stk-code_catmod/lib/irrlicht/tests/matrixOps.cpp
hikerstk 974deca5e1 Added our own irrlicht version - not used atm.
git-svn-id: svn+ssh://svn.code.sf.net/p/supertuxkart/code/main/trunk@11846 178a84e3-b1eb-0310-8ba1-8eac791a3b58
2012-11-01 02:00:02 +00:00

466 lines
15 KiB
C++

// Copyright (C) 2008-2012 Colin MacDonald
// No rights reserved: this software is in the public domain.
#include "testUtils.h"
using namespace irr;
using namespace core;
using namespace scene;
using namespace video;
using namespace io;
using namespace gui;
namespace
{
// Basic tests for identity matrix
bool identity(void)
{
bool result = true;
matrix4 m;
// Check default init
result &= (m==core::IdentityMatrix);
result &= (core::IdentityMatrix==m);
assert_log(result);
// Since the last test can be made with isDefinitelyIdentityMatrix we set it to false here
m.setDefinitelyIdentityMatrix(false);
result &= (m==core::IdentityMatrix);
result &= (core::IdentityMatrix==m);
assert_log(result);
// also equals should see this
result &= m.equals(core::IdentityMatrix);
result &= core::IdentityMatrix.equals(m);
assert_log(result);
// Check inequality
m[12]=5.f;
result &= (m!=core::IdentityMatrix);
result &= (core::IdentityMatrix!=m);
result &= !m.equals(core::IdentityMatrix);
result &= !core::IdentityMatrix.equals(m);
assert_log(result);
// Test multiplication
result &= (m==(core::IdentityMatrix*m));
result &= m.equals(core::IdentityMatrix*m);
result &= (m==(m*core::IdentityMatrix));
result &= m.equals(m*core::IdentityMatrix);
assert_log(result);
return result;
}
// Test rotations
bool transformations(void)
{
bool result = true;
matrix4 m, s;
m.setRotationDegrees(core::vector3df(30,40,50));
s.setScale(core::vector3df(2,3,4));
m *= s;
m.setTranslation(core::vector3df(5,6,7));
result &= (core::vector3df(5,6,7).equals(m.getTranslation()));
assert_log(result);
result &= (core::vector3df(2,3,4).equals(m.getScale()));
assert_log(result);
core::vector3df newRotation = m.getRotationDegrees();
result &= (core::vector3df(30,40,50).equals(newRotation, 0.000004f));
assert_log(result);
m.setRotationDegrees(vector3df(90.0001f, 270.85f, 180.0f));
s.setRotationDegrees(vector3df(0,0, 0.860866f));
m *= s;
newRotation = m.getRotationDegrees();
result &= (core::vector3df(0,270,270).equals(newRotation, 0.0001f));
assert_log(result);
m.setRotationDegrees(vector3df(270.0f, 89.8264f, 0.000100879f));
s.setRotationDegrees(vector3df(0,0, 0.189398f));
m *= s;
newRotation = m.getRotationDegrees();
result &= (core::vector3df(0,90,90).equals(newRotation, 0.0001f));
assert_log(result);
m.setRotationDegrees(vector3df(270.0f, 89.0602f, 359.999f));
s.setRotationDegrees(vector3df(0,0, 0.949104f));
m *= s;
newRotation = m.getRotationDegrees();
result &= (core::vector3df(0,90,89.999f).equals(newRotation));
assert_log(result);
return result;
}
// Test rotations
bool rotations(void)
{
bool result = true;
matrix4 rot1,rot2,rot3,rot4,rot5;
core::vector3df vec1(1,2,3),vec12(1,2,3);
core::vector3df vec2(-5,0,0),vec22(-5,0,0);
core::vector3df vec3(20,0,-20), vec32(20,0,-20);
// Make sure the matrix multiplication and rotation application give same results
rot1.setRotationDegrees(core::vector3df(90,0,0));
rot2.setRotationDegrees(core::vector3df(0,90,0));
rot3.setRotationDegrees(core::vector3df(0,0,90));
rot4.setRotationDegrees(core::vector3df(90,90,90));
rot5 = rot3*rot2*rot1;
result &= (rot4.equals(rot5, ROUNDING_ERROR_f32));
assert_log(result);
rot4.transformVect(vec1);rot5.transformVect(vec12);
rot4.transformVect(vec2);rot5.transformVect(vec22);
rot4.transformVect(vec3);rot5.transformVect(vec32);
result &= (vec1.equals(vec12));
result &= (vec2.equals(vec22));
result &= (vec3.equals(vec32));
assert_log(result);
vec1.set(1,2,3);vec12.set(1,2,3);
vec2.set(-5,0,0);vec22.set(-5,0,0);
vec3.set(20,0,-20);vec32.set(20,0,-20);
rot1.setRotationDegrees(core::vector3df(45,0,0));
rot2.setRotationDegrees(core::vector3df(0,45,0));
rot3.setRotationDegrees(core::vector3df(0,0,45));
rot4.setRotationDegrees(core::vector3df(45,45,45));
rot5 = rot3*rot2*rot1;
result &= (rot4.equals(rot5, ROUNDING_ERROR_f32));
assert_log(result);
rot4.transformVect(vec1);rot5.transformVect(vec12);
rot4.transformVect(vec2);rot5.transformVect(vec22);
rot4.transformVect(vec3);rot5.transformVect(vec32);
result &= (vec1.equals(vec12));
result &= (vec2.equals(vec22));
result &= (vec3.equals(vec32, 2*ROUNDING_ERROR_f32));
assert_log(result);
vec1.set(1,2,3);vec12.set(1,2,3);
vec2.set(-5,0,0);vec22.set(-5,0,0);
vec3.set(20,0,-20);vec32.set(20,0,-20);
rot1.setRotationDegrees(core::vector3df(-60,0,0));
rot2.setRotationDegrees(core::vector3df(0,-60,0));
rot3.setRotationDegrees(core::vector3df(0,0,-60));
rot4.setRotationDegrees(core::vector3df(-60,-60,-60));
rot5 = rot3*rot2*rot1;
result &= (rot4.equals(rot5, ROUNDING_ERROR_f32));
assert_log(result);
rot4.transformVect(vec1);rot5.transformVect(vec12);
rot4.transformVect(vec2);rot5.transformVect(vec22);
rot4.transformVect(vec3);rot5.transformVect(vec32);
result &= (vec1.equals(vec12));
result &= (vec2.equals(vec22));
// this one needs higher tolerance due to rounding issues
result &= (vec3.equals(vec32, 0.000002f));
assert_log(result);
vec1.set(1,2,3);vec12.set(1,2,3);
vec2.set(-5,0,0);vec22.set(-5,0,0);
vec3.set(20,0,-20);vec32.set(20,0,-20);
rot1.setRotationDegrees(core::vector3df(113,0,0));
rot2.setRotationDegrees(core::vector3df(0,-27,0));
rot3.setRotationDegrees(core::vector3df(0,0,193));
rot4.setRotationDegrees(core::vector3df(113,-27,193));
rot5 = rot3*rot2*rot1;
result &= (rot4.equals(rot5, ROUNDING_ERROR_f32));
assert_log(result);
rot4.transformVect(vec1);rot5.transformVect(vec12);
rot4.transformVect(vec2);rot5.transformVect(vec22);
rot4.transformVect(vec3);rot5.transformVect(vec32);
// these ones need higher tolerance due to rounding issues
result &= (vec1.equals(vec12, 0.000002f));
assert_log(result);
result &= (vec2.equals(vec22));
assert_log(result);
result &= (vec3.equals(vec32, 0.000002f));
assert_log(result);
rot1.setRotationDegrees(core::vector3df(0,0,34));
rot2.setRotationDegrees(core::vector3df(0,43,0));
vec1=(rot2*rot1).getRotationDegrees();
result &= (vec1.equals(core::vector3df(27.5400505f, 34.4302292f, 42.6845398f), 0.000002f));
assert_log(result);
// corner cases
rot1.setRotationDegrees(irr::core::vector3df(180.0f, 0.f, 0.f));
vec1=rot1.getRotationDegrees();
result &= (vec1.equals(core::vector3df(180.0f, 0.f, 0.f), 0.000002f));
assert_log(result);
rot1.setRotationDegrees(irr::core::vector3df(0.f, 180.0f, 0.f));
vec1=rot1.getRotationDegrees();
result &= (vec1.equals(core::vector3df(180.0f, 360, 180.0f), 0.000002f));
assert_log(result);
rot1.setRotationDegrees(irr::core::vector3df(0.f, 0.f, 180.0f));
vec1=rot1.getRotationDegrees();
result &= (vec1.equals(core::vector3df(0.f, 0.f, 180.0f), 0.000002f));
assert_log(result);
rot1.makeIdentity();
rot1.setRotationDegrees(core::vector3df(270.f,0,0));
rot2.makeIdentity();
rot2.setRotationDegrees(core::vector3df(-90.f,0,0));
vec1=(rot1*rot2).getRotationDegrees();
result &= (vec1.equals(core::vector3df(180.f, 0.f, 0.0f)));
assert_log(result);
return result;
}
// Test isOrthogonal
bool isOrthogonal(void)
{
matrix4 rotationMatrix;
if (!rotationMatrix.isOrthogonal())
{
logTestString("irr::core::matrix4::isOrthogonal() failed with Identity.\n");
return false;
}
rotationMatrix.setRotationDegrees(vector3df(90, 0, 0));
if (!rotationMatrix.isOrthogonal())
{
logTestString("irr::core::matrix4::isOrthogonal() failed with rotation.\n");
return false;
}
matrix4 translationMatrix;
translationMatrix.setTranslation(vector3df(0, 3, 0));
if (translationMatrix.isOrthogonal())
{
logTestString("irr::core::matrix4::isOrthogonal() failed with translation.\n");
return false;
}
matrix4 scaleMatrix;
scaleMatrix.setScale(vector3df(1, 2, 3));
if (!scaleMatrix.isOrthogonal())
{
logTestString("irr::core::matrix4::isOrthogonal() failed with scale.\n");
return false;
}
return true;
}
bool checkMatrixRotation(irr::core::matrix4& m, const vector3df& vector, const vector3df& expectedResult)
{
vector3df v(vector);
m.rotateVect(v);
if ( expectedResult.equals(v) )
return true;
logTestString("checkMatrixRotation failed for vector %f %f %f. Expected %f %f %f, got %f %f %f \n"
, vector.X, vector.Y, vector.Z, expectedResult.X, expectedResult.Y, expectedResult.Z, v.X, v.Y, v.Z);
logTestString("matrix: ");
for ( int i=0; i<16; ++i )
logTestString("%.2f ", m[i]);
logTestString("\n");
return false;
}
bool setRotationAxis()
{
matrix4 m;
vector3df v;
// y up, x right, z depth (as usual)
// y rotated around x-axis
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(1,0,0)), vector3df(0,1,0), vector3df(0, 0, 1)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
if ( !checkMatrixRotation( m.setRotationAxisRadians(180.f*DEGTORAD, vector3df(1,0,0)), vector3df(0,1,0), vector3df(0, -1, 0)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
// y rotated around negative x-axis
m.makeIdentity();
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(-1,0,0)), vector3df(0,1,0), vector3df(0, 0, -1)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
// x rotated around x-axis
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(1,0,0)), vector3df(1,0,0), vector3df(1, 0, 0)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
// x rotated around y-axis
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(0,1,0)), vector3df(1,0,0), vector3df(0, 0, -1)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
if ( !checkMatrixRotation( m.setRotationAxisRadians(180.f*DEGTORAD, vector3df(0,1,0)), vector3df(1,0,0), vector3df(-1, 0, 0)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
// x rotated around negative y-axis
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(0,-1,0)), vector3df(1,0,0), vector3df(0, 0, 1)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
// y rotated around y-axis
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(0,1,0)), vector3df(0,1,0), vector3df(0, 1, 0)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
// x rotated around z-axis
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(0,0,1)), vector3df(1,0,0), vector3df(0, 1, 0)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
if ( !checkMatrixRotation( m.setRotationAxisRadians(180.f*DEGTORAD, vector3df(0,0,1)), vector3df(1,0,0), vector3df(-1, 0, 0)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
// x rotated around negative z-axis
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(0,0,-1)), vector3df(1,0,0), vector3df(0, -1, 0)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
// y rotated around z-axis
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(0,0,1)), vector3df(0,1,0), vector3df(-1, 0, 0)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
if ( !checkMatrixRotation( m.setRotationAxisRadians(180.f*DEGTORAD, vector3df(0,0,1)), vector3df(0,1,0), vector3df(0, -1, 0)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
// z rotated around z-axis
if ( !checkMatrixRotation( m.setRotationAxisRadians(90.f*DEGTORAD, vector3df(0,0,1)), vector3df(0,0,1), vector3df(0, 0, 1)) )
{
logTestString("%s:%d", __FILE__, __LINE__);
return false;
}
return true;
}
// just calling each function once to find compile problems
void calltest()
{
matrix4 mat;
matrix4 mat2(mat);
f32& f1 = mat(0,0);
const f32& f2 = mat(0,0);
f32& f3 = mat[0];
const f32& f4 = mat[0];
mat = mat;
mat = 1.f;
const f32 * pf1 = mat.pointer();
f32 * pf2 = mat.pointer();
bool b = mat == mat2;
b = mat != mat2;
mat = mat + mat2;
mat += mat2;
mat = mat - mat2;
mat -= mat2;
mat.setbyproduct(mat, mat2);
mat.setbyproduct_nocheck(mat, mat2);
mat = mat * mat2;
mat *= mat2;
mat = mat * 10.f;
mat *= 10.f;
mat.makeIdentity();
b = mat.isIdentity();
b = mat.isOrthogonal();
b = mat.isIdentity_integer_base ();
mat.setTranslation(vector3df(1.f, 1.f, 1.f) );
vector3df v1 = mat.getTranslation();
mat.setInverseTranslation(vector3df(1.f, 1.f, 1.f) );
mat.setRotationRadians(vector3df(1.f, 1.f, 1.f) );
mat.setRotationDegrees(vector3df(1.f, 1.f, 1.f) );
vector3df v2 = mat.getRotationDegrees();
mat.setInverseRotationRadians(vector3df(1.f, 1.f, 1.f) );
mat.setInverseRotationDegrees(vector3df(1.f, 1.f, 1.f) );
mat.setRotationAxisRadians(1.f, vector3df(1.f, 1.f, 1.f) );
mat.setScale(vector3df(1.f, 1.f, 1.f) );
mat.setScale(1.f);
vector3df v3 = mat.getScale();
mat.inverseTranslateVect(v1);
mat.inverseRotateVect(v1);
mat.rotateVect(v1);
mat.rotateVect(v1, v2);
f32 fv3[3];
mat.rotateVect(fv3, v1);
mat.transformVect(v1);
mat.transformVect(v1, v1);
f32 fv4[4];
mat.transformVect(fv4, v1);
mat.transformVec3(fv3, fv3);
mat.translateVect(v1);
plane3df p1;
mat.transformPlane(p1);
mat.transformPlane(p1, p1);
aabbox3df bb1;
mat.transformBox(bb1);
mat.transformBoxEx(bb1);
mat.multiplyWith1x4Matrix(fv4);
mat.makeInverse();
b = mat.getInversePrimitive(mat2);
b = mat.getInverse(mat2);
mat.buildProjectionMatrixPerspectiveFovRH(1.f, 1.f, 1.f, 1000.f);
mat.buildProjectionMatrixPerspectiveFovLH(1.f, 1.f, 1.f, 1000.f);
mat.buildProjectionMatrixPerspectiveFovInfinityLH(1.f, 1.f, 1.f);
mat.buildProjectionMatrixPerspectiveRH(100.f, 100.f, 1.f, 1000.f);
mat.buildProjectionMatrixPerspectiveLH(10000.f, 10000.f, 1.f, 1000.f);
mat.buildProjectionMatrixOrthoLH(10000.f, 10000.f, 1.f, 1000.f);
mat.buildProjectionMatrixOrthoRH(10000.f, 10000.f, 1.f, 1000.f);
mat.buildCameraLookAtMatrixLH(vector3df(1.f, 1.f, 1.f), vector3df(0.f, 0.f, 0.f), vector3df(0.f, 1.f, 0.f) );
mat.buildCameraLookAtMatrixRH(vector3df(1.f, 1.f, 1.f), vector3df(0.f, 0.f, 0.f), vector3df(0.f, 1.f, 0.f) );
mat.buildShadowMatrix(vector3df(1.f, 1.f, 1.f), p1);
core::rect<s32> a1(0,0,100,100);
mat.buildNDCToDCMatrix(a1, 1.f);
mat.interpolate(mat2, 1.f);
mat = mat.getTransposed();
mat.getTransposed(mat2);
mat.buildRotateFromTo(vector3df(1.f, 1.f, 1.f), vector3df(1.f, 1.f, 1.f));
mat.setRotationCenter(vector3df(1.f, 1.f, 1.f), vector3df(1.f, 1.f, 1.f));
mat.buildAxisAlignedBillboard(vector3df(1.f, 1.f, 1.f), vector3df(1.f, 1.f, 1.f), vector3df(1.f, 1.f, 1.f), vector3df(1.f, 1.f, 1.f), vector3df(1.f, 1.f, 1.f));
mat.buildTextureTransform( 1.f,vector2df(1.f, 1.f), vector2df(1.f, 1.f), vector2df(1.f, 1.f));
mat.setTextureRotationCenter( 1.f );
mat.setTextureTranslate( 1.f, 1.f );
mat.setTextureTranslateTransposed(1.f, 1.f);
mat.setTextureScale( 1.f, 1.f );
mat.setTextureScaleCenter( 1.f, 1.f );
f32 fv16[16];
mat.setM(fv16);
mat.setDefinitelyIdentityMatrix(false);
b = mat.getDefinitelyIdentityMatrix();
b = mat.equals(mat2);
f1 = f1+f2+f3+f4+*pf1+*pf2; // getting rid of unused variable warnings.
}
}
bool matrixOps(void)
{
bool result = true;
calltest();
result &= identity();
result &= rotations();
result &= isOrthogonal();
result &= transformations();
result &= setRotationAxis();
return result;
}