lower 8 bit)
#define CW_ADC_DOT_TO 352 //CW ADC Range DOT to (Lower 8 bit)
#define CW_ADC_MOST_BIT2 353 //most 2bits of BOTH_TO, BOTH_FROM, DASH_TO, DASH_FROM
#define CW_ADC_DASH_FROM 354 //CW ADC Range DASH from (Lower 8 bit)
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
#define CW_KEY_TYPE 358
#define CW_DISPLAY_SHIFT 359 //Transmits on CWL, CWU Mode, LCD Frequency shifts Sidetone Frequency.
//(7:Enable / Disable //0: enable, 1:disable, (default is applied shift)
//6 : 0 : Adjust Pulus, 1 : Adjust Minus
//0~5: Adjust Value : * 10 = Adjust Value (0~300)
#define COMMON_OPTION0 360 //0: Confirm : CW Frequency Shift
//1 : IF Shift Save
#define IF_SHIFTVALUE 363
#define DISPLAY_OPTION1 361 //Display Option1
#define DISPLAY_OPTION2 362 //Display Option2
#define WSPR_COUNT 443 //WSPR_MESSAGE_COUNT
#define WSPR_MESSAGE1 444 //
#define WSPR_MESSAGE2 490 //
#define WSPR_MESSAGE3 536 //
#define WSPR_MESSAGE4 582 //
#define CHANNEL_FREQ 630 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define CHANNEL_DESC 710 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define RESERVE3 770 //Reserve3 between Channel and Firmware id check
//Check Firmware type and version
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
#define VERSION_ADDRESS 779 //check Firmware version
//USER INFORMATION
#define USER_CALLSIGN_KEY 780 //0x59
#define USER_CALLSIGN_LEN 781 //1BYTE (OPTION + LENGTH) + CALLSIGN (MAXIMUM 18)
#define USER_CALLSIGN_DAT 782 //CALL SIGN DATA //direct EEPROM to LCD basic offset
//AUTO KEY STRUCTURE
//AUTO KEY USE 800 ~ 1023
#define CW_AUTO_MAGIC_KEY 800 //0x73
#define CW_AUTO_COUNT 801 //0 ~ 255
#define CW_AUTO_DATA 803 //[INDEX, INDEX, INDEX,DATA,DATA, DATA (Positon offset is CW_AUTO_DATA
#define CW_DATA_OFSTADJ CW_AUTO_DATA - USER_CALLSIGN_DAT //offset adjust for ditect eeprom to lcd (basic offset is USER_CALLSIGN_DAT
#define CW_STATION_LEN 1023 //value range : 4 ~ 30
#endif //end of if header define

View File

@@ -1,254 +0,0 @@
/*************************************************************************
KD8CEC's uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
char line2Buffer[16];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
void updateLine2Buffer(char isDirectCall)
{
unsigned long tmpFreq = 0;
if (isDirectCall == 0)
{
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//======================================================
//other VFO display
//======================================================
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'k';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'k';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
} //check direct call by encoder
if (isIFShift)
{
if (isDirectCall == 1)
for (int i = 0; i < 16; i++)
line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
//if (ifShiftValue == 0)
//{
/*
line2Buffer[10] = 'S';
line2Buffer[11] = ':';
line2Buffer[12] = 'O';
line2Buffer[13] = 'F';
line2Buffer[14] = 'F';
*/
//}
//else
//{
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
//}
if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step display
{
if (isDirectCall != 0)
return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
//if (isStepKhz == 1)
// line2Buffer[10] = 'k';
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//if (
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue); //call original source code
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
lcd.setCursor(drawPosition, lineNumber);
for (int i = 0; i < 6; i++) //meter 5 + +db 1 = 6
lcd.write(lcdMeter[i]);
}
}
byte testValue = 0;
char checkCount = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 7);
if (testValue > 30)
testValue = 0;
*/
}
}
}

64
ubitx_20/ubitx_lcd.h Normal file
View File

@@ -0,0 +1,64 @@
/*************************************************************************
header file for LCD by KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifndef _UBITX_LCD_HEADER__
#define _UBITX_LCD_HEADER__
//Common Defines *********************************************************
#define LCD_CLEARDISPLAY 0x01
#define LCD_RETURNHOME 0x02
#define LCD_ENTRYMODESET 0x04
#define LCD_DISPLAYCONTROL 0x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET 0x20
#define LCD_SETCGRAMADDR 0x40
#define LCD_SETDDRAMADDR 0x80
// flags for display entry mode
#define LCD_ENTRYRIGHT 0x00
#define LCD_ENTRYLEFT 0x02
#define LCD_ENTRYSHIFTINCREMENT 0x01
#define LCD_ENTRYSHIFTDECREMENT 0x00
// flags for display on/off control
#define LCD_DISPLAYON 0x04
#define LCD_DISPLAYOFF 0x00
#define LCD_CURSORON 0x02
#define LCD_CURSOROFF 0x00
#define LCD_BLINKON 0x01
#define LCD_BLINKOFF 0x00
// flags for display/cursor shift
#define LCD_DISPLAYMOVE 0x08
#define LCD_CURSORMOVE 0x00
#define LCD_MOVERIGHT 0x04
#define LCD_MOVELEFT 0x00
// flags for function set
#define LCD_8BITMODE 0x10
#define LCD_4BITMODE 0x00
#define LCD_2LINE 0x08
#define LCD_1LINE 0x00
#define LCD_5x10DOTS 0x04
#define LCD_5x8DOTS 0x00
// flags for backlight control
#define LCD_BACKLIGHT 0x08
#define LCD_NOBACKLIGHT 0x00
#endif //end of if header define

789
ubitx_20/ubitx_lcd_1602.ino Normal file
View File

@@ -0,0 +1,789 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD1602 Parrel
1.This is the display code for the default LCD mounted in uBITX.
2.Display related functions of uBITX. Some functions moved from uBITX_Ui.
3.uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#include "ubitx_lcd.h"
//========================================================================
//Begin of TinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602P
/*************************************************************************
LCD1602_TINY Library for 16 x 2 LCD
Referecnce Source : LiquidCrystal.cpp
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
**************************************************************************/
#define LCD_Command(x) (LCD_Send(x, LOW))
#define LCD_Write(x) (LCD_Send(x, HIGH))
#define UBITX_DISPLAY_LCD1602_BASE
//Define connected PIN
#define LCD_PIN_RS 8
#define LCD_PIN_EN 9
uint8_t LCD_PIN_DAT[4] = {10, 11, 12, 13};
void write4bits(uint8_t value)
{
for (int i = 0; i < 4; i++)
digitalWrite(LCD_PIN_DAT[i], (value >> i) & 0x01);
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(1);
digitalWrite(LCD_PIN_EN, HIGH);
delayMicroseconds(1); // enable pulse must be >450ns
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(100); // commands need > 37us to settle
}
void LCD_Send(uint8_t value, uint8_t mode)
{
digitalWrite(LCD_PIN_RS, mode);
write4bits(value>>4);
write4bits(value);
}
void LCD1602_Init()
{
pinMode(LCD_PIN_RS, OUTPUT);
pinMode(LCD_PIN_EN, OUTPUT);
for (int i = 0; i < 4; i++)
pinMode(LCD_PIN_DAT[i], OUTPUT);
delayMicroseconds(50);
// Now we pull both RS and R/W low to begin commands
digitalWrite(LCD_PIN_RS, LOW);
digitalWrite(LCD_PIN_EN, LOW);
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(2000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
}
#endif
//========================================================================
//End of TinyLCD Library by KD8CEC
//========================================================================
//========================================================================
//Begin of I2CTinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602I
#include <Wire.h>
/*************************************************************************
I2C Tiny LCD Library
Referecnce Source : LiquidCrystal_I2C.cpp // Based on the work by DFRobot
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal_I2C Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
Ian KD8CEC
**************************************************************************/
#define UBITX_DISPLAY_LCD1602_BASE
#define En B00000100 // Enable bit
#define Rw B00000010 // Read/Write bit
#define Rs B00000001 // Register select bit
#define LCD_Command(x) (LCD_Send(x, 0))
#define LCD_Write(x) (LCD_Send(x, Rs))
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _numlines;
uint8_t _cols;
uint8_t _rows;
uint8_t _backlightval;
#define printIIC(args) Wire.write(args)
void expanderWrite(uint8_t _data)
{
Wire.beginTransmission(_Addr);
printIIC((int)(_data) | _backlightval);
Wire.endTransmission();
}
void pulseEnable(uint8_t _data){
expanderWrite(_data | En); // En high
delayMicroseconds(1); // enable pulse must be >450ns
expanderWrite(_data & ~En); // En low
delayMicroseconds(50); // commands need > 37us to settle
}
void write4bits(uint8_t value)
{
expanderWrite(value);
pulseEnable(value);
}
void LCD_Send(uint8_t value, uint8_t mode)
{
uint8_t highnib=value&0xf0;
uint8_t lownib=(value<<4)&0xf0;
write4bits((highnib)|mode);
write4bits((lownib)|mode);
}
// Turn the (optional) backlight off/on
void noBacklight(void) {
_backlightval=LCD_NOBACKLIGHT;
expanderWrite(0);
}
void backlight(void) {
_backlightval=LCD_BACKLIGHT;
expanderWrite(0);
}
void LCD1602_Init()
{
//I2C Init
_Addr = I2C_LCD_MASTER_ADDRESS;
_cols = 16;
_rows = 2;
_backlightval = LCD_NOBACKLIGHT;
Wire.begin();
delay(50);
// Now we pull both RS and R/W low to begin commands
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
delay(1000);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
}
/*
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row * 0x40)); //0 : 0x00, 1 : 0x40, only for 16 x 2 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
*/
#endif
//========================================================================
//End of I2CTinyLCD Library by KD8CEC
//========================================================================
//========================================================================
// 16 X 02 LCD Routines
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602_BASE
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
#define OPTION_SKINNYBARS
char c[30], b[30];
char printBuff[2][17]; //mirrors what is showing on the two lines of the display
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row * 0x40)); //0 : 0x00, 1 : 0x40, only for 16 x 2 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
void LCD_Init(void)
{
LCD1602_Init();
initMeter(); //for Meter Display
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 16; i++) { // add white spaces until the end of the 16 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[17];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 17; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 16; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[17];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
//warning : unused parameter 'displayType' <-- ignore, this is reserve
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'M';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'M';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
if (isIFShift)
{
// if (isDirectCall == 1)
// for (int i = 0; i < 16; i++)
// line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
//if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step & Key Type display
{
//if (isDirectCall != 0)
// return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (sdrModeOn == 1)
{
line2Buffer[13] = 'S';
line2Buffer[14] = 'D';
line2Buffer[15] = 'R';
}
else if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue);
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
LCD_SetCursor(drawPosition, lineNumber);
LCD_Write(lcdMeter[0]);
LCD_Write(lcdMeter[1]);
LCD_Write(lcdMeter[2]);
}
}
char checkCount = 0;
char checkCountSMeter = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
}
//S-Meter Display
if (((displayOption1 & 0x08) == 0x08 && (sdrModeOn == 0)) && (++checkCountSMeter > SMeterLatency))
{
int newSMeter;
//VK2ETA S-Meter from MAX9814 TC pin / divide 4 by KD8CEC for reduce EEPromSize
newSMeter = analogRead(ANALOG_SMETER) / 4;
//Faster attack, Slower release
//currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10) / 4;
currentSMeter = newSMeter;
scaledSMeter = 0;
for (byte s = 8; s >= 1; s--) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
DisplayMeter(0, scaledSMeter, 13);
checkCountSMeter = 0; //Reset Latency time
} //end of S-Meter
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(byte textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(textIndex));
LCD_Write(':');
}
void DisplayCallsign(byte callSignLength)
{
printLineFromEEPRom(0, 0, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
//delay(500);
}
void DisplayVersionInfo(const __FlashStringHelper * fwVersionInfo)
{
printLineF(1, fwVersionInfo);
}
#endif

View File

@@ -0,0 +1,727 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD1602 Dual LCD by KD8CEC
1.This is the display code for the default LCD mounted in uBITX.
2.Display related functions of uBITX. Some functions moved from uBITX_Ui.
3.uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#include "ubitx_lcd.h"
//========================================================================
//Begin of I2CTinyLCD Library for Dual LCD by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD1602I_DUAL
#include <Wire.h>
/*************************************************************************
I2C Tiny LCD Library
Referecnce Source : LiquidCrystal_I2C.cpp // Based on the work by DFRobot
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal_I2C Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
Ian KD8CEC
**************************************************************************/
#define UBITX_DISPLAY_LCD1602_BASE
#define En B00000100 // Enable bit
#define Rw B00000010 // Read/Write bit
#define Rs B00000001 // Register select bit
#define LCD_Command(x) (LCD_Send(x, 0))
#define LCD_Write(x) (LCD_Send(x, Rs))
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _numlines;
uint8_t _cols;
uint8_t _rows;
uint8_t _backlightval;
#define printIIC(args) Wire.write(args)
void expanderWrite(uint8_t _data)
{
Wire.beginTransmission(_Addr);
printIIC((int)(_data) | _backlightval);
Wire.endTransmission();
}
void pulseEnable(uint8_t _data){
expanderWrite(_data | En); // En high
delayMicroseconds(1); // enable pulse must be >450ns
expanderWrite(_data & ~En); // En low
delayMicroseconds(50); // commands need > 37us to settle
}
void write4bits(uint8_t value)
{
expanderWrite(value);
pulseEnable(value);
}
void LCD_Send(uint8_t value, uint8_t mode)
{
uint8_t highnib=value&0xf0;
uint8_t lownib=(value<<4)&0xf0;
write4bits((highnib)|mode);
write4bits((lownib)|mode);
}
// Turn the (optional) backlight off/on
void noBacklight(void) {
_backlightval=LCD_NOBACKLIGHT;
expanderWrite(0);
}
void backlight(void) {
_backlightval=LCD_BACKLIGHT;
expanderWrite(0);
}
void LCD1602_Dual_Init()
{
//I2C Init
_cols = 16;
_rows = 2;
_backlightval = LCD_NOBACKLIGHT;
Wire.begin();
delay(50);
// Now we pull both RS and R/W low to begin commands
_Addr = I2C_LCD_MASTER_ADDRESS;
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
_Addr = I2C_LCD_SECOND_ADDRESS;
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
delay(1000);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
_Addr = I2C_LCD_MASTER_ADDRESS;
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
_Addr = I2C_LCD_SECOND_ADDRESS;
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
//Change to Default LCD (Master)
_Addr = I2C_LCD_MASTER_ADDRESS;
}
//========================================================================
// 16 X 02 LCD Routines
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
const int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row_offsets[row])); //0 : 0x00, 1 : 0x40, only for 20 x 4 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
//#define OPTION_SKINNYBARS
char c[30], b[30];
char printBuff[4][20]; //mirrors what is showing on the two lines of the display
void LCD_Init(void)
{
LCD1602_Dual_Init();
_Addr = I2C_LCD_SECOND_ADDRESS;
initMeter(); //for Meter Display //when dual LCD, S.Meter on second LCD
_Addr = I2C_LCD_MASTER_ADDRESS;
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 20; i++) { // add white spaces until the end of the 20 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[21];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 21; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 20
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 20; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
// i also Very TNX Purdum for good source code
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[20];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
//warning : unused parameter 'displayType' <-- ignore, this is reserve
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
memset(&line2Buffer[10], ' ', 10);
if (isIFShift)
{
line2Buffer[6] = 'M';
line2Buffer[7] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
for (int i = 12; i < 17; i++)
{
if (line2Buffer[i] == 0)
line2Buffer[i] = ' ';
}
} // end of display IF
else // step & Key Type display
{
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 13; i >= 11 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[14] = 'H';
line2Buffer[15] = 'z';
}
}
//line2Buffer[17] = ' ';
/* ianlee
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[18] = 'S';
line2Buffer[19] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'A';
}
else
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'B';
}
*/
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue);
LCD_SetCursor(drawPosition, 0);
LCD_Write('S');
LCD_Write(':');
for (int i = 0; i < 7; i++)
LCD_Write(lcdMeter[i]);
}
}
char checkCount = 0;
char checkCountSMeter = 0;
char beforeKeyType = -1;
char displaySDRON = 0;
//execute interval : 0.25sec
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
//check change CW Key Type
if (beforeKeyType != cwKeyType)
{
_Addr = I2C_LCD_SECOND_ADDRESS;
LCD_SetCursor(10, 0);
LCD_Write('K');
LCD_Write('E');
LCD_Write('Y');
LCD_Write(':');
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
LCD_Write('S');
LCD_Write('T');
}
else if (cwKeyType == 1)
{
LCD_Write('I');
LCD_Write('A');
}
else
{
LCD_Write('I');
LCD_Write('B');
}
beforeKeyType = cwKeyType;
_Addr = I2C_LCD_MASTER_ADDRESS;
} //Display Second Screen
}
}
//EX for Meters
//S-Meter Display
_Addr = I2C_LCD_SECOND_ADDRESS;
if (sdrModeOn == 1)
{
if (displaySDRON == 0) //once display
{
displaySDRON = 1;
LCD_SetCursor(0, 0);
LCD_Write('S');
LCD_Write('D');
LCD_Write('R');
LCD_Write(' ');
LCD_Write('M');
LCD_Write('O');
LCD_Write('D');
LCD_Write('E');
}
}
else if (((displayOption1 & 0x08) == 0x08) && (++checkCountSMeter > 3))
{
int newSMeter;
displaySDRON = 0;
//VK2ETA S-Meter from MAX9814 TC pin / divide 4 by KD8CEC for reduce EEPromSize
newSMeter = analogRead(ANALOG_SMETER) / 4;
//Faster attack, Slower release
//currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10);
//currentSMeter = (currentSMeter * 3 + newSMeter * 7) / 10; //remarked becaused of have already Latency time
currentSMeter = newSMeter;
scaledSMeter = 0;
for (byte s = 8; s >= 1; s--) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
DisplayMeter(0, scaledSMeter, 0);
checkCountSMeter = 0;
} //end of S-Meter
_Addr = I2C_LCD_MASTER_ADDRESS;
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(byte textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(textIndex));
LCD_Write(':');
}
void DisplayCallsign(byte callSignLength)
{
_Addr = I2C_LCD_SECOND_ADDRESS;
printLineFromEEPRom(1, 16 - userCallsignLength, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
_Addr = I2C_LCD_MASTER_ADDRESS;
}
void DisplayVersionInfo(const __FlashStringHelper * fwVersionInfo)
{
_Addr = I2C_LCD_SECOND_ADDRESS;
printLineF(1, fwVersionInfo);
_Addr = I2C_LCD_MASTER_ADDRESS;
}
#endif

742
ubitx_20/ubitx_lcd_2004.ino Normal file
View File

@@ -0,0 +1,742 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD2004 Parrel
1.This is the display code for the default LCD mounted in uBITX.
2.Display related functions of uBITX. Some functions moved from uBITX_Ui.
3.uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#include "ubitx.h"
#include "ubitx_lcd.h"
//========================================================================
//Begin of TinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD2004P
/*************************************************************************
LCD2004TINY Library for 20 x 4 LCD
Referecnce Source : LiquidCrystal.cpp
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
**************************************************************************/
#define LCD_Command(x) (LCD_Send(x, LOW))
#define LCD_Write(x) (LCD_Send(x, HIGH))
#define UBITX_DISPLAY_LCD2004_BASE
//Define connected PIN
#define LCD_PIN_RS 8
#define LCD_PIN_EN 9
uint8_t LCD_PIN_DAT[4] = {10, 11, 12, 13};
void write4bits(uint8_t value)
{
for (int i = 0; i < 4; i++)
digitalWrite(LCD_PIN_DAT[i], (value >> i) & 0x01);
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(1);
digitalWrite(LCD_PIN_EN, HIGH);
delayMicroseconds(1); // enable pulse must be >450ns
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(100); // commands need > 37us to settle
}
void LCD_Send(uint8_t value, uint8_t mode)
{
digitalWrite(LCD_PIN_RS, mode);
write4bits(value>>4);
write4bits(value);
}
void LCD2004_Init()
{
pinMode(LCD_PIN_RS, OUTPUT);
pinMode(LCD_PIN_EN, OUTPUT);
for (int i = 0; i < 4; i++)
pinMode(LCD_PIN_DAT[i], OUTPUT);
delayMicroseconds(50);
// Now we pull both RS and R/W low to begin commands
digitalWrite(LCD_PIN_RS, LOW);
digitalWrite(LCD_PIN_EN, LOW);
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(2000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
}
#endif
//========================================================================
//End of TinyLCD Library by KD8CEC
//========================================================================
//========================================================================
//Begin of I2CTinyLCD Library by KD8CEC
//========================================================================
#ifdef UBITX_DISPLAY_LCD2004I
#include <Wire.h>
/*************************************************************************
I2C Tiny LCD Library
Referecnce Source : LiquidCrystal_I2C.cpp // Based on the work by DFRobot
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal_I2C Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
Ian KD8CEC
**************************************************************************/
#define UBITX_DISPLAY_LCD2004_BASE
#define En B00000100 // Enable bit
#define Rw B00000010 // Read/Write bit
#define Rs B00000001 // Register select bit
#define LCD_Command(x) (LCD_Send(x, 0))
#define LCD_Write(x) (LCD_Send(x, Rs))
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _numlines;
uint8_t _cols;
uint8_t _rows;
uint8_t _backlightval;
#define printIIC(args) Wire.write(args)
void expanderWrite(uint8_t _data)
{
Wire.beginTransmission(_Addr);
printIIC((int)(_data) | _backlightval);
Wire.endTransmission();
}
void pulseEnable(uint8_t _data){
expanderWrite(_data | En); // En high
delayMicroseconds(1); // enable pulse must be >450ns
expanderWrite(_data & ~En); // En low
delayMicroseconds(50); // commands need > 37us to settle
}
void write4bits(uint8_t value)
{
expanderWrite(value);
pulseEnable(value);
}
void LCD_Send(uint8_t value, uint8_t mode)
{
uint8_t highnib=value&0xf0;
uint8_t lownib=(value<<4)&0xf0;
write4bits((highnib)|mode);
write4bits((lownib)|mode);
}
// Turn the (optional) backlight off/on
void noBacklight(void) {
_backlightval=LCD_NOBACKLIGHT;
expanderWrite(0);
}
void backlight(void) {
_backlightval=LCD_BACKLIGHT;
expanderWrite(0);
}
void LCD2004_Init()
{
//I2C Init
_Addr = I2C_LCD_MASTER_ADDRESS;
_cols = 20;
_rows = 4;
_backlightval = LCD_NOBACKLIGHT;
Wire.begin();
delay(50);
// Now we pull both RS and R/W low to begin commands
expanderWrite(_backlightval); // reset expanderand turn backlight off (Bit 8 =1)
delay(1000);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03 << 4);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03 << 4);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02 << 4);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
//delayMicroseconds(2000); // this command takes a long time!
delayMicroseconds(1000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
backlight();
}
#endif
//========================================================================
//End of I2CTinyLCD Library by KD8CEC
//========================================================================
//========================================================================
// 20 X 04 LCD Routines
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
#ifdef UBITX_DISPLAY_LCD2004_BASE
void LCD_Print(const char *c)
{
for (uint8_t i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
const int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row_offsets[row])); //0 : 0x00, 1 : 0x40, only for 20 x 4 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
//#define OPTION_SKINNYBARS
char c[30], b[30];
char printBuff[4][21]; //mirrors what is showing on the two lines of the display
void LCD_Init(void)
{
LCD2004_Init();
initMeter(); //for Meter Display
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 20; i++) { // add white spaces until the end of the 20 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[21];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 21; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 20
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 20; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
// i also Very TNX Purdum for good source code
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
if (sdrModeOn)
strcat(c, " SDR");
else
strcat(c, " SPK");
//remarked by KD8CEC
//already RX/TX status display, and over index (20 x 4 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[20];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
//warning : unused parameter 'displayType' <-- ignore, this is reserve
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
memset(&line2Buffer[10], ' ', 10);
if (isIFShift)
{
line2Buffer[6] = 'M';
line2Buffer[7] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
for (int i = 12; i < 17; i++)
{
if (line2Buffer[i] == 0)
line2Buffer[i] = ' ';
}
} // end of display IF
else // step & Key Type display
{
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 14; i >= 12 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[15] = 'H';
line2Buffer[16] = 'z';
}
}
line2Buffer[17] = ' ';
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[18] = 'S';
line2Buffer[19] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'A';
}
else
{
line2Buffer[18] = 'I';
line2Buffer[19] = 'B';
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue);
LCD_SetCursor(drawPosition, 2);
LCD_Write('S');
LCD_Write(':');
for (int i = 0; i < 7; i++) //meter 5 + +db 1 = 6
LCD_Write(lcdMeter[i]);
}
}
char checkCount = 0;
char checkCountSMeter = 0;
//execute interval : 0.25sec
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 0);
if (testValue > 30)
testValue = 0;
*/
//Sample
//DisplayMeter(0, analogRead(ANALOG_SMETER) / 30, 0);
//DisplayMeter(0, analogRead(ANALOG_SMETER) / 10, 0);
//delay_background(10, 0);
//DisplayMeter(0, analogRead(ANALOG_SMETER), 0);
//if (testValue > 30)
// testValue = 0;
//S-Meter Display
if (((displayOption1 & 0x08) == 0x08 && (sdrModeOn == 0)) && (++checkCountSMeter > SMeterLatency))
{
int newSMeter;
//VK2ETA S-Meter from MAX9814 TC pin
newSMeter = analogRead(ANALOG_SMETER) / 4;
//Faster attack, Slower release
//currentSMeter = (newSMeter > currentSMeter ? ((currentSMeter * 3 + newSMeter * 7) + 5) / 10 : ((currentSMeter * 7 + newSMeter * 3) + 5) / 10);
//currentSMeter = ((currentSMeter * 7 + newSMeter * 3) + 5) / 10;
currentSMeter = newSMeter;
scaledSMeter = 0;
for (byte s = 8; s >= 1; s--) {
if (currentSMeter > sMeterLevels[s]) {
scaledSMeter = s;
break;
}
}
DisplayMeter(0, scaledSMeter, 0);
checkCountSMeter = 0; //Reset Latency time
} //end of S-Meter
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(byte textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(textIndex));
LCD_Write(':');
}
void DisplayCallsign(byte callSignLength)
{
printLineFromEEPRom(3, 20 - userCallsignLength, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
}
void DisplayVersionInfo(const __FlashStringHelper * fwVersionInfo)
{
printLineF(3, fwVersionInfo);
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -15,7 +15,6 @@
************************************************************************************/
// ************* SI5315 routines - tks Jerry Gaffke, KE7ER ***********************
// An minimalist standalone set of Si5351 routines.
// VCOA is fixed at 875mhz, VCOB not used.
// The output msynth dividers are used to generate 3 independent clocks
@@ -127,7 +126,9 @@ void si5351_set_calibration(int32_t cal){
void SetCarrierFreq()
{
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
si5351bx_setfreq(0, appliedCarrier);
//si5351bx_setfreq(0, (sdrModeOn ? 0 : appliedCarrier));
si5351bx_setfreq(0, ((sdrModeOn && (inTx == 0)) ? 0 : appliedCarrier)); //found bug by KG4GEK
/*
if (cwMode == 0)

View File

@@ -5,38 +5,9 @@
* of the radio. Occasionally, it is used to provide a two-line information that is
* quickly cleared up.
*/
//#define printLineF1(x) (printLineF(1, x))
//#define printLineF2(x) (printLineF(0, x))
//returns true if the button is pressed
int btnDown(void){
if (digitalRead(FBUTTON) == HIGH)
return 0;
else
return 1;
}
/**
* Meter (not used in this build for anything)
* the meter is drawn using special characters. Each character is composed of 5 x 8 matrix.
* The s_meter array holds the definition of the these characters.
* each line of the array is is one character such that 5 bits of every byte
* makes up one line of pixels of the that character (only 5 bits are used)
* The current reading of the meter is assembled in the string called meter
*/
/*
const PROGMEM uint8_t s_meter_bitmap[] = {
B00000,B00000,B00000,B00000,B00000,B00100,B00100,B11011,
B10000,B10000,B10000,B10000,B10100,B10100,B10100,B11011,
B01000,B01000,B01000,B01000,B01100,B01100,B01100,B11011,
B00100,B00100,B00100,B00100,B00100,B00100,B00100,B11011,
B00010,B00010,B00010,B00010,B00110,B00110,B00110,B11011,
B00001,B00001,B00001,B00001,B00101,B00101,B00101,B11011
};
*/
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
@@ -45,7 +16,35 @@ const PROGMEM uint8_t meters_bitmap[] = {
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
};
*/
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
#ifdef OPTION_SKINNYBARS //We want skninny bars with more text
//VK2ETA modded "Skinny" bitmaps
const PROGMEM uint8_t meters_bitmap[] = {
// B01110, B10001, B10001, B11111, B11011, B11011, B11111, B00000, //Padlock Symbol, for merging. Not working, see below
B00000, B00000, B00000, B00000, B00000, B00000, B00000, B10000, //shortest bar
B00000, B00000, B00000, B00000, B00000, B00000, B00100, B10100,
B00000, B00000, B00000, B00000, B00000, B00001, B00101, B10101,
B00000, B00000, B00000, B00000, B10000, B10000, B10000, B10000,
B00000, B00000, B00000, B00100, B10100, B10100, B10100, B10100,
B00000, B00000, B00001, B00101, B10101, B10101, B10101, B10101, //tallest bar
B00000, B00010, B00111, B00010, B01000, B11100, B01000, B00000, // ++ sign
};
#else
//VK2ETA "Fat" bars, easy to read, with less text
const PROGMEM uint8_t meters_bitmap[] = {
// B01110, B10001, B10001, B11111, B11011, B11011, B11111, B00000, //Padlock Symbol, for merging. Not working, see below
B00000, B00000, B00000, B00000, B00000, B00000, B00000, B11111, //shortest bar
B00000, B00000, B00000, B00000, B00000, B00000, B11111, B11111,
B00000, B00000, B00000, B00000, B00000, B11111, B11111, B11111,
B00000, B00000, B00000, B00000, B11111, B11111, B11111, B11111,
B00000, B00000, B00000, B11111, B11111, B11111, B11111, B11111,
B00000, B00000, B11111, B11111, B11111, B11111, B11111, B11111, //tallest bar
B00000, B00010, B00111, B00010, B01000, B11100, B01000, B00000, // ++ sign
};
#endif //OPTION_SKINNYBARS
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = {
@@ -68,35 +67,41 @@ void initMeter(){
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(plock_bitmap + i);
lcd.createChar(0, tmpbytes);
LCD_CreateChar(0, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
lcd.createChar(1, tmpbytes);
LCD_CreateChar(1, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
lcd.createChar(2, tmpbytes);
LCD_CreateChar(2, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
lcd.createChar(3, tmpbytes);
LCD_CreateChar(3, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
lcd.createChar(4, tmpbytes);
LCD_CreateChar(4, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
lcd.createChar(5, tmpbytes);
LCD_CreateChar(5, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
lcd.createChar(6, tmpbytes);
LCD_CreateChar(6, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 48);
LCD_CreateChar(7, tmpbytes);
}
//by KD8CEC
//0 ~ 25 : 30 over : + 10
/*
void drawMeter(int needle) {
//5Char + O over
int i;
@@ -117,217 +122,91 @@ void drawMeter(int needle) {
else
lcdMeter[5] = 0x20;
}
/*
void drawMeter(int8_t needle){
int16_t best, i, s;
if (needle < 0)
return;
s = (needle * 4)/10;
for (i = 0; i < 8; i++){
if (s >= 5)
lcdMeter[i] = 1;
else if (s >= 0)
lcdMeter[i] = 2 + s;
else
lcdMeter[i] = 1;
s = s - 5;
}
if (needle >= 40)
lcdMeter[i-1] = 6;
lcdMeter[i] = 0;
}
*/
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
lcd.print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 16; i++) { // add white spaces until the end of the 16 characters line is reached
lcd.print(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
//VK2ETA meter for S.Meter, power and SWR
void drawMeter(int needle)
{
int i;
char tmpBuff[17];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 17; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
#ifdef OPTION_SKINNYBARS
//Fill buffer with growing set of bars, up to needle value
lcdMeter[0] = 0x20;
lcdMeter[1] = 0x20;
for (int i = 0; i < 6; i++) {
if (needle > i)
lcdMeter[i / 3] = byte(i + 1); //Custom characters above
//else if (i == 1 || i == 4) {
// lcdMeter[i / 3] = 0x20; //blank
//}
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (needle > 7) {
lcdMeter[2] = byte(7); //Custom character "++"
} else if (needle > 6) {
lcdMeter[2] = '+'; //"+"
} else lcdMeter[2] = 0x20;
lcd.setCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
lcd.write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
#else //Must be "fat" bars
//Fill buffer with growing set of bars, up to needle value
for (int i = 0; i < 6; i++) {
if (needle > i)
lcdMeter[i] = byte(i + 1); //Custom characters above
else
break;
lcdMeter[i] = 0x20; //blank
}
if (needle > 7) {
lcdMeter[6] = byte(7); //Custom character "++"
} else if (needle > 6) {
lcdMeter[6] = '+'; //"+"
} else lcdMeter[6] = 0x20;
for (byte i = lcdColumn; i < 16; i++) //Right Padding by Space
lcd.write(' ');
#endif //OPTION_FATBARS
}
// short cut to print to the first line
void printLine1(const char *c){
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c){
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//012...89ABC...Z
char byteToChar(byte srcByte){
char byteToChar(byte srcByte){
if (srcByte < 10)
return 0x30 + srcByte;
else
return 'A' + srcByte - 10;
}
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
//returns true if the button is pressed
int btnDown(void){
#ifdef EXTEND_KEY_GROUP1
if (analogRead(FBUTTON) > FUNCTION_KEY_ADC)
return 0;
else
return 1;
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
#else
if (digitalRead(FBUTTON) == HIGH)
return 0;
else
return 1;
#endif
}
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
#ifdef EXTEND_KEY_GROUP1
int getBtnStatus(void){
int readButtonValue = analogRead(FBUTTON);
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
lcd.setCursor(5,diplayVFOLine);
lcd.write((uint8_t)0);
}
else if (isCWAutoMode == 2){
lcd.setCursor(5,diplayVFOLine);
lcd.write(0x7E);
}
if (analogRead(FBUTTON) < FUNCTION_KEY_ADC)
return FKEY_PRESS;
else
{
lcd.setCursor(5,diplayVFOLine);
lcd.write(":");
readButtonValue = readButtonValue / 4;
//return FKEY_VFOCHANGE;
for (int i = 0; i < 16; i++)
if (KeyValues[i][0] <= readButtonValue && KeyValues[i][1] >= readButtonValue)
return KeyValues[i][2];
//return i;
}
return -1;
}
#endif
int enc_prev_state = 3;

View File

@@ -23,21 +23,19 @@ Beta Tester :
along with this program. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************************/
#include <arduino.h>
#include <EEPROM.h>
#include "ubitx.h"
//begin of test
byte WsprToneCode[164];
long lastTime=0;
unsigned long lastTime=0;
unsigned long TX_MSNB_P2; // Si5351 register MSNB_P2 PLLB for Tx
unsigned long TX_P2; // Variable values for MSNB_P2 which defines the frequencies for the data
extern int enc_read(void);
byte WsprMSGCount = 0;
#define PTT (A3)
#define WSPR_BAND1 401
@@ -48,7 +46,7 @@ void SendWSPRManage()
{
int knob = 0;
byte knobPosition = 0;
char isNeedDisplayInfo = 0;
//char isNeedDisplayInfo = 0;
char nowSelectedIndex = 0;
char nowWsprStep = 0; //0 : select Message, 1 : select band, 2 : send
char selectedWsprMessageIndex = -1;
@@ -56,8 +54,8 @@ void SendWSPRManage()
unsigned long WsprTXFreq = 0;
unsigned int WsprMultiChan = 0;
unsigned long prevFreq;
char loopIndex;
//unsigned long prevFreq;
byte loopIndex;
delay_background(500, 0);
@@ -115,22 +113,9 @@ void SendWSPRManage()
EEPROM.get(bandBuffIndex, WsprTXFreq);
EEPROM.get(bandBuffIndex + 4, WsprMultiChan);
/*
//3, 4, 5, 6, 7
Wspr_Reg1[3] = EEPROM.read(bandBuffIndex + 6);
Wspr_Reg1[4] = EEPROM.read(bandBuffIndex + 7);
Wspr_Reg1[5] = EEPROM.read(bandBuffIndex + 8);
Wspr_Reg1[6] = EEPROM.read(bandBuffIndex + 9);
Wspr_Reg1[7] = EEPROM.read(bandBuffIndex + 10);
*/
for (loopIndex = 3; loopIndex < 8; loopIndex++)
Wspr_Reg1[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 3);
/*
Wspr_Reg2[2] = EEPROM.read(bandBuffIndex + 11);
Wspr_Reg2[3] = EEPROM.read(bandBuffIndex + 12);
Wspr_Reg2[4] = EEPROM.read(bandBuffIndex + 13);
*/
//2, 3, 4
for (loopIndex = 2; loopIndex < 5; loopIndex++)
Wspr_Reg2[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 9);
@@ -138,18 +123,32 @@ void SendWSPRManage()
TX_MSNB_P2 = ((unsigned long)Wspr_Reg1[5] & 0x0F) << 16 | ((unsigned long)Wspr_Reg1[6]) << 8 | Wspr_Reg1[7];
}
ltoa(WsprTXFreq, b, DEC);
if (digitalRead(PTT) == 0)
strcpy(c, "SEND:");
strcpy(c, "SEND: ");
else
strcpy(c, "PTT->");
strcpy(c, "PTT-> ");
//ltoa(WsprTXFreq, b, DEC);
//strcat(c, b);
//display frequency, Frequency to String for KD8CEC
unsigned long tmpFreq = WsprTXFreq;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
strcat(c, b);
printLine1(c);
if (digitalRead(PTT) == 0)
{
//printLineF1(F("Transmitting"));
//SEND WSPR
//If you need to consider the Rit and Sprite modes, uncomment them below.
//remark = To reduce the size of the program