Compare commits

...

80 Commits

Author SHA1 Message Date
phdlee
0996870154 Merge pull request #27 from phdlee/version1.07
Version1.07
2018-04-07 21:33:30 +09:00
phdlee
689cfda09e Add Support SDR Receiver and improve ATT 2018-04-07 21:32:01 +09:00
phdlee
23f1b7cd5c Added IF Tune, ATT, SDR Functions 2018-04-06 21:43:36 +09:00
phdlee
d4ed0589e5 Applied 1602 Tiny LCD Library for reduce program Memory 2018-04-05 22:57:07 +09:00
phdlee
5f906a4497 To Support various LCD Type 2018-04-05 22:16:54 +09:00
phdlee
1210f56cd1 move display routine ui to idle 2018-04-05 21:30:35 +09:00
phdlee
e8d6792073 complete setup menu ui for reduce program memory 2018-04-05 17:36:16 +09:00
phdlee
9c4b694ce2 Update README.md 2018-04-05 10:19:38 +09:00
phdlee
02f22d66e5 Change Menu codes 2018-04-05 09:50:29 +09:00
phdlee
11e47fdccc Added Version Info at top of ubitx_20.ino 2018-04-04 22:20:04 +09:00
phdlee
7aafed9e95 rename ubitx_wspr.cpp to ubitx_wspr.ino 2018-04-04 20:29:27 +09:00
phdlee
5afcdf2583 Update README.md 2018-04-04 20:22:42 +09:00
phdlee
075f585a1e Update README.md 2018-03-29 22:31:36 +09:00
phdlee
d0c04df9d8 Merge pull request #26 from phdlee/version1.06
Version1.06
2018-03-25 03:22:29 +09:00
phdlee
dd6d4555a8 Update ubitx_20.ino 2018-03-25 03:21:31 +09:00
phdlee
8f8850f4da Update ubitx_wspr.cpp 2018-03-25 03:17:04 +09:00
phdlee
4e9437a735 Merge pull request #25 from phdlee/version1.06
Change Version Name
2018-03-24 21:34:17 +09:00
phdlee
bad62ef728 Change Version Name 2018-03-24 21:33:01 +09:00
phdlee
384c3c41b2 Merge pull request #24 from phdlee/version1.05
Version1.05
2018-03-21 14:21:28 +09:00
phdlee
93727e6b22 fixed Cat in IFSifht setup routine 2018-03-21 14:20:09 +09:00
phdlee
31a7f79569 ifshift store, cw mode shift change 2018-03-20 21:41:24 +09:00
phdlee
d7858e35c3 if shift bfo modified 2018-03-20 17:06:28 +09:00
phdlee
ecd104b686 Fixed IF Shift Bug (USB and TX Mode) 2018-03-19 21:35:41 +09:00
phdlee
bd52de59d2 bug fixed (found gereld) Autokey on Rit bug 2018-03-19 10:13:30 +09:00
phdlee
f0409d641d Auto key Bug fixed, LZ1LDO found bug 2018-03-17 11:11:27 +09:00
phdlee
8326b1ade3 bug fixed : cw start delay option 2018-03-15 21:00:42 +09:00
phdlee
94a3e5ca1b Test and some mod about WSPR Calibration 2018-03-13 01:17:06 +09:00
phdlee
a26978f573 Added WSPR and Reduce Program size 2018-03-09 22:02:10 +09:00
phdlee
a21dbe2fa5 Update README.md 2018-03-05 13:03:05 +09:00
phdlee
9faa8bb44c Merge pull request #23 from phdlee/version1.04
Optimized from Version1.03
2018-03-05 12:56:55 +09:00
phdlee
d926b15e3d Merge pull request #22 from phdlee/version1.03
Version1.03
2018-03-05 12:55:41 +09:00
phdlee
fb2c9d2cc3 Optimized from Version1.03 2018-03-05 12:51:14 +09:00
phdlee
c911d26163 Merge pull request #21 from phdlee/version1.02
Version1.02
2018-02-14 12:11:38 +09:00
phdlee
98e3b41f5a Merge pull request #20 from phdlee/version1.0
Version1.0
2018-02-14 12:10:38 +09:00
phdlee
277666f82f Konstantinos (SV1ONW) shared the usage of uBITX Manager on Linux.
Konstantinos (SV1ONW) shared the usage of uBITX Manager on Linux.
2018-02-10 18:34:21 +09:00
phdlee
e532dccce7 Update README.md 2018-02-10 15:10:55 +09:00
phdlee
04949cdb93 Update README.md 2018-02-10 13:41:12 +09:00
phdlee
bbdd0947d3 Update README.md 2018-02-10 13:31:51 +09:00
phdlee
a374297d49 Update README.md 2018-02-09 13:42:36 +09:00
phdlee
c1d81d9d5b Update README.md 2018-02-08 01:15:39 +09:00
phdlee
d69588d999 Merge pull request #19 from phdlee/version0.35
Version0.35
2018-02-05 16:48:56 +09:00
phdlee
e915c21412 Merge pull request #18 from phdlee/version0.34
Version0.34
2018-02-03 17:17:43 +09:00
phdlee
55cfeeb924 Update README.md 2018-01-31 12:13:44 +09:00
phdlee
c8879e0e59 Update README.md 2018-01-31 12:12:58 +09:00
phdlee
4f5ac283b7 Merge pull request #17 from phdlee/version0.33
Version0.33
2018-01-31 10:47:20 +09:00
phdlee
3058d52551 Merge pull request #16 from phdlee/version0.32
Version0.32
2018-01-30 12:20:18 +09:00
phdlee
04699ba074 Merge pull request #15 from phdlee/version0.31
Fixed Bug CW Key Range
Append Feature : Display Line Toggle, (Between line1 and line2)
 Append function : for other users / using s.meter, p.meter ... (when idle time execute function)
2018-01-29 18:44:05 +09:00
phdlee
aa61281c38 Merge pull request #14 from phdlee/version0.296
rename version to 0.30
2018-01-27 18:39:22 +09:00
phdlee
261215b1ad Merge pull request #13 from phdlee/version0.296
Version0.296 => Version 0.30
2018-01-27 18:36:07 +09:00
phdlee
1a2f5b4fde Update README.md 2018-01-27 18:33:51 +09:00
phdlee
8203427808 Merge pull request #12 from phdlee/version0.296
Add Comment
2018-01-26 18:25:48 +09:00
phdlee
4e15f2150c Update README.md 2018-01-25 23:39:33 +09:00
phdlee
82a5fd7df9 Merge pull request #11 from phdlee/version0.296
Version0.296
2018-01-25 23:33:04 +09:00
phdlee
386a0b2d46 Update README.md 2018-01-25 22:33:20 +09:00
phdlee
c6401af7d1 Merge pull request #10 from phdlee/version0.29
Version0.29
2018-01-25 22:26:19 +09:00
phdlee
b153a305d6 Merge branch 'master' into version0.29 2018-01-25 22:25:35 +09:00
phdlee
e61e45d3dd Update README.md 2018-01-22 18:26:22 +09:00
phdlee
a1f941f965 Update README.md 2018-01-22 18:25:41 +09:00
phdlee
d1e72b3bd5 Update README.md 2018-01-22 18:24:29 +09:00
phdlee
032e7f919f Update README.md 2018-01-22 18:21:55 +09:00
phdlee
b6bc264332 Update README.md 2018-01-22 18:11:15 +09:00
phdlee
b1cc5eb98a Update README.md 2018-01-22 02:11:35 +09:00
phdlee
2fe1662d67 Merge pull request #8 from qiwenmin/master
Fixed most compilation warnings and a delay issue
2018-01-20 21:24:15 +09:00
phdlee
ebbc5aae5e Merge pull request #9 from phdlee/version0.28
change delaytimes via cat
2018-01-18 11:47:21 +09:00
Qi Wenmin
209cd3a49c Fixed most compilation warnings and a delay issue
* Fixed most compilation warnings (Compiler warning level: All)
* Fixed a delay issue in enc_read function.
2018-01-17 14:42:15 +08:00
phdlee
95e5c1dfe5 Update README.md 2018-01-14 14:53:28 +09:00
phdlee
45a8479061 Update README.md 2018-01-14 14:52:58 +09:00
phdlee
a6ad381c24 Update README.md 2018-01-14 14:52:22 +09:00
phdlee
bcf80f851d Update README.md 2018-01-14 14:51:46 +09:00
phdlee
16304efacd Update README.md 2018-01-14 14:51:23 +09:00
phdlee
968024ab73 Merge pull request #7 from phdlee/beta0.26
Beta0.26
2018-01-14 14:19:53 +09:00
phdlee
3e60728727 Update README.md 2018-01-13 22:27:23 +09:00
phdlee
9781ef086b Update README.md 2018-01-13 10:58:47 +09:00
phdlee
f27f504ea4 Merge pull request #6 from phdlee/beta0.26
Beta0.26
2018-01-12 20:19:09 +09:00
phdlee
2b08a76fbf Update README.md 2018-01-12 10:16:59 +09:00
phdlee
90655e03b8 Update README.md
add status of project
2018-01-12 09:51:58 +09:00
phdlee
8551ff1b68 Update README.md 2018-01-11 17:40:00 +09:00
phdlee
5ce94e8e49 Merge pull request #5 from qiwenmin/master
Fix the delay condition bug when overflow
2018-01-10 13:51:59 +09:00
Qi Wenmin
7ef9c29fa8 Fix the delay condition bug when overflow
The original expression will cause bug when overflow.
2018-01-10 12:00:53 +08:00
phdlee
fda398046e Merge pull request #4 from phdlee/beta0.25
beta 0.25 commit
2018-01-10 11:39:15 +09:00
16 changed files with 2815 additions and 1398 deletions

119
README.md
View File

@@ -1,28 +1,18 @@
#IMPORTANT INFORMATION
----------------------------------------------------------------------------
- Beta 0.26 and Beta 0.261, Beta 0.262, Beta 0.27 is complete test
- You can download and use it.
- Now Release Version 1.061 on my blog (http://www.hamskey.com)
- You can download and compiled hex file and uBITX Manager application on my blog (http://www.hamskey.com)
#NOTICE
----------------------------------------------------------------------------
I received uBITX a month ago and found that many features are required, and began coding with the idea of implementing minimal functionality as a general hf transceiver rather than an experimental device.
- fixed bugs...
- Diallock for uBITX's sensitive encoders
- built in softare Memory keyer and cw options control for CW communication
- Implementation of CAT communication protocol for Digital Communication (as FT8, JT65, etc)
- Delay Options for external Linear.
- and more...
Most of the basic functions of the HF transceiver I thought were implemented.
The minimum basic specification for uBITX to operate as a radio, I think it is finished.
So I will release the 0.27 version and if I do not see the bug anymore, I will try to change the version name to 1.0.
Now uBITX is an HF radio and will be able to join you in your happy hams life.
Based on this source, you can use it by adding functions.
I am going to do a new project based on this source, linking with WSPR, WSJT-X and so on.
Of course, this repository is still running. If you have any bugs or ideas, please feel free to email me.
http://www.hamskey.com
DE KD8CEC
@@ -36,16 +26,105 @@ The copyright information of the original is below.
KD8CEC
----------------------------------------------------------------------------
Prepared or finished tasks for the next version
- Most of them are implemented and included in version 0.27.
- User Interface on LCD -> Option by user (not need)
- Include WSPR Beacone function - (implement other new repository)
complete experiment
need solve : Big code size (over 100%, then remove some functions for experment)
need replace Si5351 Library (increase risk and need more beta tester)
W3PM sent me his wonderful source - using BITX, GPS
- Reduce Program size
- uBITX with RTL-SDR
- Direct control for Student
----------------------------------------------------------------------------
## REVISION RECORD
1.07 (Working...)
- Please do not download it yet. The code will continue to change for the time being.
- BetaVersion for Reduce program size
1.061
- Added WSPR
You only need uBITX to use WSPR. No external devices are required.
Added Si5351 module for WSPR
- Update uBITX Manager to Version 1.0
- Reduce program size
for WSPR
for other Module
- Fixed IF Shift Bug
Disable IF Shift on TX
IF shift available in USB mode
Fixed cat routine in IF Shift setup
- Bugs fixed
cw start delay option
Auto key Bug
(found bug : LZ1LDO)
Message selection when Auto Key is used in RIT mode
(found bug : gerald)
- Improve CW Keying (start TX)
1.05
- include 1.05W, 1.051, 1.051W
- for WSPR Beta Test Version
1.04
- Optimized from Version1.03
- Reduce program size (97% -> 95%)
1.03
- Change eBFO Calibration Step (50 to 5)
- Change CW Frequency Display type
1.02
- Applied CW Start Delay to New CW Key logic (This is my mistake when applying the new CW Key Logic.Since uBITX operations are not significantly affected, this does not create a separate Release, It will be reflected in the next release.) - complete
- Modified CW Key Logic for Auto Key, (available AutoKey function by any cw keytype) - complete
- reduce cpu use usage (working)
- reduce (working)
1.01
- Fixed Cat problem with (IAMBIC A or B Selected)
1.0
- rename 0.30 to 1.0
0.35
- vfo to channel bug fixed (not saved mode -> fixed, channel has frequency and mode)
- add Channel tag (ch.1 ~ 10) by uBITX Manager
- add VFO to Channel, Channel To VFO
0.34
- TX Status check in auto Keysend logic
- optimize codes
- change default tune step size, and fixed bug
- change IF shift step (1Hz -> 50Hz)
0.33
- Added CWL, CWU Mode, (dont complete test yet)
- fixed VFO changed bug.
- Added Additional BFO for CWL, CWL
- Added IF Shift
- Change confirmation key PTT -> function key (not critical menus)
- Change CW Key Select type, (toggle -> select by dial)
0.32
- Added function Scroll Frequencty on upper line
- Added Example code for Draw meter and remarked (you can see and use this code in source codes)
- Added Split function, just toggle VFOs when TX/RX
0.31
- Fixed CW ADC Range error
- Display Message on Upper Line (anothor VFO Frequency, Tune Step, Selected Key Type)
0.30
- implemented the function to monitor the value of all analog inputs. This allows you to monitor the status of the CW keys connected to your uBITX.
- possible to set the ADC range for CW Keying. If no setting is made, it will have the same range as the original code. If you set the CW Keying ADC Values using uBITX Manager 0.3, you can reduce the key error.
- Added the function to select Straight Key, IAMBICA, IAMBICB key from the menu.
- default Band select is Ham Band mode, if you want common type, long press function key at band select menu, uBITX Manager can be used to modify frequencies to suit your country.
0.29
- Remove the use of initialization values in BFO settings - using crruent value, if factory reset
- Select Tune Step, default 0, 20, 50, 100, 200, Use the uBITX Manager to set the steps value you want. You can select Step by pressing and holding the Function Key (1sec ~ 2sec).
- Modify Dial Lock Function, Press the Function key for more than 3 seconds to toggle dial lock.
- created a new frequency tune method. remove original source codes, Threshold has been applied to reduce malfunction. checked the continuity of the user operating to make natural tune possible.
- stabilize and remove many warning messages - by Pullrequest and merge
- Changed cw keying method. removed the original code and applied Ron's code and Improved compatibility with original hardware and CAT commnication. It can be used without modification of hardware.
0.28
- Fixed CAT problem with hamlib on Linux
- restore Protocol autorecovery logic
0.27
(First alpha test version, This will be renamed to the major version 1.0)
- Dual VFO Dial Lock (vfoA Dial lock)

View File

@@ -611,6 +611,34 @@ void WriteEEPRom_FT817(byte fromType)
Serial.write(ACK);
}
const byte anlogPinIndex[6] = {A0, A1, A2, A3, A6, A7};
//Read ADC Value by uBITX Manager Software
void ReadADCValue(void)
{
//ADC MAP for uBITX
int readedADCValue;
//5BYTES
//CAT_BUFF[0] [1] [2] [3] [4] //4 COMMAND
//0 READ ADDRESS
readedADCValue = analogRead(anlogPinIndex[CAT_BUFF[0]]);
CAT_BUFF[0] = readedADCValue >> 8;
CAT_BUFF[1] = readedADCValue;
SendCatData(2);
Serial.write(ACK);
}
void SetIFSValue(void)
{
//Set IFShift Value
isIFShift = CAT_BUFF[0];
ifShiftValue = CAT_BUFF[1] + CAT_BUFF[2] * 256;
setFrequency(frequency);
SetCarrierFreq();
updateLine2Buffer(1); //option, perhap not need
Serial.write(ACK);
}
//void CatRxStatus(byte fromType)
void CatRxStatus(void) //for remove warning
{
@@ -768,6 +796,14 @@ void Check_Cat(byte fromType)
WriteEEPRom_FT817(fromType);
break;
case 0xDD: //Read uBITX ADC Data
ReadADCValue(); //Call by uBITX Manager Program
break;
case 0xDE: //IF-Shift Control by CAT
SetIFSValue(); //
break;
case 0xE7 : //Read RX Status
CatRxStatus();
break;

View File

@@ -36,7 +36,7 @@
//27 + 10 + 18 + 1(SPACE) = //56
const PROGMEM uint8_t cwAZTable[27] = {0b00100100 , 0b01001000 , 0b01001010 , 0b00111000 , 0b00010000, 0b01000010, 0b00111100, 0b01000000 , //A ~ H
0b00100000, 0b01000111 ,0b00111010, 0b01000100, 0b00101100, 0b00101000 , 0b00111110, 0b01000110, 0b01001101, 0b00110100, //I ~ R
0b00110000, 0b00011000, 0b00110010, 0b01000001, 0b00110110, 0b01001001, 0b01001011, 0b00111000}; //S ~ Z
0b00110000, 0b00011000, 0b00110010, 0b01000001, 0b00110110, 0b01001001, 0b01001011, 0b01001100}; //S ~ Z
PGM_P pCwAZTable = reinterpret_cast<PGM_P>(cwAZTable);
const PROGMEM uint8_t cw09Table[27] = {0b00011111, 0b00001111, 0b00000111, 0b00000011, 0b00000001, 0b00000000, 0b00010000, 0b00011000, 0b00011100, 0b00011110};
@@ -297,15 +297,16 @@ void controlAutoCW(){
displayScrolStep = 0;
}
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ);
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ, 0);
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
lcd.setCursor(0, diplayAutoCWLine);
lcd.write(byteToChar(selectedCWTextIndex));
lcd.write(':');
//byte diplayAutoCWLine = 0;
//if ((displayOption1 & 0x01) == 0x01)
// diplayAutoCWLine = 1;
Display_AutoKeyTextIndex(selectedCWTextIndex);
//lcd.setCursor(0, diplayAutoCWLine);
//lcd.write(byteToChar(selectedCWTextIndex));
//lcd.write(':');
isNeedScroll = (cwEndIndex - cwStartIndex) > 14 ? 1 : 0;
scrollDispayTime = millis() + scrollSpeed;
beforeCWTextIndex = selectedCWTextIndex;

81
ubitx_20/ubitx.h Normal file
View File

@@ -0,0 +1,81 @@
/*************************************************************************
header file for C++ by KD8CEC
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#define WSPR_COUNT 443 //WSPR_MESSAGE_COUNT
#define WSPR_MESSAGE1 444 //
#define WSPR_MESSAGE2 490 //
#define WSPR_MESSAGE3 536 //
#define WSPR_MESSAGE4 582 //
#define WSPR_BAND_COUNT 3
#define TX_SSB 0
#define TX_CW 1
extern void printLine1(const char *c);
extern void printLine2(const char *c);
extern void printLineF(char linenmbr, const __FlashStringHelper *c);
extern void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetType);
extern byte delay_background(unsigned delayTime, byte fromType);
extern int btnDown(void);
extern char c[30];
extern char b[30];
extern int enc_read(void);
extern unsigned long frequency;
#define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x))
/**
* The second set of 16 pins on the Raduino's bottom connector are have the three clock outputs and the digital lines to control the rig.
* This assignment is as follows :
* Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
* GND +5V CLK0 GND GND CLK1 GND GND CLK2 GND D2 D3 D4 D5 D6 D7
* These too are flexible with what you may do with them, for the Raduino, we use them to :
* - TX_RX line : Switches between Transmit and Receive after sensing the PTT or the morse keyer
* - CW_KEY line : turns on the carrier for CW
*/
#define TX_RX (7)
#define CW_TONE (6)
#define TX_LPF_A (5)
#define TX_LPF_B (4)
#define TX_LPF_C (3)
#define CW_KEY (2)
//we directly generate the CW by programmin the Si5351 to the cw tx frequency, hence, both are different modes
//these are the parameter passed to startTx
#define TX_SSB 0
#define TX_CW 1
extern void si5351bx_init(void);
extern void si5351bx_setfreq(uint8_t clknum, uint32_t fout);
extern void si5351_set_calibration(int32_t cal);
extern void initOscillators(void);
extern void Set_WSPR_Param(void);
extern void TXSubFreq(unsigned long P2);
extern void startTx(byte txMode, byte isDisplayUpdate);
extern void stopTx(void);
extern void setTXFilters(unsigned long freq);
extern void SendWSPRManage(void);
extern byte WsprMSGCount;

View File

@@ -1,8 +1,25 @@
//Firmware Version
#define FIRMWARE_VERSION_INFO F("CE v1.070")
#define FIRMWARE_VERSION_NUM 0x02 //1st Complete Project : 1 (Version 1.061), 2st Project : 2
//Depending on the type of LCD mounted on the uBITX, uncomment one of the options below.
//You must select only one.
#define UBITX_DISPLAY_LCD1602P //LCD mounted on unmodified uBITX
//#define UBITX_DISPLAY_LCD1602I //I2C type 16 x 02 LCD
//#define UBITX_DISPLAY_LCD2404P //24 x 04 LCD
//#define UBITX_DISPLAY_LCD2404I //I2C type 24 x 04 LCD
//Compile Option
#define ENABLE_FACTORYALIGN
#define ENABLE_ADCMONITOR //Starting with Version 1.07, you can read ADC values directly from uBITX Manager. So this function is not necessary.
/**
Since KD8CEC Version 0.29, most of the original code is no longer available.
Cat Suppoort uBITX CEC Version
Most features(TX, Frequency Range, Ham Band, TX Control, CW delay, start Delay... more) have been added by KD8CEC.
However, the license rules are subject to the original source rules.
DE Ian KD8CEC
Ian KD8CEC
Original source comment -------------------------------------------------------------
* This source file is under General Public License version 3.
@@ -38,6 +55,7 @@
*/
#include <Wire.h>
#include <EEPROM.h>
#include "ubitx.h"
/**
The main chip which generates upto three oscillators of various frequencies in the
@@ -86,25 +104,6 @@
#define ANALOG_SPARE (A7)
#define ANALOG_SMETER (A7) //by KD8CEC
/**
* The Raduino board is the size of a standard 16x2 LCD panel. It has three connectors:
*
* First, is an 8 pin connector that provides +5v, GND and six analog input pins that can also be
* configured to be used as digital input or output pins. These are referred to as A0,A1,A2,
* A3,A6 and A7 pins. The A4 and A5 pins are missing from this connector as they are used to
* talk to the Si5351 over I2C protocol.
*
* Second is a 16 pin LCD connector. This connector is meant specifically for the standard 16x2
* LCD display in 4 bit mode. The 4 bit mode requires 4 data lines and two control lines to work:
* Lines used are : RESET, ENABLE, D4, D5, D6, D7
* We include the library and declare the configuration of the LCD panel too
*/
#include <LiquidCrystal.h>
LiquidCrystal lcd(8,9,10,11,12,13);
#define VERSION_NUM 0x01 //for KD8CEC'S firmware and for memory management software
/**
* The Arduino, unlike C/C++ on a regular computer with gigabytes of RAM, has very little memory.
* We have to be very careful with variables that are declared inside the functions as they are
@@ -116,8 +115,6 @@ LiquidCrystal lcd(8,9,10,11,12,13);
* the input and output from the USB port. We must keep a count of the bytes used while reading
* the serial port as we can easily run out of buffer space. This is done in the serial_in_count variable.
*/
char c[30], b[30];
char printBuff[2][17]; //mirrors what is showing on the two lines of the display
int count = 0; //to generally count ticks, loops, etc
/**
@@ -150,7 +147,12 @@ int count = 0; //to generally count ticks, loops, etc
#define CW_SIDETONE 24
#define CW_SPEED 28
//AT328 has 1KBytes EEPROM
//KD8CEC EEPROM MAP
#define ADVANCED_FREQ_OPTION1 240 //Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency
#define IF1_CAL 241
#define ENABLE_SDR 242
#define SDR_FREQUNCY 243
#define CW_CAL 252
#define VFO_A_MODE 256
#define VFO_B_MODE 257
@@ -180,6 +182,12 @@ int count = 0; //to generally count ticks, loops, etc
//(7:Enable / Disable //0: enable, 1:disable, (default is applied shift)
//6 : 0 : Adjust Pulus, 1 : Adjust Minus
//0~5: Adjust Value : * 10 = Adjust Value (0~300)
#define COMMON_OPTION0 360 //0: Confirm : CW Frequency Shift
//1 : IF Shift Save
//
//
//
#define IF_SHIFTVALUE 363
#define DISPLAY_OPTION1 361 //Display Option1
#define DISPLAY_OPTION2 362 //Display Option2
@@ -272,6 +280,7 @@ byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop]
long arTuneStep[5];
byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user
byte commonOption0 = 0;
byte displayOption1 = 0;
byte displayOption2 = 0;
@@ -324,13 +333,19 @@ unsigned long dbgCount = 0; //not used now
unsigned char txFilter = 0; //which of the four transmit filters are in use
boolean modeCalibrate = false;//this mode of menus shows extended menus to calibrate the oscillators and choose the proper
//beat frequency
byte advancedFreqOption1; //255 : Bit0: use IFTune_Value, Bit1 : use Stored enabled SDR Mode, Bit2 : dynamic sdr frequency
byte attLevel = 0; //ATT : RF Gain Control (Receive) <-- IF1 Shift, 0 : Off, ShiftValue is attLevel * 100; attLevel 150 = 15K
char if1TuneValue = 0; //0 : OFF, IF1 + if1TuneValue * 100; // + - 12500;
byte sdrModeOn = 0; //SDR MODE ON / OFF
unsigned long SDR_Center_Freq; //DEFAULT Frequency : 32000000
unsigned long beforeIdle_ProcessTime = 0; //for check Idle time
byte line2DisplayStatus = 0; //0:Clear, 1 : menu, 1: DisplayFrom Idle,
char lcdMeter[17];
byte isIFShift = 0; //1 = ifShift, 2 extend
long ifShiftValue = 0; //
int ifShiftValue = 0; //
/**
* Below are the basic functions that control the uBitx. Understanding the functions before
@@ -408,7 +423,6 @@ void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) {
When the delay is used, the program will generate an error because it is not communicating,
so Create a new delay function that can do background processing.
*/
unsigned long delayBeforeTime = 0;
byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWKey -> Check Paddle
delayBeforeTime = millis();
@@ -492,31 +506,76 @@ void setTXFilters(unsigned long freq){
void setFrequency(unsigned long f){
f = (f / arTuneStep[tuneStepIndex -1]) * arTuneStep[tuneStepIndex -1];
setTXFilters(f);
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
long if1AdjustValue = ((inTx == 0) ? (attLevel * 100) : 0) + (if1TuneValue * 100); //if1Tune RX, TX Enabled, ATT : only RX Mode
if (sdrModeOn && (inTx == 0)) //IF SDR
{
//Fixed Frequency SDR (Default Frequency : 32Mhz, available change sdr Frequency by uBITX Manager)
//Dynamic Frequency is for SWL without cat
//Offset Frequency + Mhz,
//Example : Offset Frequency : 30Mhz and current Frequncy is 7.080 => 37.080Mhz
// Offset Frequency : 30Mhz and current Frequncy is 14.074 => 34.074Mhz
//Dynamic Frequency
//if (advancedFreqOption1 & 0x04 != 0x00)
// if1AdjustValue += (f % 10000000);
si5351bx_setfreq(2, 44991500 + if1AdjustValue + f);
si5351bx_setfreq(1, 44991500
+ if1AdjustValue
+ SDR_Center_Freq
+ ((advancedFreqOption1 & 0x04) == 0x00 ? 0 : (f % 10000000))
+ 2390);
/*
si5351bx_setfreq(2, 44999500 + f);
si5351bx_setfreq(1, 44999500 + SDR_Center_Freq + 2390);
*/
}
else
{
if (cwMode == 1 || (cwMode == 0 && (!isUSB)))
{
//CWL(cwMode == 1) or LSB (cwMode == 0 && (!isUSB))
si5351bx_setfreq(2, SECOND_OSC_LSB + if1AdjustValue + appliedCarrier + f);
//si5351bx_setfreq(1, SECOND_OSC_LSB + if1AdjustValue - (sdrModeOn ? (SDR_Center_Freq- usbCarrier) : 0));
si5351bx_setfreq(1, SECOND_OSC_LSB + if1AdjustValue);
}
else
{
//CWU (cwMode == 2) or LSB (cwMode == 0 and isUSB)
si5351bx_setfreq(2, SECOND_OSC_USB + if1AdjustValue - appliedCarrier + f);
//si5351bx_setfreq(1, SECOND_OSC_USB + if1AdjustValue + (sdrModeOn ? (SDR_Center_Freq- usbCarrier) : 0)); //Increase LO Frequency => 1198500 -> 32Mhz
si5351bx_setfreq(1, SECOND_OSC_USB + if1AdjustValue); //Increase LO Frequency => 1198500 -> 32Mhz
}
}
/*
if (cwMode == 0)
{
if (isUSB){
si5351bx_setfreq(2, SECOND_OSC_USB - usbCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(2, SECOND_OSC_USB - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
}
else{
si5351bx_setfreq(2, SECOND_OSC_LSB + usbCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(2, SECOND_OSC_LSB + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
}
}
else
{
if (cwMode == 1){ //CWL
si5351bx_setfreq(2, SECOND_OSC_LSB + cwmCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(2, SECOND_OSC_LSB + appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
}
else{ //CWU
si5351bx_setfreq(2, SECOND_OSC_USB - cwmCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(2, SECOND_OSC_USB - appliedCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
}
}
*/
frequency = f;
}
@@ -526,7 +585,6 @@ void setFrequency(unsigned long f){
* put the uBitx in tx mode. It takes care of rit settings, sideband settings
* Note: In cw mode, doesnt key the radio, only puts it in tx mode
*/
void startTx(byte txMode, byte isDisplayUpdate){
//Check Hamband only TX //Not found Hamband index by now frequency
if (tuneTXType >= 100 && getIndexHambanBbyFreq(ritOn ? ritTxFrequency : frequency) == -1) {
@@ -544,7 +602,9 @@ void startTx(byte txMode, byte isDisplayUpdate){
ritRxFrequency = frequency;
setFrequency(ritTxFrequency);
}
else if (splitOn == 1) {
else
{
if (splitOn == 1) {
if (vfoActive == VFO_B) {
vfoActive = VFO_A;
frequency = vfoA;
@@ -555,10 +615,12 @@ void startTx(byte txMode, byte isDisplayUpdate){
frequency = vfoB;
byteToMode(vfoB_mode, 0);
}
}
setFrequency(frequency);
setFrequency(frequency);
} //end of else
SetCarrierFreq();
if (txMode == TX_CW){
//turn off the second local oscillator and the bfo
@@ -591,19 +653,17 @@ void startTx(byte txMode, byte isDisplayUpdate){
updateDisplay();
}
void stopTx(){
void stopTx(void){
inTx = 0;
digitalWrite(TX_RX, 0); //turn off the tx
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
SetCarrierFreq();
if (ritOn)
setFrequency(ritRxFrequency);
else if (splitOn == 1) {
else
{
if (splitOn == 1) {
//vfo Change
if (vfoActive == VFO_B){
vfoActive = VFO_A;
@@ -615,10 +675,10 @@ void stopTx(){
frequency = vfoB;
byteToMode(vfoB_mode, 0);
}
setFrequency(frequency);
} //end of else
else
}
setFrequency(frequency);
} //end of else
updateDisplay();
}
@@ -653,7 +713,7 @@ void ritDisable(){
* flip the T/R line to T and update the display to denote transmission
*/
void checkPTT(){
void checkPTT(){
//we don't check for ptt when transmitting cw
if (cwTimeout > 0)
return;
@@ -662,7 +722,7 @@ void checkPTT(){
startTx(TX_SSB, 1);
delay(50); //debounce the PTT
}
if (digitalRead(PTT) == 1 && inTx == 1)
stopTx();
}
@@ -682,7 +742,7 @@ void checkButton(){
delay(10);
Check_Cat(0);
}
delay(50);//debounce
//delay(50);//debounce
}
@@ -697,7 +757,7 @@ int encodedSumValue = 0;
unsigned long lastTunetime = 0; //if continous moving, skip threshold processing
byte lastMovedirection = 0; //0 : stop, 1 : cw, 2 : ccw
#define skipThresholdTime 100
//#define skipThresholdTime 70
#define encodeTimeOut 1000
void doTuningWithThresHold(){
@@ -708,8 +768,7 @@ void doTuningWithThresHold(){
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02)))
return;
if (isCWAutoMode == 0 || cwAutoDialType == 1)
s = enc_read();
s = enc_read();
//if time is exceeded, it is recognized as an error,
//ignore exists values, because of errors
@@ -726,7 +785,9 @@ void doTuningWithThresHold(){
encodedSumValue += (s > 0 ? 1 : -1);
//check threshold and operator actions (hold dial speed = continous moving, skip threshold check)
if ((lastTunetime < millis() - skipThresholdTime) && ((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
//not use continues changing by Threshold
//if ((lastTunetime < (millis() - skipThresholdTime)) && ((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
if (((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
return;
lastTunetime = millis();
@@ -736,7 +797,8 @@ void doTuningWithThresHold(){
prev_freq = frequency;
//incdecValue = tuningStep * s;
frequency += (arTuneStep[tuneStepIndex -1] * s * (s * s < 10 ? 1 : 3)); //appield weight (s is speed)
//frequency += (arTuneStep[tuneStepIndex -1] * s * (s * s < 10 ? 1 : 3)); //appield weight (s is speed)
frequency += (arTuneStep[tuneStepIndex -1] * s); //appield weight (s is speed) //if want need more increase size, change step size
if (prev_freq < 10000000l && frequency > 10000000l)
isUSB = true;
@@ -757,16 +819,15 @@ void doRIT(){
if (knob < 0)
frequency -= (arTuneStep[tuneStepIndex -1]); //
//frequency -= 100l;
else if (knob > 0)
frequency += (arTuneStep[tuneStepIndex -1]); //
//frequency += 100;
if (old_freq != frequency){
setFrequency(frequency);
updateDisplay();
}
}
/*
save Frequency and mode to eeprom for Auto Save with protected eeprom cycle, by kd8cec
*/
@@ -845,7 +906,7 @@ void initSettings(){
printLineF(1, F("Init EEProm..."));
//initial all eeprom
for (unsigned int i = 32; i < 1024; i++) //protect Master_cal, usb_cal
for (unsigned int i = 64; i < 1024; i++) //protect Master_cal, usb_cal
EEPROM.write(i, 0);
//Write Firmware ID
@@ -855,8 +916,8 @@ void initSettings(){
}
//Version Write for Memory Management Software
if (EEPROM.read(VERSION_ADDRESS) != VERSION_NUM)
EEPROM.write(VERSION_ADDRESS, VERSION_NUM);
if (EEPROM.read(VERSION_ADDRESS) != FIRMWARE_VERSION_NUM)
EEPROM.write(VERSION_ADDRESS, FIRMWARE_VERSION_NUM);
EEPROM.get(CW_CAL, cwmCarrier);
@@ -886,6 +947,7 @@ void initSettings(){
}
EEPROM.get(COMMON_OPTION0, commonOption0);
EEPROM.get(DISPLAY_OPTION1, displayOption1);
EEPROM.get(DISPLAY_OPTION2, displayOption2);
@@ -973,18 +1035,48 @@ void initSettings(){
//Display Type for CW mode
isShiftDisplayCWFreq = EEPROM.read(CW_DISPLAY_SHIFT);
//Adjust CW Mode Freq
shiftDisplayAdjustVal = (isShiftDisplayCWFreq & 0x3F) * 10;
//Enable / Diable Check for CW Display Cofiguration Group
if ((commonOption0 & 0x80) != 0x00)
{
//Adjust CW Mode Freq
shiftDisplayAdjustVal = (isShiftDisplayCWFreq & 0x3F) * 10;
//check Minus
if ((isShiftDisplayCWFreq & 0x40) == 0x40)
shiftDisplayAdjustVal = shiftDisplayAdjustVal * -1;
//Shift Display Check (Default : 0)
if ((isShiftDisplayCWFreq & 0x80) == 0) //Enabled
isShiftDisplayCWFreq = 1;
else //Disabled
isShiftDisplayCWFreq = 0;
}
//check Minus
if ((isShiftDisplayCWFreq & 0x40) == 0x40)
shiftDisplayAdjustVal = shiftDisplayAdjustVal * -1;
//Stored IF Shift Option
if ((commonOption0 & 0x40) != 0x00)
{
EEPROM.get(IF_SHIFTVALUE, ifShiftValue);
isIFShift = ifShiftValue != 0;
}
//Shift Display Check (Default : 0)
if ((isShiftDisplayCWFreq & 0x80) == 0) //Enabled
isShiftDisplayCWFreq = 1;
else //Disabled
isShiftDisplayCWFreq = 0;
//Advanced Freq control
EEPROM.get(ADVANCED_FREQ_OPTION1, advancedFreqOption1);
//use Advanced Frequency Control
if (advancedFreqOption1 & 0x01 != 0x00)
{
EEPROM.get(IF1_CAL, if1TuneValue);
//Stored Enabled SDR Mode
if (advancedFreqOption1 & 0x02 != 0x00)
{
EEPROM.get(ENABLE_SDR, sdrModeOn);
}
}
EEPROM.get(SDR_FREQUNCY, SDR_Center_Freq);
if (SDR_Center_Freq == 0)
SDR_Center_Freq = 32000000;
//default Value (for original hardware)
if (cwAdcSTFrom >= cwAdcSTTo)
@@ -1022,10 +1114,10 @@ void initSettings(){
//original code with modified by kd8cec
if (usbCarrier > 12010000l || usbCarrier < 11990000l)
usbCarrier = 11995000l;
usbCarrier = 11997000l;
if (cwmCarrier > 12010000l || cwmCarrier < 11990000l)
cwmCarrier = 11995000l;
cwmCarrier = 11997000l;
if (vfoA > 35000000l || 3500000l > vfoA) {
vfoA = 7150000l;
@@ -1060,7 +1152,6 @@ void initSettings(){
}
void initPorts(){
analogReference(DEFAULT);
//??
@@ -1109,16 +1200,15 @@ void setup()
*/
//Serial.begin(9600);
lcd.begin(16, 2);
printLineF(1, F("CECBT v1.03"));
LCD_Init();
printLineF(1, FIRMWARE_VERSION_INFO);
Init_Cat(38400, SERIAL_8N1);
initMeter(); //not used in this build
initSettings();
if (userCallsignLength > 0 && ((userCallsignLength & 0x80) == 0x80)) {
userCallsignLength = userCallsignLength & 0x7F;
printLineFromEEPRom(0, 0, 0, userCallsignLength -1); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
printLineFromEEPRom(0, 0, 0, userCallsignLength -1, 0); //eeprom to lcd use offset (USER_CALLSIGN_DAT)
delay(500);
}
else {
@@ -1137,8 +1227,10 @@ void setup()
setFrequency(vfoA);
updateDisplay();
#ifdef ENABLE_FACTORYALIGN
if (btnDown())
factory_alignment();
#endif
}
//Auto save Frequency and Mode with Protected eeprom life by KD8CEC
@@ -1178,12 +1270,13 @@ void loop(){
//tune only when not tranmsitting
if (!inTx){
if (ritOn)
doRIT();
//else if (isIFShift)
// doIFShift();
else
doTuningWithThresHold();
if (isCWAutoMode == 0 || cwAutoDialType == 1)
{
if (ritOn)
doRIT();
else
doTuningWithThresHold();
}
if (isCWAutoMode == 0 && beforeIdle_ProcessTime < millis() - 250) {
idle_process();

View File

@@ -1,259 +0,0 @@
/*************************************************************************
KD8CEC's uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
char line2Buffer[16];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
void updateLine2Buffer(char isDirectCall)
{
unsigned long tmpFreq = 0;
if (isDirectCall == 0)
{
if (ritOn)
{
line2Buffer[0] = 'R';
line2Buffer[1] = 'i';
line2Buffer[2] = 't';
line2Buffer[3] = 'T';
line2Buffer[4] = 'X';
line2Buffer[5] = ':';
//display frequency
tmpFreq = ritTxFrequency;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//======================================================
//other VFO display
//======================================================
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
//line2Buffer[0] = 'A';
}
else
{
tmpFreq = vfoB;
//line2Buffer[0] = 'B';
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'k';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'k';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
} //check direct call by encoder
if (isIFShift)
{
if (isDirectCall == 1)
for (int i = 0; i < 16; i++)
line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
if (ifShiftValue == 0)
{
line2Buffer[10] = 'S';
line2Buffer[11] = ':';
line2Buffer[12] = 'O';
line2Buffer[13] = 'F';
line2Buffer[14] = 'F';
}
else
{
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
}
if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step display
{
if (isDirectCall != 0)
return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
//if (isStepKhz == 1)
// line2Buffer[10] = 'k';
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//if (
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue); //call original source code
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
lcd.setCursor(drawPosition, lineNumber);
for (int i = 0; i < 6; i++) //meter 5 + +db 1 = 6
lcd.write(lcdMeter[i]);
}
}
byte testValue = 0;
char checkCount = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 7);
if (testValue > 30)
testValue = 0;
*/
}
}
}

View File

@@ -168,6 +168,8 @@ void cwKeyer(void){
break;
case KEYED_PREP:
//modified KD8CEC
/*
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
@@ -179,6 +181,19 @@ void cwKeyer(void){
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
*/
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
cwKeydown();
break;

View File

@@ -0,0 +1,552 @@
/*************************************************************************
KD8CEC, _______
uBITX Display Routine for LCD1602 I2C
1.Code for 16 x 2 LCD for I2C.
2.Display related functions of uBITX. Some functions moved from uBITX_Ui.
3.uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifdef UBITX_DISPLAY_LCD1602I
//========================================================================
//Begin of LCD Hardware define
//========================================================================
#include <LiquidCrystal.h>
LiquidCrystal lcd(8,9,10,11,12,13);
//========================================================================
//End of LCD Hardware define
//========================================================================
//========================================================================
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
char c[30], b[30];
char printBuff[2][17]; //mirrors what is showing on the two lines of the display
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100 , //custom 3
B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110 , //custom 4
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
};
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = {
0b01110,
0b10001,
0b10001,
0b11111,
0b11011,
0b11011,
0b11111,
0b00000};
PGM_P plock_bitmap = reinterpret_cast<PGM_P>(lock_bitmap);
// initializes the custom characters
// we start from char 1 as char 0 terminates the string!
void initMeter(){
uint8_t tmpbytes[8];
byte i;
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(plock_bitmap + i);
lcd.createChar(0, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
lcd.createChar(1, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
lcd.createChar(2, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
lcd.createChar(3, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
lcd.createChar(4, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
lcd.createChar(5, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
lcd.createChar(6, tmpbytes);
}
void LCD_Init(void)
{
lcd.begin(16, 2);
initMeter(); //for Meter Display
}
//by KD8CEC
//0 ~ 25 : 30 over : + 10
void drawMeter(int needle) {
//5Char + O over
int i;
for (i = 0; i < 5; i++) {
if (needle >= 5)
lcdMeter[i] = 5; //full
else if (needle > 0)
lcdMeter[i] = needle; //full
else //0
lcdMeter[i] = 0x20;
needle -= 5;
}
if (needle > 0)
lcdMeter[5] = 6;
else
lcdMeter[5] = 0x20;
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
lcd.print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 16; i++) { // add white spaces until the end of the 16 characters line is reached
lcd.write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[17];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 17; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
lcd.setCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
lcd.write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 16; i++) //Right Padding by Space
lcd.write(' ');
}
// short cut to print to the first line
void printLine1(const char *c){
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c){
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//===================================================================================
//End of Display Base Routines
//===================================================================================
//===================================================================================
//Begin of User Interface Routines
//===================================================================================
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
lcd.setCursor(5,diplayVFOLine);
lcd.write((uint8_t)0);
}
else if (isCWAutoMode == 2){
lcd.setCursor(5,diplayVFOLine);
lcd.write(0x7E);
}
else
{
lcd.setCursor(5,diplayVFOLine);
lcd.write(':');
}
}
char line2Buffer[16];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//======================================================
//other VFO display
//======================================================
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'k';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'k';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
if (isIFShift)
{
// if (isDirectCall == 1)
// for (int i = 0; i < 16; i++)
// line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
//if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step & Key Type display
{
//if (isDirectCall != 0)
// return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue); //call original source code
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
lcd.setCursor(drawPosition, lineNumber);
for (int i = 0; i < 6; i++) //meter 5 + +db 1 = 6
lcd.write(lcdMeter[i]);
}
}
byte testValue = 0;
char checkCount = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 7);
if (testValue > 30)
testValue = 0;
*/
}
}
}
void Display_AutoKeyTextIndex(char textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
lcd.setCursor(0, diplayAutoCWLine);
lcd.write(byteToChar(selectedCWTextIndex));
lcd.write(':');
}
#endif

View File

@@ -0,0 +1,694 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD1602 Parrel
1.This is the display code for the default LCD mounted in uBITX.
2.Display related functions of uBITX. Some functions moved from uBITX_Ui.
3.uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
#ifdef UBITX_DISPLAY_LCD1602P
//========================================================================
//Begin of TinyLCD Library by KD8CEC
//========================================================================
/*************************************************************************
LCD1602_TINY Library for 16 x 2 LCD
Referecnce Source : LiquidCrystal.cpp
KD8CEC
This source code is modified version for small program memory
from Arduino LiquidCrystal Library
I wrote this code myself, so there is no license restriction.
So this code allows anyone to write with confidence.
But keep it as long as the original author of the code.
DE Ian KD8CEC
**************************************************************************/
#define LCD_Command(x) (LCD_Send(x, LOW))
#define LCD_Write(x) (LCD_Send(x, HIGH))
//Define connected PIN
#define LCD_PIN_RS 8
#define LCD_PIN_EN 9
uint8_t LCD_PIN_DAT[4] = {10, 11, 12, 13};
// commands
#define LCD_CLEARDISPLAY 0x01
#define LCD_RETURNHOME 0x02
#define LCD_ENTRYMODESET 0x04
#define LCD_DISPLAYCONTROL 0x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET 0x20
#define LCD_SETCGRAMADDR 0x40
#define LCD_SETDDRAMADDR 0x80
// flags for display entry mode
#define LCD_ENTRYRIGHT 0x00
#define LCD_ENTRYLEFT 0x02
#define LCD_ENTRYSHIFTINCREMENT 0x01
#define LCD_ENTRYSHIFTDECREMENT 0x00
// flags for display on/off control
#define LCD_DISPLAYON 0x04
#define LCD_DISPLAYOFF 0x00
#define LCD_CURSORON 0x02
#define LCD_CURSOROFF 0x00
#define LCD_BLINKON 0x01
#define LCD_BLINKOFF 0x00
// flags for display/cursor shift
#define LCD_DISPLAYMOVE 0x08
#define LCD_CURSORMOVE 0x00
#define LCD_MOVERIGHT 0x04
#define LCD_MOVELEFT 0x00
// flags for function set
#define LCD_8BITMODE 0x10
#define LCD_4BITMODE 0x00
#define LCD_2LINE 0x08
#define LCD_1LINE 0x00
#define LCD_5x10DOTS 0x04
#define LCD_5x8DOTS 0x00
void write4bits(uint8_t value)
{
for (int i = 0; i < 4; i++)
digitalWrite(LCD_PIN_DAT[i], (value >> i) & 0x01);
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(1);
digitalWrite(LCD_PIN_EN, HIGH);
delayMicroseconds(1); // enable pulse must be >450ns
digitalWrite(LCD_PIN_EN, LOW);
delayMicroseconds(100); // commands need > 37us to settle
}
void LCD_Send(uint8_t value, uint8_t mode)
{
digitalWrite(LCD_PIN_RS, mode);
write4bits(value>>4);
write4bits(value);
}
void LCD1602_Init()
{
pinMode(LCD_PIN_RS, OUTPUT);
pinMode(LCD_PIN_EN, OUTPUT);
for (int i = 0; i < 4; i++)
pinMode(LCD_PIN_DAT[i], OUTPUT);
delayMicroseconds(50);
// Now we pull both RS and R/W low to begin commands
digitalWrite(LCD_PIN_RS, LOW);
digitalWrite(LCD_PIN_EN, LOW);
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
// finally, set # lines, font size, etc.
LCD_Command(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS | LCD_2LINE);
// turn the display on with no cursor or blinking default
LCD_Command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);
// clear it off
LCD_Command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(2000); // this command takes a long time!
LCD_Command(LCD_ENTRYMODESET | LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT);
}
void LCD_Print(const char *c)
{
for (int i = 0; i < strlen(c); i++)
{
if (*(c + i) == 0x00) return;
LCD_Write(*(c + i));
}
}
void LCD_SetCursor(uint8_t col, uint8_t row)
{
LCD_Command(LCD_SETDDRAMADDR | (col + row * 0x40)); //0 : 0x00, 1 : 0x40, only for 16 x 2 lcd
}
void LCD_CreateChar(uint8_t location, uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
LCD_Command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
LCD_Write(charmap[i]);
}
//========================================================================
//End of TinyLCD Library by KD8CEC
//========================================================================
/*
#include <LiquidCrystal.h>
LiquidCrystal lcd(8,9,10,11,12,13);
*/
//========================================================================
//Begin of Display Base Routines (Init, printLine..)
//========================================================================
char c[30], b[30];
char printBuff[2][17]; //mirrors what is showing on the two lines of the display
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100 , //custom 3
B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110 , //custom 4
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
};
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = {
0b01110,
0b10001,
0b10001,
0b11111,
0b11011,
0b11011,
0b11111,
0b00000};
PGM_P plock_bitmap = reinterpret_cast<PGM_P>(lock_bitmap);
// initializes the custom characters
// we start from char 1 as char 0 terminates the string!
void initMeter(){
uint8_t tmpbytes[8];
byte i;
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(plock_bitmap + i);
LCD_CreateChar(0, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
LCD_CreateChar(1, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
LCD_CreateChar(2, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
LCD_CreateChar(3, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
LCD_CreateChar(4, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
LCD_CreateChar(5, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
LCD_CreateChar(6, tmpbytes);
}
void LCD_Init(void)
{
LCD1602_Init();
initMeter(); //for Meter Display
}
//by KD8CEC
//0 ~ 25 : 30 over : + 10
void drawMeter(int needle) {
//5Char + O over
int i;
for (i = 0; i < 5; i++) {
if (needle >= 5)
lcdMeter[i] = 5; //full
else if (needle > 0)
lcdMeter[i] = needle; //full
else //0
lcdMeter[i] = 0x20;
needle -= 5;
}
if (needle > 0)
lcdMeter[5] = 6;
else
lcdMeter[5] = 0x20;
}
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
LCD_SetCursor(0, linenmbr); // place the cursor at the beginning of the selected line
LCD_Print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 16; i++) { // add white spaces until the end of the 16 characters line is reached
LCD_Write(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[17];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 17; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex, char offsetTtype) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
LCD_SetCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
LCD_Write(EEPROM.read((offsetTtype == 0 ? USER_CALLSIGN_DAT : WSPR_MESSAGE1) + i));
else
break;
}
for (byte i = lcdColumn; i < 16; i++) //Right Padding by Space
LCD_Write(' ');
}
// short cut to print to the first line
void printLine1(const char *c)
{
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c)
{
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//==================================================================================
//End of Display Base Routines
//==================================================================================
//==================================================================================
//Begin of User Interface Routines
//==================================================================================
//Main Display
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
LCD_SetCursor(5,diplayVFOLine);
LCD_Write((uint8_t)0);
}
else if (isCWAutoMode == 2){
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(0x7E);
}
else
{
LCD_SetCursor(5,diplayVFOLine);
LCD_Write(':');
}
}
char line2Buffer[16];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
void updateLine2Buffer(char displayType)
{
unsigned long tmpFreq = 0;
if (ritOn)
{
strcpy(line2Buffer, "RitTX:");
//display frequency
tmpFreq = ritTxFrequency;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//other VFO display
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
}
else
{
tmpFreq = vfoB;
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'k';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'k';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
if (isIFShift)
{
// if (isDirectCall == 1)
// for (int i = 0; i < 16; i++)
// line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
//if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step & Key Type display
{
//if (isDirectCall != 0)
// return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
if (meterType == 0 || meterType == 1 || meterType == 2)
{
drawMeter(meterValue); //call original source code
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
LCD_SetCursor(drawPosition, lineNumber);
for (int i = 0; i < 6; i++) //meter 5 + +db 1 = 6
LCD_Write(lcdMeter[i]);
}
}
byte testValue = 0;
char checkCount = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 7);
if (testValue > 30)
testValue = 0;
*/
}
}
}
//AutoKey LCD Display Routine
void Display_AutoKeyTextIndex(char textIndex)
{
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
LCD_SetCursor(0, diplayAutoCWLine);
LCD_Write(byteToChar(selectedCWTextIndex));
LCD_Write(':');
}
#endif

View File

@@ -0,0 +1,22 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD2404 I2C
uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/

View File

@@ -0,0 +1,22 @@
/*************************************************************************
KD8CEC's uBITX Display Routine for LCD2404 Parrel
uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/

File diff suppressed because it is too large Load Diff

View File

@@ -1,3 +1,19 @@
/************************************************************************************
* KD8CEC
* kd8cec@gmail.com http://www.hamskey.com
*
* Merge two SI5351 Librarys
* KE7ER's fixed vco and variable Clocks Configure values
* G3ZIL's fixed Clock Configure Value and variable VCO
* * I have combined the two libraries above. All licenses follow the above library.
*
* PLL-A is generated by fixing 850Mhz clock. All output clocks use PLL-A to
* generate the frequency. This is the method used in QRP radios such as uBITX.
* When switching to WSPR transmission mode, PLL-B operates for the base frequency to transmit WSPR.
* The output clock channel that controls the frequency is connected to the PLL-B.
* The WSPR protocol is generated by changing the clock of the PLL-B.
************************************************************************************/
// ************* SI5315 routines - tks Jerry Gaffke, KE7ER ***********************
// An minimalist standalone set of Si5351 routines.
@@ -60,6 +76,7 @@ void i2cWriten(uint8_t reg, uint8_t *vals, uint8_t vcnt) { // write array
Wire.endTransmission();
}
uint8_t si5351Val[8] = {0, 1, 0, 0, 0, 0, 0, 0}; //for reduce program memory size
void si5351bx_init() { // Call once at power-up, start PLLA
uint32_t msxp1;
@@ -68,11 +85,13 @@ void si5351bx_init() { // Call once at power-up, start PLLA
i2cWrite(3, si5351bx_clken); // Disable all CLK output drivers
i2cWrite(183, SI5351BX_XTALPF << 6); // Set 25mhz crystal load capacitance
msxp1 = 128 * SI5351BX_MSA - 512; // and msxp2=0, msxp3=1, not fractional
uint8_t vals[8] = {0, 1, BB2(msxp1), BB1(msxp1), BB0(msxp1), 0, 0, 0};
i2cWriten(26, vals, 8); // Write to 8 PLLA msynth regs
//uint8_t vals[8] = {0, 1, BB2(msxp1), BB1(msxp1), BB0(msxp1), 0, 0, 0};
si5351Val[2] = BB2(msxp1);
si5351Val[3] = BB1(msxp1);
si5351Val[4] = BB0(msxp1);
i2cWriten(26, si5351Val, 8); // Write to 8 PLLA msynth regs
i2cWrite(177, 0x20); // Reset PLLA (0x80 resets PLLB)
// for (reg=16; reg<=23; reg++) i2cWrite(reg, 0x80); // Powerdown CLK's
// i2cWrite(187, 0); // No fannout of clkin, xtal, ms0, ms4
}
void si5351bx_setfreq(uint8_t clknum, uint32_t fout) { // Set a CLK to fout Hz
@@ -105,15 +124,48 @@ void si5351_set_calibration(int32_t cal){
si5351bx_setfreq(0, usbCarrier);
}
void SetCarrierFreq()
{
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
si5351bx_setfreq(0, (sdrModeOn ? 0 : appliedCarrier));
/*
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0));
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0));
*/
}
void initOscillators(){
//initialize the SI5351
si5351bx_init();
si5351bx_vcoa = (SI5351BX_XTAL * SI5351BX_MSA) + calibration; // apply the calibration correction factor
SetCarrierFreq();
}
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0));
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0));
//============================================================
// ADD FUNCTIONS by KD8CEC
//============================================================
uint8_t Wspr_Reg1[8] = {0xFF,0xFE, 0x00, 0, 0, 0, 0, 0}; //3, 4, 5, 6, 7
uint8_t Wspr_Reg2[8] = {0, 1, 0, 0, 0, 0, 0, 0}; //2, 3, 4
void Set_WSPR_Param(void)
{
i2cWrite(18, 128);
i2cWriten(34, Wspr_Reg1, 8);
i2cWriten(58, Wspr_Reg2, 8);
i2cWrite(177, 128);
i2cWrite(18, 111);
si5351bx_clken &= ~(1 << 2);
i2cWrite(3, si5351bx_clken);
}
void TXSubFreq(unsigned long P2)
{
i2cWrite(40, (P2 & 65280) >> 8);
i2cWrite(41, P2 & 255);
}

View File

@@ -5,344 +5,20 @@
* of the radio. Occasionally, it is used to provide a two-line information that is
* quickly cleared up.
*/
//#define printLineF1(x) (printLineF(1, x))
//#define printLineF2(x) (printLineF(0, x))
//returns true if the button is pressed
int btnDown(){
if (digitalRead(FBUTTON) == HIGH)
return 0;
else
return 1;
}
/**
* Meter (not used in this build for anything)
* the meter is drawn using special characters. Each character is composed of 5 x 8 matrix.
* The s_meter array holds the definition of the these characters.
* each line of the array is is one character such that 5 bits of every byte
* makes up one line of pixels of the that character (only 5 bits are used)
* The current reading of the meter is assembled in the string called meter
*/
/*
const PROGMEM uint8_t s_meter_bitmap[] = {
B00000,B00000,B00000,B00000,B00000,B00100,B00100,B11011,
B10000,B10000,B10000,B10000,B10100,B10100,B10100,B11011,
B01000,B01000,B01000,B01000,B01100,B01100,B01100,B11011,
B00100,B00100,B00100,B00100,B00100,B00100,B00100,B11011,
B00010,B00010,B00010,B00010,B00110,B00110,B00110,B11011,
B00001,B00001,B00001,B00001,B00101,B00101,B00101,B11011
};
*/
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100 , //custom 3
B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110 , //custom 4
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
};
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = {
0b01110,
0b10001,
0b10001,
0b11111,
0b11011,
0b11011,
0b11111,
0b00000};
PGM_P plock_bitmap = reinterpret_cast<PGM_P>(lock_bitmap);
// initializes the custom characters
// we start from char 1 as char 0 terminates the string!
void initMeter(){
uint8_t tmpbytes[8];
byte i;
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(plock_bitmap + i);
lcd.createChar(0, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
lcd.createChar(1, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
lcd.createChar(2, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
lcd.createChar(3, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
lcd.createChar(4, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
lcd.createChar(5, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
lcd.createChar(6, tmpbytes);
}
//by KD8CEC
//0 ~ 25 : 30 over : + 10
void drawMeter(int needle) {
//5Char + O over
int i;
for (i = 0; i < 5; i++) {
if (needle >= 5)
lcdMeter[i] = 5; //full
else if (needle > 0)
lcdMeter[i] = needle; //full
else //0
lcdMeter[i] = 0x20;
needle -= 5;
}
if (needle > 0)
lcdMeter[5] = 6;
else
lcdMeter[5] = 0x20;
}
/*
void drawMeter(int8_t needle){
int16_t best, i, s;
if (needle < 0)
return;
s = (needle * 4)/10;
for (i = 0; i < 8; i++){
if (s >= 5)
lcdMeter[i] = 1;
else if (s >= 0)
lcdMeter[i] = 2 + s;
else
lcdMeter[i] = 1;
s = s - 5;
}
if (needle >= 40)
lcdMeter[i-1] = 6;
lcdMeter[i] = 0;
}
*/
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
lcd.print(c);
strcpy(printBuff[linenmbr], c);
for (byte i = strlen(c); i < 16; i++) { // add white spaces until the end of the 16 characters line is reached
lcd.print(' ');
}
}
}
void printLineF(char linenmbr, const __FlashStringHelper *c)
{
int i;
char tmpBuff[17];
PGM_P p = reinterpret_cast<PGM_P>(c);
for (i = 0; i < 17; i++){
unsigned char fChar = pgm_read_byte(p++);
tmpBuff[i] = fChar;
if (fChar == 0)
break;
}
printLine(linenmbr, tmpBuff);
}
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
lcd.setCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
{
if (++lcdColumn <= LCD_MAX_COLUMN)
lcd.write(EEPROM.read(USER_CALLSIGN_DAT + i));
else
break;
}
for (byte i = lcdColumn; i < 16; i++) //Right Padding by Space
lcd.write(' ');
}
// short cut to print to the first line
void printLine1(const char *c){
printLine(1,c);
}
// short cut to print to the first line
void printLine2(const char *c){
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
}
// short cut to print to the first line
void printLine2Clear(){
printLine(0, "");
}
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
//012...89ABC...Z
char byteToChar(byte srcByte){
char byteToChar(byte srcByte){
if (srcByte < 10)
return 0x30 + srcByte;
else
return 'A' + srcByte - 10;
}
// this builds up the top line of the display with frequency and mode
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
memset(c, 0, sizeof(c));
if (inTx){
if (isCWAutoMode == 2) {
for (i = 0; i < 4; i++)
c[3-i] = (i < autoCWSendReservCount ? byteToChar(autoCWSendReserv[i]) : ' ');
//display Sending Index
c[4] = byteToChar(sendingCWTextIndex);
c[5] = '=';
}
else {
if (cwTimeout > 0)
strcpy(c, " CW:");
else
strcpy(c, " TX:");
}
}
else {
if (ritOn)
strcpy(c, "RIT ");
else {
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
else
strcat(c, "B:");
}
//Fixed by Mitani Massaru (JE4SMQ)
if (isShiftDisplayCWFreq == 1)
{
if (cwMode == 1) //CWL
tmpFreq = tmpFreq - sideTone + shiftDisplayAdjustVal;
else if (cwMode == 2) //CWU
tmpFreq = tmpFreq + sideTone + shiftDisplayAdjustVal;
}
//display frequency
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) c[i] = '.';
else {
c[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
c[i] = ' ';
}
//remarked by KD8CEC
//already RX/TX status display, and over index (16 x 2 LCD)
//if (inTx)
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
lcd.setCursor(5,diplayVFOLine);
lcd.write((uint8_t)0);
}
else if (isCWAutoMode == 2){
lcd.setCursor(5,diplayVFOLine);
lcd.write(0x7E);
}
//returns true if the button is pressed
int btnDown(void){
if (digitalRead(FBUTTON) == HIGH)
return 0;
else
{
lcd.setCursor(5,diplayVFOLine);
lcd.write(":");
}
/*
//now, the second line
memset(c, 0, sizeof(c));
memset(b, 0, sizeof(b));
if (inTx)
strcat(c, "TX ");
else if (ritOn)
strcpy(c, "RIT");
strcpy(c, " \xff");
drawMeter(meter_reading);
strcat(c, meter);
strcat(c, "\xff");
printLine2(c);*/
return 1;
}
int enc_prev_state = 3;

193
ubitx_20/ubitx_wspr.ino Normal file
View File

@@ -0,0 +1,193 @@
/**********************************************************************************
WSPR SENDER for uBITX by KD8CEC
Some of the code that sends WSPR referenced the code in G3ZIL.
Thanks to G3ZIL for sharing great code.
Due to the limited memory of uBITX, I have implemented at least only a few of the codes in uBITX.
Thanks for testing
Beta Tester :
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************************/
#include <arduino.h>
#include <EEPROM.h>
#include "ubitx.h"
//begin of test
byte WsprToneCode[164];
long lastTime=0;
unsigned long TX_MSNB_P2; // Si5351 register MSNB_P2 PLLB for Tx
unsigned long TX_P2; // Variable values for MSNB_P2 which defines the frequencies for the data
extern int enc_read(void);
byte WsprMSGCount = 0;
#define PTT (A3)
#define WSPR_BAND1 401
extern uint8_t Wspr_Reg1[8]; //3, 4, 5, 6, 7
extern uint8_t Wspr_Reg2[8]; //2, 3, 4
void SendWSPRManage()
{
int knob = 0;
byte knobPosition = 0;
char isNeedDisplayInfo = 0;
char nowSelectedIndex = 0;
char nowWsprStep = 0; //0 : select Message, 1 : select band, 2 : send
char selectedWsprMessageIndex = -1;
char selectedWsprBandIndex = -1;
unsigned long WsprTXFreq = 0;
unsigned int WsprMultiChan = 0;
unsigned long prevFreq;
char loopIndex;
delay_background(500, 0);
//Readed WsprMSGCount, WsprTone
while(1)
{
knob = enc_read();
if (knobPosition > 0 && knob < 0)
knobPosition--;
else if (knob > 0 && (knobPosition <= (nowWsprStep == 0 ? WsprMSGCount : WSPR_BAND_COUNT) * 10 -2))
knobPosition++;
nowSelectedIndex = knobPosition / 10;
if (nowWsprStep == 0) //select Message status
{
printLineF2(F("WSPR:"));
if (selectedWsprMessageIndex != nowSelectedIndex)
{
selectedWsprMessageIndex = nowSelectedIndex;
int wsprMessageBuffIndex = selectedWsprMessageIndex * 46;
//Display WSPR Name tag
printLineFromEEPRom(0, 6, wsprMessageBuffIndex, wsprMessageBuffIndex + 4, 1);
//Load WSPR Tonecode
//Read Tone Code
for (int i = 0; i < 41; i++)
{
byte readData = EEPROM.read(WSPR_MESSAGE1 + 5 + (wsprMessageBuffIndex) + i); //NAME TAG 5, MESSAGE 41 = 46
WsprToneCode[i * 4 + 0] = readData & 3;
WsprToneCode[i * 4 + 1] = (readData >> 2) & 3;
WsprToneCode[i * 4 + 2] = (readData >> 4) & 3;
WsprToneCode[i * 4 + 3] = (readData >> 6) & 3;
}
}
else if (btnDown())
{
nowWsprStep = 1; //Change Status to Select Band
knobPosition = 0;
nowSelectedIndex = 0;
delay_background(500, 0);
}
}
else if (nowWsprStep == 1)
{
//printLineF2(F("Select Band"));
if (selectedWsprBandIndex != nowSelectedIndex)
{
selectedWsprBandIndex = nowSelectedIndex;
int bandBuffIndex = WSPR_BAND1 + selectedWsprBandIndex * 14;
EEPROM.get(bandBuffIndex, WsprTXFreq);
EEPROM.get(bandBuffIndex + 4, WsprMultiChan);
/*
//3, 4, 5, 6, 7
Wspr_Reg1[3] = EEPROM.read(bandBuffIndex + 6);
Wspr_Reg1[4] = EEPROM.read(bandBuffIndex + 7);
Wspr_Reg1[5] = EEPROM.read(bandBuffIndex + 8);
Wspr_Reg1[6] = EEPROM.read(bandBuffIndex + 9);
Wspr_Reg1[7] = EEPROM.read(bandBuffIndex + 10);
*/
for (loopIndex = 3; loopIndex < 8; loopIndex++)
Wspr_Reg1[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 3);
/*
Wspr_Reg2[2] = EEPROM.read(bandBuffIndex + 11);
Wspr_Reg2[3] = EEPROM.read(bandBuffIndex + 12);
Wspr_Reg2[4] = EEPROM.read(bandBuffIndex + 13);
*/
//2, 3, 4
for (loopIndex = 2; loopIndex < 5; loopIndex++)
Wspr_Reg2[loopIndex] = EEPROM.read(bandBuffIndex + loopIndex + 9);
TX_MSNB_P2 = ((unsigned long)Wspr_Reg1[5] & 0x0F) << 16 | ((unsigned long)Wspr_Reg1[6]) << 8 | Wspr_Reg1[7];
}
ltoa(WsprTXFreq, b, DEC);
if (digitalRead(PTT) == 0)
strcpy(c, "SEND:");
else
strcpy(c, "PTT->");
strcat(c, b);
printLine1(c);
if (digitalRead(PTT) == 0)
{
//printLineF1(F("Transmitting"));
//SEND WSPR
//If you need to consider the Rit and Sprite modes, uncomment them below.
//remark = To reduce the size of the program
//prevFreq = frequency;
//frequency = WsprTXFreq;
startTx(TX_CW, 0);
setTXFilters(WsprTXFreq);
//Start WSPR
Set_WSPR_Param();
digitalWrite(CW_KEY, 1);
for (int i = 0; i < 162; i++)
{ // Now this is the message loop
lastTime = millis(); // Store away the time when the last message symbol was sent
TX_P2 = TX_MSNB_P2 + WsprMultiChan * WsprToneCode[i]; // This represents the 1.46 Hz shift and is correct only for the bands specified in the array
TXSubFreq(TX_P2); // TX at the appropriate channel frequency for....
//if (btnDown())
// break;
while (millis() < lastTime + 683){} // .... 0,683 seconds
}
digitalWrite(CW_KEY, 0);
stopTx(); //call setFrequency -> recovery TX Filter
//frequency = prevFreq;
selectedWsprBandIndex = -1;
} //end of PTT Check
else if (btnDown())
{
return;
}
} //end of status check
//delay_background(50, 1);
} //end of while
}

BIN
ubitxmanager ubuntu.odt Normal file

Binary file not shown.