Compare commits

..

16 Commits

Author SHA1 Message Date
phdlee
14888bb7d7 change channel name display code 2018-02-05 16:46:37 +09:00
phdlee
57cd385b8a add vfo to channel, channel to vfo 2018-02-05 15:07:25 +09:00
phdlee
60777178a8 TX Check in auto keysend 2018-02-03 17:07:11 +09:00
phdlee
dd68b38454 Optimize codes 2018-02-03 16:35:27 +09:00
phdlee
d229a10092 change tune step size and fixed bug 2018-02-02 20:49:00 +09:00
phdlee
3d019cdd44 change IF Shift Step 1 -> 50Hz 2018-01-31 17:53:20 +09:00
phdlee
4745790dfa fixed Key select bug 2018-01-31 10:44:23 +09:00
phdlee
85832de034 change confirmation key PTT->function key for easy interface 2018-01-30 20:02:49 +09:00
phdlee
4830db78cb change IF Shift setup type 2018-01-30 18:43:08 +09:00
phdlee
5eca64d2a9 vfo changed buf fixed, added BFO feature with Mike 2018-01-30 17:44:15 +09:00
phdlee
0d9ec08bd7 Added CWL, CWU Mode, need test 2018-01-30 13:20:52 +09:00
phdlee
98c26730c6 display test and split TX/RX added 2018-01-30 12:13:52 +09:00
phdlee
3a306429ea display exaam (scroll freq) #2 2018-01-30 00:00:43 +09:00
phdlee
4f634a8277 line2 display example1.1 2018-01-29 23:02:46 +09:00
phdlee
a49d5e85b8 line2 display sample1 2018-01-29 22:49:30 +09:00
phdlee
282c196f63 fixed cw adc range bug 2018-01-29 18:38:48 +09:00
10 changed files with 1250 additions and 325 deletions

View File

@@ -1,11 +1,7 @@
#IMPORTANT INFORMATION
----------------------------------------------------------------------------
- 0.30 Version Test only download. almost complete
- Beta 0.26 and Beta 0.261, Beta 0.262,0.27 is complete test, 0.28 is tested.
- You can download and use it (Release section).
# Current work list (for Version 0.31)
1 Testing CAT Control with Software using hamlib on Linux
- Beta 0.26 and Beta 0.261, Beta 0.262, Beta 0.27 is complete test
- You can download and use it.
#NOTICE
----------------------------------------------------------------------------
@@ -50,24 +46,6 @@ Prepared or finished tasks for the next version
----------------------------------------------------------------------------
## REVISION RECORD
0.30
- implemented the function to monitor the value of all analog inputs. This allows you to monitor the status of the CW keys connected to your uBITX.
- possible to set the ADC range for CW Keying. If no setting is made, it will have the same range as the original code. If you set the CW Keying ADC Values using uBITX Manager 0.3, you can reduce the key error.
- Added the function to select Straight Key, IAMBICA, IAMBICB key from the menu.
- default Band select is Ham Band mode, if you want common type, long press function key at band select menu, uBITX Manager can be used to modify frequencies to suit your country.
0.29
- Remove the use of initialization values in BFO settings - using crruent value, if factory reset
- Select Tune Step, default 0, 20, 50, 100, 200, Use the uBITX Manager to set the steps value you want. You can select Step by pressing and holding the Function Key (1sec ~ 2sec).
- Modify Dial Lock Function, Press the Function key for more than 3 seconds to toggle dial lock.
- created a new frequency tune method. remove original source codes, Threshold has been applied to reduce malfunction. checked the continuity of the user operating to make natural tune possible.
- stabilize and remove many warning messages - by Pullrequest and merge
- Changed cw keying method. removed the original code and applied Ron's code and Improved compatibility with original hardware and CAT commnication. It can be used without modification of hardware.
0.28
- Fixed CAT problem with hamlib on Linux
- restore Protocol autorecovery logic
0.27
(First alpha test version, This will be renamed to the major version 1.0)
- Dual VFO Dial Lock (vfoA Dial lock)

View File

@@ -130,10 +130,21 @@ void CatGetFreqMode(unsigned long freq, byte fromType)
}
//Mode Check
if (isUSB)
CAT_BUFF[4] = CAT_MODE_USB;
if (cwMode == 0)
{
if (isUSB)
CAT_BUFF[4] = CAT_MODE_USB;
else
CAT_BUFF[4] = CAT_MODE_LSB;
}
else if (cwMode == 1)
{
CAT_BUFF[4] = CAT_MODE_CW;
}
else
CAT_BUFF[4] = CAT_MODE_LSB;
{
CAT_BUFF[4] = CAT_MODE_CW;
}
SendCatData(5);
}
@@ -198,12 +209,18 @@ void CatSetMode(byte tmpMode, byte fromType)
if (!inTx)
{
if (tmpMode == CAT_MODE_USB)
if (tmpMode == CAT_MODE_CW)
{
cwMode = 1;
}
else if (tmpMode == CAT_MODE_USB)
{
cwMode = 0;
isUSB = true;
}
else
{
cwMode = 0;
isUSB = false;
}
@@ -358,10 +375,21 @@ void ReadEEPRom_FT817(byte fromType)
CAT_BUFF[1] = 0xB2;
break; case 0x69 : //FM Mic (#29) Contains 0-100 (decimal) as displayed
case 0x78 :
if (isUSB)
CAT_BUFF[0] = CAT_MODE_USB;
else
CAT_BUFF[0] = CAT_MODE_LSB;
if (cwMode == 0)
{
if (isUSB)
CAT_BUFF[0] = CAT_MODE_USB;
else
CAT_BUFF[0] = CAT_MODE_LSB;
}
else if (cwMode == 1)
{
CAT_BUFF[0] = CAT_MODE_CW;
}
else if (cwMode == 2)
{
CAT_BUFF[0] = CAT_MODE_CW;
}
if (CAT_BUFF[0] != 0) CAT_BUFF[0] = 1 << 5;
break;
@@ -384,7 +412,7 @@ void ReadEEPRom_FT817(byte fromType)
//7A 6 ? ?
//7A 7 SPL On/Off 0 = Off, 1 = On
CAT_BUFF[0] = (isSplitOn ? 0xFF : 0x7F);
CAT_BUFF[0] = (splitOn ? 0xFF : 0x7F);
break;
case 0xB3 : //
CAT_BUFF[0] = 0x00;
@@ -472,7 +500,7 @@ void WriteEEPRom_FT817(byte fromType)
printLineF2(F("Sidetone set! CAT"));
EEPROM.put(CW_SIDETONE, sideTone);
delay(300); //If timeout errors occur in the calling software, remove them
printLine2(""); //Ham radio deluxe is the only one that supports this feature yet. and ham radio deluxe has wait time as greater than 500ms
clearLine2();
}
break;
@@ -484,7 +512,8 @@ void WriteEEPRom_FT817(byte fromType)
printLineF2(F("Sidetone set! CAT"));
EEPROM.put(CW_SIDETONE, sideTone);
delay(300); //If timeout errors occur in the calling software, remove them
printLine2(""); //Ham radio deluxe is the only one that supports this feature yet. and ham radio deluxe has wait time as greater than 500ms
clearLine2();
line2DisplayStatus = 0;
}
break;
@@ -504,7 +533,7 @@ void WriteEEPRom_FT817(byte fromType)
printLineF2(F("CW Speed set!"));
EEPROM.put(CW_DELAY, cwDelayTime);
delay(300);
printLine2("");
clearLine2();
break;
case 0x62 : //
//5-0 CW Speed (4-60 WPM) (#21) From 0 to 38 (HEX) with 0 = 4 WPM and 38 = 60 WPM (1 WPM steps)
@@ -513,7 +542,7 @@ void WriteEEPRom_FT817(byte fromType)
printLineF2(F("CW Speed set!"));
EEPROM.put(CW_SPEED, cwSpeed);
delay(300);
printLine2("");
clearLine2();
break;
/*

View File

@@ -298,8 +298,12 @@ void controlAutoCW(){
}
printLineFromEEPRom(0, 2, cwStartIndex + displayScrolStep + CW_DATA_OFSTADJ, cwEndIndex + CW_DATA_OFSTADJ);
byte diplayAutoCWLine = 0;
if ((displayOption1 & 0x01) == 0x01)
diplayAutoCWLine = 1;
lcd.setCursor(0,0);
lcd.setCursor(0, diplayAutoCWLine);
lcd.write(byteToChar(selectedCWTextIndex));
lcd.write(':');
isNeedScroll = (cwEndIndex - cwStartIndex) > 14 ? 1 : 0;
@@ -361,6 +365,11 @@ void controlAutoCW(){
//check interval time, if you want adjust interval between chars, modify below
if (isAutoCWHold == 0 && (millis() - autoCWbeforeTime > cwSpeed * 3))
{
if (!inTx){ //if not TX Status, change RX -> TX
keyDown = 0;
startTx(TX_CW, 0); //disable updateDisplay Command for reduce latency time
}
sendCWChar(EEPROM.read(CW_AUTO_DATA + autoCWSendCharIndex++));
if (autoCWSendCharIndex > autoCWSendCharEndIndex) { //finish auto cw send

View File

@@ -84,6 +84,7 @@
#define PTT (A3)
#define ANALOG_KEYER (A6)
#define ANALOG_SPARE (A7)
#define ANALOG_SMETER (A7) //by KD8CEC
/**
* The Raduino board is the size of a standard 16x2 LCD panel. It has three connectors:
@@ -150,6 +151,7 @@ int count = 0; //to generally count ticks, loops, etc
#define CW_SPEED 28
//AT328 has 1KBytes EEPROM
#define CW_CAL 252
#define VFO_A_MODE 256
#define VFO_B_MODE 257
#define CW_DELAY 258
@@ -158,7 +160,8 @@ int count = 0; //to generally count ticks, loops, etc
#define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5)
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) //1STEP :
//for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
@@ -172,6 +175,14 @@ int count = 0; //to generally count ticks, loops, etc
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
#define CW_KEY_TYPE 358
#define DISPLAY_OPTION1 361 //Display Option1
#define DISPLAY_OPTION2 362 //Display Option2
#define CHANNEL_FREQ 630 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define CHANNEL_DESC 710 //Channel 1 ~ 20, 1 Channel = 4 bytes
#define RESERVE3 770 //Reserve3 between Channel and Firmware id check
//Check Firmware type and version
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
@@ -227,7 +238,7 @@ int count = 0; //to generally count ticks, loops, etc
char ritOn = 0;
char vfoActive = VFO_A;
int8_t meter_reading = 0; // a -1 on meter makes it invisible
unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier;
unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier, cwmCarrier;
unsigned long vfoA_eeprom, vfoB_eeprom; //for protect eeprom life
unsigned long frequency, ritRxFrequency, ritTxFrequency; //frequency is the current frequency on the dial
@@ -244,7 +255,6 @@ byte saveIntervalSec = 10; //second
unsigned long saveCheckTime = 0;
unsigned long saveCheckFreq = 0;
bool isSplitOn = false;
byte cwDelayTime = 60;
byte delayBeforeCWStartTime = 50;
@@ -255,9 +265,12 @@ byte sideToneSub = 0;
//DialLock
byte isDialLock = 0; //000000[0]vfoB [0]vfoA 0Bit : A, 1Bit : B
byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop]
byte arTuneStep[5];
long arTuneStep[5];
byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user
byte displayOption1 = 0;
byte displayOption2 = 0;
//CW ADC Range
int cwAdcSTFrom = 0;
int cwAdcSTTo = 0;
@@ -267,6 +280,10 @@ int cwAdcDashFrom = 0;
int cwAdcDashTo = 0;
int cwAdcBothFrom = 0;
int cwAdcBothTo = 0;
byte cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
bool Iambic_Key = true;
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
unsigned char keyerControl = IAMBICB;
//Variables for auto cw mode
byte isCWAutoMode = 0; //0 : none, 1 : CW_AutoMode_Menu_Selection, 2 : CW_AutoMode Sending
@@ -286,9 +303,13 @@ byte userCallsignLength = 0; //7 : display callsign at system startup, 6~0 :
*/
boolean txCAT = false; //turned on if the transmitting due to a CAT command
char inTx = 0; //it is set to 1 if in transmit mode (whatever the reason : cw, ptt or cat)
char splitOn = 0; //working split, uses VFO B as the transmit frequency, (NOT IMPLEMENTED YET)
char splitOn = 0; //working split, uses VFO B as the transmit frequency
char keyDown = 0; //in cw mode, denotes the carrier is being transmitted
char isUSB = 0; //upper sideband was selected, this is reset to the default for the
char cwMode = 0; //compatible original source, and extend mode //if cwMode == 0, mode check : isUSB, cwMode > 0, mode Check : cwMode
//iscwMode = 0 : ssbmode, 1 :cwl, 2 : cwu, 3 : cwn (none tx)
//frequency when it crosses the frequency border of 10 MHz
byte menuOn = 0; //set to 1 when the menu is being displayed, if a menu item sets it to zero, the menu is exited
unsigned long cwTimeout = 0; //milliseconds to go before the cw transmit line is released and the radio goes back to rx mode
@@ -296,6 +317,14 @@ unsigned long dbgCount = 0; //not used now
unsigned char txFilter = 0; //which of the four transmit filters are in use
boolean modeCalibrate = false;//this mode of menus shows extended menus to calibrate the oscillators and choose the proper
//beat frequency
unsigned long beforeIdle_ProcessTime = 0; //for check Idle time
byte line2DisplayStatus = 0; //0:Clear, 1 : menu, 1: DisplayFrom Idle,
char lcdMeter[17];
byte isIFShift = 0; //1 = ifShift, 2 extend
long ifShiftValue = 0; //
/**
* Below are the basic functions that control the uBitx. Understanding the functions before
* you start hacking around
@@ -348,22 +377,24 @@ void setNextHamBandFreq(unsigned long f, char moveDirection)
EEPROM.get(HAM_BAND_FREQS + 4 * findedIndex, resultFreq);
loadMode = (byte)(resultFreq >> 30);
resultFreq = resultFreq & 0x3FFFFFFF;
//loadMode = (byte)(resultFreq >> 30);
//resultFreq = resultFreq & 0x3FFFFFFF;
loadMode = (byte)(resultFreq >> 29);
resultFreq = resultFreq & 0x1FFFFFFF;
if ((resultFreq / 1000) < hamBandRange[(unsigned char)findedIndex][0] || (resultFreq / 1000) > hamBandRange[(unsigned char)findedIndex][1])
resultFreq = (unsigned long)(hamBandRange[(unsigned char)findedIndex][0]) * 1000;
setFrequency(resultFreq);
byteWithFreqToMode(loadMode);
byteToMode(loadMode, 1);
}
void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) {
if (bandIndex >= 0)
EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x3FFFFFFF) | (mode << 30) );
//EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x3FFFFFFF) | (mode << 30) );
EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x1FFFFFFF) | (mode << 29) );
}
/*
KD8CEC
When using the basic delay of the Arduino, the program freezes.
@@ -457,13 +488,27 @@ void setFrequency(unsigned long f){
setTXFilters(f);
if (isUSB){
si5351bx_setfreq(2, SECOND_OSC_USB - usbCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_USB);
if (cwMode == 0)
{
if (isUSB){
si5351bx_setfreq(2, SECOND_OSC_USB - usbCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_USB);
}
else{
si5351bx_setfreq(2, SECOND_OSC_LSB + usbCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_LSB);
}
}
else{
si5351bx_setfreq(2, SECOND_OSC_LSB + usbCarrier + f);
si5351bx_setfreq(1, SECOND_OSC_LSB);
else
{
if (cwMode == 1){ //CWL
si5351bx_setfreq(2, SECOND_OSC_LSB + cwmCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_LSB);
}
else{ //CWU
si5351bx_setfreq(2, SECOND_OSC_USB - cwmCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_USB);
}
}
frequency = f;
@@ -492,6 +537,21 @@ void startTx(byte txMode, byte isDisplayUpdate){
ritRxFrequency = frequency;
setFrequency(ritTxFrequency);
}
else if (splitOn == 1) {
if (vfoActive == VFO_B) {
vfoActive = VFO_A;
frequency = vfoA;
byteToMode(vfoA_mode, 0);
}
else if (vfoActive == VFO_A){
vfoActive = VFO_B;
frequency = vfoB;
byteToMode(vfoB_mode, 0);
}
setFrequency(frequency);
} //end of else
if (txMode == TX_CW){
//turn off the second local oscillator and the bfo
@@ -501,10 +561,22 @@ void startTx(byte txMode, byte isDisplayUpdate){
//shif the first oscillator to the tx frequency directly
//the key up and key down will toggle the carrier unbalancing
//the exact cw frequency is the tuned frequency + sidetone
if (isUSB)
si5351bx_setfreq(2, frequency + sideTone);
else
si5351bx_setfreq(2, frequency - sideTone);
if (cwMode == 0)
{
if (isUSB)
si5351bx_setfreq(2, frequency + sideTone);
else
si5351bx_setfreq(2, frequency - sideTone);
}
else if (cwMode == 1) //CWL
{
si5351bx_setfreq(2, frequency - sideTone);
}
else //CWU
{
si5351bx_setfreq(2, frequency + sideTone);
}
}
//reduce latency time when begin of CW mode
@@ -516,10 +588,28 @@ void stopTx(){
inTx = 0;
digitalWrite(TX_RX, 0); //turn off the tx
si5351bx_setfreq(0, usbCarrier); //set back the carrier oscillator anyway, cw tx switches it off
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
if (ritOn)
setFrequency(ritRxFrequency);
else if (splitOn == 1) {
//vfo Change
if (vfoActive == VFO_B){
vfoActive = VFO_A;
frequency = vfoA;
byteToMode(vfoA_mode, 0);
}
else if (vfoActive == VFO_A){
vfoActive = VFO_B;
frequency = vfoB;
byteToMode(vfoB_mode, 0);
}
setFrequency(frequency);
} //end of else
else
setFrequency(frequency);
@@ -669,9 +759,8 @@ void doRIT(){
updateDisplay();
}
}
/**
save Frequency and mode to eeprom
/*
save Frequency and mode to eeprom for Auto Save with protected eeprom cycle, by kd8cec
*/
void storeFrequencyAndMode(byte saveType)
{
@@ -703,6 +792,22 @@ void storeFrequencyAndMode(byte saveType)
}
}
//calculate step size from 1 byte, compatible uBITX Manager, by KD8CEC
unsigned int byteToSteps(byte srcByte) {
byte powerVal = (byte)(srcByte >> 6);
unsigned int baseVal = srcByte & 0x3F;
if (powerVal == 1)
return baseVal * 10;
else if (powerVal == 2)
return baseVal * 100;
else if (powerVal == 3)
return baseVal * 1000;
else
return baseVal;
}
/**
* The settings are read from EEPROM. The first time around, the values may not be
* present or out of range, in this case, some intelligent defaults are copied into the
@@ -745,6 +850,7 @@ void initSettings(){
if (EEPROM.read(VERSION_ADDRESS) != VERSION_NUM)
EEPROM.write(VERSION_ADDRESS, VERSION_NUM);
EEPROM.get(CW_CAL, cwmCarrier);
//for Save VFO_A_MODE to eeprom
//0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM
@@ -756,6 +862,24 @@ void initSettings(){
//CW interval between TX and CW Start
EEPROM.get(CW_START, delayBeforeCWStartTime);
EEPROM.get(CW_KEY_TYPE, cwKeyType);
if (cwKeyType > 2)
cwKeyType = 0;
if (cwKeyType == 0)
Iambic_Key = false;
else
{
Iambic_Key = true;
if (cwKeyType == 1)
keyerControl &= ~IAMBICB;
else
keyerControl |= IAMBICB;
}
EEPROM.get(DISPLAY_OPTION1, displayOption1);
EEPROM.get(DISPLAY_OPTION2, displayOption2);
//User callsign information
if (EEPROM.read(USER_CALLSIGN_KEY) == 0x59)
@@ -790,7 +914,7 @@ void initSettings(){
hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000;
hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800;
hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367;
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7200;
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7300; //region 1
hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150;
hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350;
hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168;
@@ -804,8 +928,8 @@ void initSettings(){
findedValidValueCount = 0;
EEPROM.get(TUNING_STEP, tuneStepIndex);
for (byte i = 0; i < 5; i++) {
arTuneStep[i] = EEPROM.read(TUNING_STEP + i + 1);
if (arTuneStep[i] >= 1 && arTuneStep[i] < 251) //Maximum 250 for check valid Value
arTuneStep[i] = byteToSteps(EEPROM.read(TUNING_STEP + i + 1));
if (arTuneStep[i] >= 1 && arTuneStep[i] <= 60000) //Maximum 650 for check valid Value
findedValidValueCount++;
}
@@ -875,15 +999,18 @@ void initSettings(){
//original code with modified by kd8cec
if (usbCarrier > 12010000l || usbCarrier < 11990000l)
usbCarrier = 11995000l;
if (cwmCarrier > 12010000l || cwmCarrier < 11990000l)
cwmCarrier = 11995000l;
if (vfoA > 35000000l || 3500000l > vfoA) {
vfoA = 7150000l;
vfoA_mode = 2;
vfoA_mode = 2; //LSB
}
if (vfoB > 35000000l || 3500000l > vfoB) {
vfoB = 14150000l;
vfoB_mode = 3;
vfoB_mode = 3; //USB
}
//end of original code section
@@ -923,6 +1050,7 @@ void initPorts(){
pinMode(PTT, INPUT_PULLUP);
pinMode(ANALOG_KEYER, INPUT_PULLUP);
pinMode(ANALOG_SMETER, INPUT); //by KD8CEC
pinMode(CW_TONE, OUTPUT);
digitalWrite(CW_TONE, 0);
@@ -958,7 +1086,7 @@ void setup()
//Serial.begin(9600);
lcd.begin(16, 2);
printLineF(1, F("CECBT v0.30"));
printLineF(1, F("CECBT v0.35"));
Init_Cat(38400, SERIAL_8N1);
initMeter(); //not used in this build
@@ -972,15 +1100,16 @@ void setup()
else {
printLineF(0, F("uBITX v0.20"));
delay(500);
printLine2("");
clearLine2();
}
initPorts();
byteToMode(vfoA_mode, 0);
initOscillators();
frequency = vfoA;
saveCheckFreq = frequency; //for auto save frequency
byteToMode(vfoA_mode);
setFrequency(vfoA);
updateDisplay();
@@ -989,13 +1118,11 @@ void setup()
}
/**
* The loop checks for keydown, ptt, function button and tuning.
*/
//for debug
int dbgCnt = 0;
byte flasher = 0;
//Auto save Frequency and Mode with Protected eeprom life by KD8CEC
void checkAutoSaveFreqMode()
{
//when tx or ritOn, disable auto save
@@ -1044,9 +1171,16 @@ void loop(){
if (!inTx){
if (ritOn)
doRIT();
//else if (isIFShift)
// doIFShift();
else
doTuningWithThresHold();
}
if (isCWAutoMode == 0 && beforeIdle_ProcessTime < millis() - 250) {
idle_process();
beforeIdle_ProcessTime = millis();
}
} //end of check TX Status
//we check CAT after the encoder as it might put the radio into TX
Check_Cat(inTx? 1 : 0);

View File

@@ -14,6 +14,7 @@ void btnWaitForClick(){
void factory_alignment(){
factoryCalibration(1);
line2DisplayStatus = 1;
if (calibration == 0){
printLine2("Setup Aborted");
@@ -36,6 +37,7 @@ void factory_alignment(){
printLine2("#3:Test 3.5MHz");
cwMode = 0;
isUSB = false;
setFrequency(3500000l);
updateDisplay();
@@ -58,6 +60,7 @@ void factory_alignment(){
btnWaitForClick();
printLine2("#5:Test 14MHz");
cwMode = 0;
isUSB = true;
setFrequency(14000000l);
updateDisplay();
@@ -79,6 +82,7 @@ void factory_alignment(){
printLine2("Alignment done");
delay(1000);
cwMode = 0;
isUSB = false;
setFrequency(7150000l);
updateDisplay();

257
ubitx_20/ubitx_idle.ino Normal file
View File

@@ -0,0 +1,257 @@
/*************************************************************************
KD8CEC's uBITX Idle time Processing
Functions that run at times that do not affect TX, CW, and CAT
It is called in 1/10 time unit.
-----------------------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
char line2Buffer[16];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
void updateLine2Buffer(char isDirectCall)
{
unsigned long tmpFreq = 0;
if (isDirectCall == 0)
{
if (ritOn)
{
line2Buffer[0] = 'R';
line2Buffer[1] = 'i';
line2Buffer[2] = 't';
line2Buffer[3] = 'T';
line2Buffer[4] = 'X';
line2Buffer[5] = ':';
//display frequency
tmpFreq = ritTxFrequency;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//======================================================
//other VFO display
//======================================================
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
//line2Buffer[0] = 'A';
}
else
{
tmpFreq = vfoB;
//line2Buffer[0] = 'B';
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'k';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'k';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
} //check direct call by encoder
if (isIFShift)
{
if (isDirectCall == 1)
for (int i = 0; i < 16; i++)
line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
if (ifShiftValue == 0)
{
line2Buffer[10] = 'S';
line2Buffer[11] = ':';
line2Buffer[12] = 'O';
line2Buffer[13] = 'F';
line2Buffer[14] = 'F';
}
else
{
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
}
if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step display
{
if (isDirectCall != 0)
return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
//if (isStepKhz == 1)
// line2Buffer[10] = 'k';
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//if (
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
drawMeter(meterValue); //call original source code
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
lcd.setCursor(drawPosition, lineNumber);
for (int i = 0; i < 6; i++) //meter 5 + +db 1 = 6
lcd.write(lcdMeter[i]);
}
byte testValue = 0;
char checkCount = 0;
void idle_process()
{
//space for user graphic display
if (menuOn == 0)
{
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 7);
if (testValue > 30)
testValue = 0;
*/
}
}
}

View File

@@ -91,8 +91,6 @@ void cwKeyUp(){
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
static long ktimer;
bool Iambic_Key = true;
unsigned char keyerControl = IAMBICB;
unsigned char keyerState = IDLE;
//Below is a test to reduce the keying error. do not delete lines
@@ -101,17 +99,17 @@ char update_PaddleLatch(byte isUpdateKeyState) {
unsigned char tmpKeyerControl;
int paddle = analogRead(ANALOG_KEYER);
if (paddle > cwAdcDashFrom && paddle < cwAdcDashTo)
if (paddle >= cwAdcDashFrom && paddle <= cwAdcDashTo)
tmpKeyerControl |= DAH_L;
else if (paddle > cwAdcDotFrom && paddle < cwAdcDotTo)
else if (paddle >= cwAdcDotFrom && paddle <= cwAdcDotTo)
tmpKeyerControl |= DIT_L;
else if (paddle > cwAdcBothFrom && paddle < cwAdcBothTo)
else if (paddle >= cwAdcBothFrom && paddle <= cwAdcBothTo)
tmpKeyerControl |= (DAH_L | DIT_L) ;
else
{
if (Iambic_Key)
tmpKeyerControl = 0 ;
else if (paddle > cwAdcSTFrom && paddle < cwAdcSTTo)
else if (paddle >= cwAdcSTFrom && paddle <= cwAdcSTTo)
tmpKeyerControl = DIT_L ;
else
tmpKeyerControl = 0 ;

File diff suppressed because it is too large Load Diff

View File

@@ -109,7 +109,11 @@ void initOscillators(){
//initialize the SI5351
si5351bx_init();
si5351bx_vcoa = (SI5351BX_XTAL * SI5351BX_MSA) + calibration; // apply the calibration correction factor
si5351bx_setfreq(0, usbCarrier);
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0));
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0));
}

View File

@@ -25,8 +25,8 @@ int btnDown(){
* The current reading of the meter is assembled in the string called meter
*/
//char meter[17];
/*
const PROGMEM uint8_t s_meter_bitmap[] = {
B00000,B00000,B00000,B00000,B00000,B00100,B00100,B11011,
B10000,B10000,B10000,B10000,B10100,B10100,B10100,B11011,
@@ -35,7 +35,18 @@ const PROGMEM uint8_t s_meter_bitmap[] = {
B00010,B00010,B00010,B00010,B00110,B00110,B00110,B11011,
B00001,B00001,B00001,B00001,B00101,B00101,B00101,B11011
};
PGM_P ps_meter_bitmap = reinterpret_cast<PGM_P>(s_meter_bitmap);
*/
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100 , //custom 3
B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110 , //custom 4
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
};
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = {
0b01110,
@@ -60,38 +71,56 @@ void initMeter(){
lcd.createChar(0, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
lcd.createChar(1, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 8);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
lcd.createChar(2, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 16);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
lcd.createChar(3, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 24);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
lcd.createChar(4, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 28);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
lcd.createChar(5, tmpbytes);
for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 32);
tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
lcd.createChar(6, tmpbytes);
}
/**
* The meter is drawn with special characters.
* character 1 is used to simple draw the blocks of the scale of the meter
* characters 2 to 6 are used to draw the needle in positions 1 to within the block
* This displays a meter from 0 to 100, -1 displays nothing
*/
//by KD8CEC
//0 ~ 25 : 30 over : + 10
void drawMeter(int needle) {
//5Char + O over
int drawCharLength = needle / 5;
int drawCharLengthLast = needle % 5;
int i;
/*
for (i = 0; i < 5; i++) {
if (needle >= 5)
lcdMeter[i] = 5; //full
else if (needle > 0)
lcdMeter[i] = needle; //full
else //0
lcdMeter[i] = 0x20;
needle -= 5;
}
if (needle > 0)
lcdMeter[5] = 6;
else
lcdMeter[5] = 0x20;
}
/*
void drawMeter(int8_t needle){
int16_t best, i, s;
@@ -101,21 +130,23 @@ void drawMeter(int8_t needle){
s = (needle * 4)/10;
for (i = 0; i < 8; i++){
if (s >= 5)
meter[i] = 1;
lcdMeter[i] = 1;
else if (s >= 0)
meter[i] = 2 + s;
lcdMeter[i] = 2 + s;
else
meter[i] = 1;
lcdMeter[i] = 1;
s = s - 5;
}
if (needle >= 40)
meter[i-1] = 6;
meter[i] = 0;
lcdMeter[i-1] = 6;
lcdMeter[i] = 0;
}
*/
// The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
lcd.print(c);
@@ -145,6 +176,9 @@ void printLineF(char linenmbr, const __FlashStringHelper *c)
#define LCD_MAX_COLUMN 16
void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, byte eepromEndIndex) {
if ((displayOption1 & 0x01) == 0x01)
linenmbr = (linenmbr == 0 ? 1 : 0); //Line Toggle
lcd.setCursor(lcdColumn, linenmbr);
for (byte i = eepromStartIndex; i <= eepromEndIndex; i++)
@@ -168,6 +202,12 @@ void printLine2(const char *c){
printLine(0,c);
}
void clearLine2()
{
printLine2("");
line2DisplayStatus = 0;
}
// short cut to print to the first line
void printLine1Clear(){
printLine(1,"");
@@ -179,6 +219,7 @@ void printLine2Clear(){
void printLine2ClearAndUpdate(){
printLine(0, "");
line2DisplayStatus = 0;
updateDisplay();
}
@@ -194,7 +235,6 @@ char byteToChar(byte srcByte){
void updateDisplay() {
// tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i;
unsigned long tmpFreq = frequency; //
@@ -221,10 +261,21 @@ void updateDisplay() {
if (ritOn)
strcpy(c, "RIT ");
else {
if (isUSB)
strcpy(c, "USB ");
if (cwMode == 0)
{
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else
strcpy(c, "LSB ");
{
strcpy(c, "CWU ");
}
}
if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:");
@@ -251,18 +302,22 @@ void updateDisplay() {
// strcat(c, " TX");
printLine(1, c);
byte diplayVFOLine = 1;
if ((displayOption1 & 0x01) == 0x01)
diplayVFOLine = 0;
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02))) {
lcd.setCursor(5,1);
lcd.setCursor(5,diplayVFOLine);
lcd.write((uint8_t)0);
}
else if (isCWAutoMode == 2){
lcd.setCursor(5,1);
lcd.setCursor(5,diplayVFOLine);
lcd.write(0x7E);
}
else
{
lcd.setCursor(5,1);
lcd.setCursor(5,diplayVFOLine);
lcd.write(":");
}