New version where the streaming streamlit app is working. Refactoring of the prompt mechanism. New, more efficient prompt with citations of the URL.

This commit is contained in:
Pierre-Edouard Portier 2024-01-05 13:34:48 +01:00
parent 62559dcd0f
commit ad9e7d93aa
6 changed files with 616 additions and 105 deletions

1
.gitignore vendored
View File

@ -11,3 +11,4 @@ index_cera2/
index_cera2_distiluse/ index_cera2_distiluse/
__pycache__/ __pycache__/
chromadbtest/ chromadbtest/
rag.log

2
PAD
View File

@ -65,3 +65,5 @@ pip install langchain
pip install -U sentence-transformers pip install -U sentence-transformers
pip install streamlit pip install streamlit
python -m streamlit run app.py

26
app.py
View File

@ -3,14 +3,16 @@ from rag import RAG
import re import re
import logging import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') @st.cache_resource
def init_rag():
llm_model_path = '/Users/peportier/llm/a/a/zephyr-7b-beta.Q5_K_M.gguf'
embed_model_name = 'intfloat/multilingual-e5-large'
collection_name = 'cera'
chromadb_path = './chromadb'
rag = RAG(llm_model_path, embed_model_name, collection_name, chromadb_path)
return rag
llm_model_path = '/Users/peportier/llm/a/a/zephyr-7b-beta.Q5_K_M.gguf' rag = init_rag()
embed_model_name = 'intfloat/multilingual-e5-large'
collection_name = 'cera'
chromadb_path = './chromadb'
rag = RAG(llm_model_path, embed_model_name, collection_name, chromadb_path)
st.title("CERA Chat") st.title("CERA Chat")
@ -37,10 +39,10 @@ if prompt := st.chat_input("Comment puis-je vous aider ?"):
full_response += response full_response += response
message_placeholder.markdown(full_response + "") message_placeholder.markdown(full_response + "")
message_placeholder.markdown(full_response) message_placeholder.markdown(full_response)
url_pattern = r"URL :\n(https?://[^\s]+)" # url_pattern = r"URL :\n(https?://[^\s]+)"
urls = re.findall(url_pattern, rag.chat_history[-1]['assistant']) # urls = re.findall(url_pattern, rag.chat_history[-1]['assistant'])
markdown_urls = "\n".join([f"- {url}" for url in urls]) # markdown_urls = "\n".join([f"- {url}" for url in urls])
logging.info(markdown_urls) # logging.info(f"URLs: \n{markdown_urls}")
#message_placeholder.markdown(markdown_urls) # message_placeholder.markdown(markdown_urls)
st.session_state.messages.append({"role": "assistant", "content": full_response}) st.session_state.messages.append({"role": "assistant", "content": full_response})

21
debug.py Normal file
View File

@ -0,0 +1,21 @@
from rag import RAG
llm_model_path = '/Users/peportier/llm/a/a/zephyr-7b-beta.Q5_K_M.gguf'
embed_model_name = 'intfloat/multilingual-e5-large'
collection_name = 'cera'
chromadb_path = './chromadb'
rag = RAG(llm_model_path, embed_model_name, collection_name, chromadb_path)
query1 = "Comment aider une entreprise qui rencontre des problèmes de trésorerie ?"
ans1 = rag.chat(query1, stream=True)
query2 = "Pouvez-vous m'en dire plus au sujet du deuxième point ?"
ans2 = rag.chat(query2, stream=True)
# Queries:
#
# Lorsque mon client est en télétravail, quels sont les risques couverts par son assurance habitation ?
#
# Quel est le risque de perte attaché à la détention de Parts Sociales ?
#
# Comment procéder pour déclarer un sinistre habitation ? ou Comment procéder pour déclarer un sinistre Visa Premier ?

231
rag.py
View File

@ -3,48 +3,103 @@ import chromadb
from llama_cpp import Llama from llama_cpp import Llama
import copy import copy
import logging import logging
import re
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logging.basicConfig(filename='rag.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class RAG: class RAG:
def __init__(self, llm_model_path, embed_model_name, collection_name, chromadb_path): def __init__(self, llm_model_path, embed_model_name, collection_name, chromadb_path):
logging.info('INIT')
self.chat_history = [] self.chat_history = []
self.rag_system_prompt = """ self.tag_system = '<|system|>'
Vous êtes un assistant IA qui répond à la question posée par l'utilisateur en utilisant un contexte répertorié ci-dessous dans la rubrique Contexte. self.tag_user = '<|user|>'
Le contexte est formé de passages exraits du site web commercial de la Caisse d'Epargne Rhône-Alpes, une banque française régionale. self.tag_assistant = '<|assistant|>'
Votre réponse ne doit pas mentionner des informations déjà présentes dans l'historique de la conversation qui est répertorié ci-dessous dans la rubrique Historique. self.tag_end = '</s>'
Vous fournissez avec soin des réponses précises, factuelles, réfléchies et nuancées, et vous êtes doué pour le raisonnement. self.rag_prompt = """
Toutes les informations factuelles que vous utilisez pour répondre proviennent exclusivement du contexte. {tag_system}
Si vous ne pouvez pas répondre à la question sur la base des éléments du contexte, dites simplement que vous ne savez pas, n'essayez pas d'inventer une réponse. Objectif
Vos réponses doivent être brèves. ========
Vos utilisateurs savent que vos réponses sont brèves et qu'elles ne mentionnent que les éléments du contexte, il n'est pas nécessaire de le leur rappeler.
Vous gardez le rôle d'assistant et vous ne générez jamais le texte '<|user|>'.
Vous rédigez vos réponses en français au format markdown sous forme d'une liste composée de 1 à 7 éléments au maximum.
Voici le format que doit prendre votre réponse :
```
Voici des éléments de réponse :
1. Elément de réponse.
2. Elément de réponse.
3. Elément de réponse.
4. ...
```
---------------------------------------- Vous êtes un assistant IA spécialiste des produits et services de la Caisse d'Epargne Rhône-Alpes, \
Historique : une banque régionale française.
Vous aidez un conseiller clientèle de la banque à mieux répondre aux besoins des clients.
Vous fournissez avec soin des réponses précises et factuelles aux questions du conseiller.
Utilisation du contexte
=======================
Vous répondez à la question posée par le conseiller en utilisant un contexte \
formé de passages exraits du site web commercial de la banque.
Votre réponse se base exclusivement sur les informations factuelles présentes dans le contexte.
Si vous ne pouvez pas répondre à la question sur la base des éléments du contexte, \
dites simplement que vous ne savez pas, n'essayez pas d'inventer une réponse.
Voici le format d'un passage du contexte :
```
Titre :
Le titre du passage
Catégorie :
La catégorie du passage
URL :
https://www.caisse-epargne.fr/rhone-alpes/url/du/passage
Contenu :
Le contenu du passage
```
Vos réponses doivent toujours citer l'URL des passages utilisés. \
Assurez-vous que l'URL citée correspond exactement à celle du passage. \
Ne générez pas de nouvelles URLs. \
Les conseillers sont encouragés à vérifier les URLs citées.
Format de réponse
=================
Formulez chaque réponse sous forme de recommandations directes et concises, \
en utilisant le langage et les termes présents dans le contexte.
Citez l'URL en fin de réponse ou immédiatement après la recommandation pertinente.
Vous rédigez votre réponse en français sous forme d'une liste d'informations \
synthétiques extraites du contexte et qui seront utiles au conseiller.
Vos utilisateurs savent qui vous êtes et quelles instructions vous avez reçues, \
il n'est pas nécessaire de le leur rapeler.
Voici le format que doit suivre votre réponse :
```
Voici des informations qui pourront aider votre client :
1. Utilisez [une solution spécifique du contexte] pour [traiter un aspect du problème]. Par exemple, [détail concret tiré du contexte]. Pour plus d'informations voir https://www.caisse-epargne.fr/rhone-alpes/url/du/passage
2. Considérez [une autre solution du contexte], qui est particulièrement adaptée pour [un autre aspect du problème]. Par exemple, [autre détail concret du contexte]. Pour plus d'informations voir https://www.caisse-epargne.fr/rhone-alpes/url/du/passage
```
{tag_end}
{history} {history}
----------------------------------------
{tag_user}
Contexte : Contexte :
==========
{context} {context}
Question de l'utilisateur :
===========================
{query}
{tag_end}
{tag_assistant}
Voici des informations qui pourront aider votre client :
1.
""" """
self.query_reformulate_system_prompt = """ self.query_reformulate_prompt = """
{tag_system}
Instructions :
==============
Vous êtes un interprète conversationnel pour une conversation entre un utilisateur et \ Vous êtes un interprète conversationnel pour une conversation entre un utilisateur et \
un assistant IA spécialiste des produits et services de la Caisse d'Epargne Rhône-Alpes, \ un assistant IA spécialiste des produits et services de la Caisse d'Epargne Rhône-Alpes, \
une banque régionale française. une banque régionale française.
L'utilisateur vous posera une question sans contexte. \ L'utilisateur vous posera une question sans contexte.
Vous devez reformuler la question pour prendre en compte le contexte de la conversation. Vous devez reformuler la question pour prendre en compte le contexte de la conversation.
Vous devez supposer que la question est liée aux produits et services de la Caisse d'Epargne Rhône-Alpes. Vous devez supposer que la question est liée aux produits et services de la Caisse d'Epargne Rhône-Alpes.
Vous devez également consulter l'historique de la conversation ci-dessous lorsque vous reformulez la question. \ Vous devez également consulter l'historique de la conversation ci-dessous lorsque vous reformulez la question.
Par exemple, vous remplacerez les pronoms par les noms les plus probables dans l'historique de la conversation. Par exemple, vous remplacerez les pronoms par les noms les plus probables dans l'historique de la conversation.
Lorsque vous reformulez la question, accordez plus d'importance à la dernière question et \ Lorsque vous reformulez la question, accordez plus d'importance à la dernière question et \
à la dernière réponse dans l'historique des conversations. à la dernière réponse dans l'historique des conversations.
@ -53,26 +108,36 @@ de sorte que l'échange le plus récent se trouve en haut de la page.
Répondez en seulement une phrase avec la question reformulée. Répondez en seulement une phrase avec la question reformulée.
Historique de la conversation : Historique de la conversation :
===============================
{history}
{tag_end}
{tag_user}
Reformulez la question suivante : "{query}"
{tag_end}
{tag_assistant}
Question reformulée : "
""" """
self.prefix_assistant_prompt = '1. '
self.embed_model = SentenceTransformer(embed_model_name) self.embed_model = SentenceTransformer(embed_model_name)
self.chroma_client = chromadb.PersistentClient(path=chromadb_path) self.chroma_client = chromadb.PersistentClient(path=chromadb_path)
self.collection = self.chroma_client.get_collection(name=collection_name) self.collection = self.chroma_client.get_collection(name=collection_name)
self.llm = Llama(model_path=llm_model_path, n_gpu_layers=1, use_mlock=True, n_ctx=4096) self.llm = Llama(model_path=llm_model_path, n_gpu_layers=1, use_mlock=True, n_ctx=4096)
def answer(self, prompt, stream=False): def answer(self, prompt, stream):
response = self.llm(prompt = prompt, response = self.llm(prompt = prompt,
temperature = 0.1, temperature = 0.7,
mirostat_mode = 2, mirostat_mode = 2,
stream = stream, stream = stream,
max_tokens = -1, max_tokens = -1,
stop = ['</s>', ' 8.', '\n\n', '<|user|>']) stop = [self.tag_end, self.tag_user])
if stream: if stream:
return response return response
else: return response["choices"][0]["text"] else: return response["choices"][0]["text"]
def query_collection(self, query, n_results=3): def query_collection(self, query, n_results=3):
logging.info(f"query_collection / query: \n{query}")
query = 'query: ' + query query = 'query: ' + query
query_embedding = self.embed_model.encode(query, normalize_embeddings=True) query_embedding = self.embed_model.encode(query, normalize_embeddings=True)
query_embedding = query_embedding.tolist() query_embedding = query_embedding.tolist()
@ -80,6 +145,13 @@ Historique de la conversation :
query_embeddings=[query_embedding], query_embeddings=[query_embedding],
n_results=n_results, n_results=n_results,
) )
ids_sources = ""
for i in range(len(results["documents"][0])):
id = results["ids"][0][i]
ids_sources += id + " ; "
logging.info(f"query_collection / sources: \n{ids_sources}")
return results return results
def format_passages(self, query_results): def format_passages(self, query_results):
@ -107,70 +179,49 @@ Historique de la conversation :
result = '\n'.join(result) result = '\n'.join(result)
return result return result
def format_rag_prompt(self, query, context="", history=""): def answer_rag_prompt_streaming(self, prompt):
logging.info(f"answer_rag_prompt_streaming: \n{prompt}")
user_query = f"Question de l'utilisateur : \n{query}\n\n" ans = self.answer(prompt, stream=True)
assistant_answer = f"Réponse de l'assistant : \n 1. "
self.chat_history.append({'user': user_query, 'assistant': assistant_answer})
system_prompt = self.rag_system_prompt.format(history=history, context=context) yield self.prefix_assistant_prompt
for item in ans:
prompt = "" item = item["choices"][0]["text"]
prompt = f"<|system|>\n{system_prompt.strip()}</s>\n" self.chat_history[-1]['assistant'] += item
prompt += f"<|user|>\n{query}</s>\n" yield item
prompt += f"<|assistant|>\n Voici des éléments de réponse : \n 1. "
return prompt
def remove_references(self, text):
motif = r"\(Passage \d+\)"
res = re.sub(motif, '', text)
return res
def answer_rag_prompt(self, query, query_results, stream=False): def answer_rag_prompt_non_streaming(self, prompt):
logging.info(f"answer_rag_prompt_non_streaming: \n{prompt}")
query_context = self.format_passages(query_results) ans = self.answer(prompt, stream=False)
self.chat_history[-1]['assistant'] += ans
ans = self.prefix_assistant_prompt + ans
return ans
def prepare_prompt(self, query, query_results):
context = self.format_passages(query_results)
history = "" history = ""
for i in reversed(range(len(self.chat_history))): for i in range(len(self.chat_history)):
history += self.chat_history[i]["user"] history += f"<|user|>\n{self.chat_history[i]['user']}</s>\n"
history += self.remove_references(self.chat_history[i]["assistant"]) history += f"<|assistant|>\n{self.chat_history[i]['assistant']}</s>\n"
history += "\n\n"
prompt = self.format_rag_prompt(query, query_context, history)
logging.info(prompt) self.chat_history.append({'user': query, 'assistant': self.prefix_assistant_prompt})
ans = self.answer(prompt, stream)
if stream:
yield ' 1. '
for item in ans:
item = item["choices"][0]["text"]
self.chat_history[-1]['assistant'] += item
yield item
else:
self.chat_history[-1]['assistant'] += ans
ans = '1. ' + ans
return ans
def format_prompt_reformulate_query(self, query):
system_prompt = self.query_reformulate_system_prompt
for i in reversed(range(len(self.chat_history))):
system_prompt += self.chat_history[i]["user"]
system_prompt += self.chat_history[i]["assistant"]
prompt = "" return self.rag_prompt.format(history=history, query=query, context=context,
prompt = f"<|system|>\n{system_prompt.strip()}</s>\n" tag_user=self.tag_user, tag_system=self.tag_system,
prompt += f"<|user|>\nPeux-tu reformuler la question suivante : \n \"{query}\"</s>\n" tag_assistant=self.tag_assistant, tag_end=self.tag_end)
prompt += f"<|assistant|> Question reformulée : \n\""
return prompt
def reformulate_query(self, query): def reformulate_query(self, query):
prompt = self.format_prompt_reformulate_query(query) history = ""
logging.info(prompt) for i in reversed(range(len(self.chat_history))):
ans = self.answer(prompt) history += f"Question de l'utilisateur :\n{self.chat_history[i]['user']}\n"
history += f"Réponse de l'assistant :\n{self.chat_history[i]['assistant']}\n"
prompt = self.query_reformulate_prompt.format(history=history, query=query,
tag_user=self.tag_user, tag_system=self.tag_system,
tag_assistant=self.tag_assistant, tag_end=self.tag_end)
logging.info(f"reformulate_query: \n{prompt}")
ans = self.answer(prompt, stream=False)
last_quote_index = ans.rfind('"') last_quote_index = ans.rfind('"')
if last_quote_index != -1: if last_quote_index != -1:
@ -183,11 +234,15 @@ Historique de la conversation :
logging.info(f"La requête n'a pas pu être reformulée.") logging.info(f"La requête n'a pas pu être reformulée.")
return query return query
def chat(self, query): def chat(self, query, stream=True):
if len(self.chat_history) > 0: if len(self.chat_history) > 0:
query = self.reformulate_query(query) query = self.reformulate_query(query)
query_results = self.query_collection(query) query_results = self.query_collection(query)
ans = self.answer_rag_prompt(query, query_results, stream=True) prompt = self.prepare_prompt(query, query_results)
if stream:
ans = self.answer_rag_prompt_streaming(prompt)
else:
ans = self.answer_rag_prompt_non_streaming(prompt)
return ans return ans
def reset_history(self): def reset_history(self):

View File

@ -2,10 +2,21 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 1,
"id": "612c8bdb-83a8-4882-96a5-513ac7aedd7b", "id": "612c8bdb-83a8-4882-96a5-513ac7aedd7b",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/peportier/miniforge3/envs/RAG_ENV/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/Users/peportier/miniforge3/envs/RAG_ENV/lib/python3.9/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n"
]
}
],
"source": [ "source": [
"import importlib\n", "import importlib\n",
"import rag\n", "import rag\n",
@ -16,10 +27,400 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 2,
"id": "98130049-a4de-4532-8454-3df1a13094e7", "id": "98130049-a4de-4532-8454-3df1a13094e7",
"metadata": {}, "metadata": {
"outputs": [], "collapsed": true,
"jupyter": {
"outputs_hidden": true
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-01-04 09:15:27,599 - INFO - Load pretrained SentenceTransformer: intfloat/multilingual-e5-large\n",
"/Users/peportier/miniforge3/envs/RAG_ENV/lib/python3.9/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n",
"2024-01-04 09:15:31,253 - INFO - Use pytorch device: cpu\n",
"2024-01-04 09:15:31,257 - INFO - Anonymized telemetry enabled. See https://docs.trychroma.com/telemetry for more information.\n",
"llama_model_loader: loaded meta data with 21 key-value pairs and 291 tensors from /Users/peportier/llm/a/a/zephyr-7b-beta.Q5_K_M.gguf (version GGUF V3 (latest))\n",
"llama_model_loader: - tensor 0: token_embd.weight q5_K [ 4096, 32000, 1, 1 ]\n",
"llama_model_loader: - tensor 1: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 2: blk.0.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 3: blk.0.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 4: blk.0.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 5: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 6: blk.0.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 7: blk.0.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 8: blk.0.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 9: blk.0.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 10: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 11: blk.1.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 12: blk.1.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 13: blk.1.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 14: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 15: blk.1.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 16: blk.1.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 17: blk.1.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 18: blk.1.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 19: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 20: blk.2.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 21: blk.2.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 22: blk.2.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 23: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 24: blk.2.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 25: blk.2.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 26: blk.2.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 27: blk.2.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 28: blk.3.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 29: blk.3.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 30: blk.3.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 31: blk.3.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 32: blk.3.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 33: blk.3.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 34: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 35: blk.3.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 37: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 38: blk.4.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 39: blk.4.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 40: blk.4.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 41: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 42: blk.4.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 43: blk.4.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 44: blk.4.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 45: blk.4.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 46: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 47: blk.5.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 48: blk.5.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 49: blk.5.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 50: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 51: blk.5.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 52: blk.5.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 53: blk.5.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 54: blk.5.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 55: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 56: blk.6.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 57: blk.6.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 58: blk.6.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 59: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 60: blk.6.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 61: blk.6.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 62: blk.6.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 63: blk.6.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 64: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 65: blk.7.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 66: blk.7.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 67: blk.7.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 68: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 69: blk.7.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 70: blk.7.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 71: blk.7.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 72: blk.7.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 73: blk.8.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 74: blk.8.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 75: blk.8.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 76: blk.8.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 77: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 78: blk.10.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 79: blk.10.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 80: blk.10.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 81: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 82: blk.10.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 83: blk.10.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 84: blk.10.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 85: blk.10.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 86: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 87: blk.11.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 88: blk.11.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 89: blk.11.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 90: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 91: blk.11.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 92: blk.11.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 93: blk.11.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 94: blk.11.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 95: blk.12.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 96: blk.12.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 97: blk.12.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 98: blk.12.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 99: blk.12.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 100: blk.12.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 101: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 102: blk.8.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 103: blk.8.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 104: blk.8.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 105: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 106: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 107: blk.9.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 108: blk.9.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 109: blk.9.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 110: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 111: blk.9.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 112: blk.9.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 113: blk.9.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 114: blk.9.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 115: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 116: blk.12.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 118: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 119: blk.13.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 120: blk.13.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 121: blk.13.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 122: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 123: blk.13.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 124: blk.13.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 125: blk.13.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 126: blk.13.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 127: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 128: blk.14.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 129: blk.14.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 130: blk.14.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 131: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 132: blk.14.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 133: blk.14.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 134: blk.14.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 135: blk.14.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 136: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 137: blk.15.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 138: blk.15.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 139: blk.15.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 140: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 141: blk.15.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 142: blk.15.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 143: blk.15.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 144: blk.15.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 145: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 146: blk.16.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 147: blk.16.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 148: blk.16.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 149: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 150: blk.16.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 151: blk.16.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 152: blk.16.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 153: blk.16.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 154: blk.17.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 155: blk.17.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 156: blk.17.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 157: blk.17.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 158: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 159: blk.17.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 160: blk.17.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 161: blk.17.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 163: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 164: blk.18.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 165: blk.18.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 166: blk.18.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 167: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 168: blk.18.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 169: blk.18.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 170: blk.18.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 171: blk.18.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 172: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 173: blk.19.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 174: blk.19.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 175: blk.19.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 176: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 177: blk.19.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 178: blk.19.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 179: blk.19.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 180: blk.19.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 181: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 182: blk.20.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 183: blk.20.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 184: blk.20.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 185: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 186: blk.20.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 187: blk.20.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 188: blk.20.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 189: blk.20.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 190: blk.21.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 191: blk.21.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 192: blk.21.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 193: blk.21.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 194: blk.21.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 195: blk.21.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 196: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 197: blk.21.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 199: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 200: blk.22.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 201: blk.22.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 202: blk.22.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 203: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 204: blk.22.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 205: blk.22.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 206: blk.22.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 207: blk.22.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 208: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 209: blk.23.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 210: blk.23.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 211: blk.23.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 212: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 213: blk.23.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 214: blk.23.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 215: blk.23.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 216: blk.23.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 217: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 218: blk.24.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 219: blk.24.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 220: blk.24.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 221: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 222: blk.24.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 223: blk.24.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 224: blk.24.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 225: blk.24.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 226: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 227: blk.25.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 228: blk.25.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 229: blk.25.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 230: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 231: blk.25.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 232: blk.25.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 233: blk.25.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 234: blk.25.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 235: blk.26.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 236: blk.26.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 237: blk.26.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 238: blk.26.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 239: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 240: blk.26.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 241: blk.26.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 242: blk.26.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 244: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 245: blk.27.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 246: blk.27.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 247: blk.27.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 248: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 249: blk.27.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 250: blk.27.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 251: blk.27.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 252: blk.27.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 253: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 254: blk.28.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 255: blk.28.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 256: blk.28.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 257: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 258: blk.28.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 259: blk.28.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 260: blk.28.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 261: blk.28.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 262: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 263: blk.29.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 264: blk.29.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 265: blk.29.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 266: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 267: blk.29.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 268: blk.29.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 269: blk.29.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 270: blk.29.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 271: blk.30.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 272: blk.30.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 273: blk.30.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 274: blk.30.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 275: blk.30.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 276: blk.30.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 277: output.weight q6_K [ 4096, 32000, 1, 1 ]\n",
"llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 279: blk.30.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 280: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 281: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 282: blk.31.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 283: blk.31.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 284: blk.31.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 285: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 286: blk.31.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 287: blk.31.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 288: blk.31.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 289: blk.31.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 290: output_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - kv 0: general.architecture str = llama\n",
"llama_model_loader: - kv 1: general.name str = huggingfaceh4_zephyr-7b-beta\n",
"llama_model_loader: - kv 2: llama.context_length u32 = 32768\n",
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336\n",
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8\n",
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010\n",
"llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000\n",
"llama_model_loader: - kv 11: general.file_type u32 = 17\n",
"llama_model_loader: - kv 12: tokenizer.ggml.model str = llama\n",
"llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
"llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
"llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
"llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1\n",
"llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 2\n",
"llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 0\n",
"llama_model_loader: - kv 19: tokenizer.ggml.padding_token_id u32 = 2\n",
"llama_model_loader: - kv 20: general.quantization_version u32 = 2\n",
"llama_model_loader: - type f32: 65 tensors\n",
"llama_model_loader: - type q5_K: 193 tensors\n",
"llama_model_loader: - type q6_K: 33 tensors\n",
"llm_load_vocab: special tokens definition check successful ( 259/32000 ).\n",
"llm_load_print_meta: format = GGUF V3 (latest)\n",
"llm_load_print_meta: arch = llama\n",
"llm_load_print_meta: vocab type = SPM\n",
"llm_load_print_meta: n_vocab = 32000\n",
"llm_load_print_meta: n_merges = 0\n",
"llm_load_print_meta: n_ctx_train = 32768\n",
"llm_load_print_meta: n_embd = 4096\n",
"llm_load_print_meta: n_head = 32\n",
"llm_load_print_meta: n_head_kv = 8\n",
"llm_load_print_meta: n_layer = 32\n",
"llm_load_print_meta: n_rot = 128\n",
"llm_load_print_meta: n_gqa = 4\n",
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
"llm_load_print_meta: f_norm_rms_eps = 1.0e-05\n",
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
"llm_load_print_meta: n_ff = 14336\n",
"llm_load_print_meta: rope scaling = linear\n",
"llm_load_print_meta: freq_base_train = 10000.0\n",
"llm_load_print_meta: freq_scale_train = 1\n",
"llm_load_print_meta: n_yarn_orig_ctx = 32768\n",
"llm_load_print_meta: rope_finetuned = unknown\n",
"llm_load_print_meta: model type = 7B\n",
"llm_load_print_meta: model ftype = mostly Q5_K - Medium\n",
"llm_load_print_meta: model params = 7.24 B\n",
"llm_load_print_meta: model size = 4.78 GiB (5.67 BPW) \n",
"llm_load_print_meta: general.name = huggingfaceh4_zephyr-7b-beta\n",
"llm_load_print_meta: BOS token = 1 '<s>'\n",
"llm_load_print_meta: EOS token = 2 '</s>'\n",
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
"llm_load_print_meta: PAD token = 2 '</s>'\n",
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
"llm_load_tensors: ggml ctx size = 0.11 MiB\n",
"llm_load_tensors: mem required = 4893.10 MiB\n",
"...................................................................................................\n",
"llama_new_context_with_model: n_ctx = 4096\n",
"llama_new_context_with_model: freq_base = 10000.0\n",
"llama_new_context_with_model: freq_scale = 1\n",
"llama_new_context_with_model: kv self size = 512.00 MiB\n",
"llama_build_graph: non-view tensors processed: 740/740\n",
"ggml_metal_init: allocating\n",
"ggml_metal_init: found device: Apple M2 Max\n",
"ggml_metal_init: picking default device: Apple M2 Max\n",
"ggml_metal_init: default.metallib not found, loading from source\n",
"ggml_metal_init: loading '/Users/peportier/miniforge3/envs/RAG_ENV/lib/python3.9/site-packages/llama_cpp/ggml-metal.metal'\n",
"ggml_metal_init: GPU name: Apple M2 Max\n",
"ggml_metal_init: GPU family: MTLGPUFamilyApple8 (1008)\n",
"ggml_metal_init: hasUnifiedMemory = true\n",
"ggml_metal_init: recommendedMaxWorkingSetSize = 49152.00 MiB\n",
"ggml_metal_init: maxTransferRate = built-in GPU\n",
"llama_new_context_with_model: compute buffer total size = 291.07 MiB\n",
"llama_new_context_with_model: max tensor size = 102.54 MiB\n",
"ggml_metal_add_buffer: allocated 'data ' buffer, size = 4893.70 MiB, ( 4894.33 / 49152.00)\n",
"ggml_metal_add_buffer: allocated 'kv ' buffer, size = 512.02 MiB, ( 5406.34 / 49152.00)\n",
"ggml_metal_add_buffer: allocated 'alloc ' buffer, size = 288.02 MiB, ( 5694.36 / 49152.00)\n",
"AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | \n"
]
}
],
"source": [ "source": [
"llm_model_path = '/Users/peportier/llm/a/a/zephyr-7b-beta.Q5_K_M.gguf'\n", "llm_model_path = '/Users/peportier/llm/a/a/zephyr-7b-beta.Q5_K_M.gguf'\n",
"embed_model_name = 'intfloat/multilingual-e5-large'\n", "embed_model_name = 'intfloat/multilingual-e5-large'\n",
@ -29,6 +430,35 @@
"rag = RAG(llm_model_path, embed_model_name, collection_name, chromadb_path)" "rag = RAG(llm_model_path, embed_model_name, collection_name, chromadb_path)"
] ]
}, },
{
"cell_type": "code",
"execution_count": 3,
"id": "b12ed9e5-cacc-4f9b-a6b9-38ccda00764f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Batches: 100%|████████████████████████████████████| 1/1 [00:00<00:00, 2.19it/s]\n"
]
}
],
"source": [
"query1 = \"Comment la Caisse d'Epargne Rhône-Alpes peut-elle aider une entreprise qui rencontre des problèmes de trésorerie ?\"\n",
"res1 = rag.chat(query1, stream=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "086aef56-223f-4d3b-a1f0-9d251095e9f9",
"metadata": {},
"outputs": [],
"source": [
"res1"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,