Benau f5d43aaa2e Use btAsin in setHPR
The following quaternion calculated by shortestArcQuat in
rescue animation leads to nan in asinf:

0.710828841, -0.00974362344, -0.703500867, 0.00481829932
-2.0f * (X * Z - Y * W) equals 1.00004351 with above figures

With btAsin it will:
if (x<btScalar(-1)) x=btScalar(-1);
if (x>btScalar(1)) x=btScalar(1);
return asin(x);
2016-09-13 07:43:19 +08:00

58 lines
2.3 KiB
C++

//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2008-2015 Joerg Henrichs
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#include "utils/vec3.hpp"
void Vec3::setHPR(const btQuaternion& q)
{
float W = q.getW();
float X = q.getX();
float Y = q.getY();
float Z = q.getZ();
float WSquared = W * W;
float XSquared = X * X;
float YSquared = Y * Y;
float ZSquared = Z * Z;
setX(atan2f(2.0f * (Y * Z + X * W), -XSquared - YSquared + ZSquared + WSquared));
setY(btAsin(-2.0f * (X * Z - Y * W)));
setZ(atan2f(2.0f * (X * Y + Z * W), XSquared - YSquared - ZSquared + WSquared));
} // setHPR(btQuaternion)
// ----------------------------------------------------------------------------
/** Sets the pitch and the roll of this vector to follow the normal given. The
* heading is taken from this vector.
* \param normal The normal vector to which pitch and roll should be aligned.
*/
void Vec3::setPitchRoll(const Vec3 &normal)
{
const float X = sinf(getHeading());
const float Z = cosf(getHeading());
// Compute the angle between the normal of the plane and the line to
// (x,0,z). (x,0,z) is normalised, so are the coordinates of the plane,
// which simplifies the computation of the scalar product.
float pitch = ( normal.getX()*X + normal.getZ()*Z ); // use ( x,0,z)
float roll = (-normal.getX()*Z + normal.getZ()*X ); // use (-z,0,x)
// The actual angle computed above is between the normal and the (x,y,0)
// line, so to compute the actual angles 90 degrees must be subtracted.
setPitch(-acosf(pitch) + NINETY_DEGREE_RAD);
setRoll (-acosf(roll) + NINETY_DEGREE_RAD);
} // setPitchRoll