stk-code_catmod/lib/graphics_engine/src/ge_vulkan_driver.cpp

1971 lines
72 KiB
C++

#include "ge_vulkan_driver.hpp"
#include "ge_vulkan_2d_renderer.hpp"
#include "ge_vulkan_features.hpp"
#include "ge_main.hpp"
#include "ge_vulkan_shader_manager.hpp"
#include "ge_vulkan_texture.hpp"
#ifdef _IRR_COMPILE_WITH_VULKAN_
#include "SDL_vulkan.h"
#include <algorithm>
#include <atomic>
#include <limits>
#include <set>
#include <sstream>
#include <stdexcept>
#include "../source/Irrlicht/os.h"
#if !defined(__APPLE__) || defined(DLOPEN_MOLTENVK)
struct GE_VK_UserPointer
{
VkInstance instance;
VkDevice device;
PFN_vkGetDeviceProcAddr get_device_proc_addr;
PFN_vkGetInstanceProcAddr get_instance_proc_addr;
};
extern "C" PFN_vkVoidFunction loader(void* user_ptr, const char* name)
{
VkInstance instance = VK_NULL_HANDLE;
VkDevice device = VK_NULL_HANDLE;
PFN_vkGetDeviceProcAddr get_device_proc_addr = NULL;
PFN_vkGetInstanceProcAddr get_instance_proc_addr = NULL;
if (user_ptr)
{
instance = ((GE_VK_UserPointer*)user_ptr)->instance;
device = ((GE_VK_UserPointer*)user_ptr)->device;
get_device_proc_addr =
((GE_VK_UserPointer*)user_ptr)->get_device_proc_addr;
get_instance_proc_addr =
((GE_VK_UserPointer*)user_ptr)->get_instance_proc_addr;
}
if (get_instance_proc_addr == NULL)
{
get_instance_proc_addr =
(PFN_vkGetInstanceProcAddr)SDL_Vulkan_GetVkGetInstanceProcAddr();
if (user_ptr)
{
((GE_VK_UserPointer*)user_ptr)->get_instance_proc_addr =
get_instance_proc_addr;
}
}
// From vulkan.c glad2 with loader enabled
static std::set<std::string> device_function =
{{
"vkAcquireFullScreenExclusiveModeEXT",
"vkAcquireNextImage2KHR",
"vkAcquireNextImageKHR",
"vkAcquirePerformanceConfigurationINTEL",
"vkAcquireProfilingLockKHR",
"vkAllocateCommandBuffers",
"vkAllocateDescriptorSets",
"vkAllocateMemory",
"vkBeginCommandBuffer",
"vkBindAccelerationStructureMemoryKHR",
"vkBindAccelerationStructureMemoryNV",
"vkBindBufferMemory",
"vkBindBufferMemory2",
"vkBindBufferMemory2KHR",
"vkBindImageMemory",
"vkBindImageMemory2",
"vkBindImageMemory2KHR",
"vkBuildAccelerationStructureKHR",
"vkCmdBeginConditionalRenderingEXT",
"vkCmdBeginDebugUtilsLabelEXT",
"vkCmdBeginQuery",
"vkCmdBeginQueryIndexedEXT",
"vkCmdBeginRenderPass",
"vkCmdBeginRenderPass2",
"vkCmdBeginRenderPass2KHR",
"vkCmdBeginTransformFeedbackEXT",
"vkCmdBindDescriptorSets",
"vkCmdBindIndexBuffer",
"vkCmdBindPipeline",
"vkCmdBindPipelineShaderGroupNV",
"vkCmdBindShadingRateImageNV",
"vkCmdBindTransformFeedbackBuffersEXT",
"vkCmdBindVertexBuffers",
"vkCmdBindVertexBuffers2EXT",
"vkCmdBlitImage",
"vkCmdBuildAccelerationStructureIndirectKHR",
"vkCmdBuildAccelerationStructureKHR",
"vkCmdBuildAccelerationStructureNV",
"vkCmdClearAttachments",
"vkCmdClearColorImage",
"vkCmdClearDepthStencilImage",
"vkCmdCopyAccelerationStructureKHR",
"vkCmdCopyAccelerationStructureNV",
"vkCmdCopyAccelerationStructureToMemoryKHR",
"vkCmdCopyBuffer",
"vkCmdCopyBufferToImage",
"vkCmdCopyImage",
"vkCmdCopyImageToBuffer",
"vkCmdCopyMemoryToAccelerationStructureKHR",
"vkCmdCopyQueryPoolResults",
"vkCmdDebugMarkerBeginEXT",
"vkCmdDebugMarkerEndEXT",
"vkCmdDebugMarkerInsertEXT",
"vkCmdDispatch",
"vkCmdDispatchBase",
"vkCmdDispatchBaseKHR",
"vkCmdDispatchIndirect",
"vkCmdDraw",
"vkCmdDrawIndexed",
"vkCmdDrawIndexedIndirect",
"vkCmdDrawIndexedIndirectCount",
"vkCmdDrawIndexedIndirectCountAMD",
"vkCmdDrawIndexedIndirectCountKHR",
"vkCmdDrawIndirect",
"vkCmdDrawIndirectByteCountEXT",
"vkCmdDrawIndirectCount",
"vkCmdDrawIndirectCountAMD",
"vkCmdDrawIndirectCountKHR",
"vkCmdDrawMeshTasksIndirectCountNV",
"vkCmdDrawMeshTasksIndirectNV",
"vkCmdDrawMeshTasksNV",
"vkCmdEndConditionalRenderingEXT",
"vkCmdEndDebugUtilsLabelEXT",
"vkCmdEndQuery",
"vkCmdEndQueryIndexedEXT",
"vkCmdEndRenderPass",
"vkCmdEndRenderPass2",
"vkCmdEndRenderPass2KHR",
"vkCmdEndTransformFeedbackEXT",
"vkCmdExecuteCommands",
"vkCmdExecuteGeneratedCommandsNV",
"vkCmdFillBuffer",
"vkCmdInsertDebugUtilsLabelEXT",
"vkCmdNextSubpass",
"vkCmdNextSubpass2",
"vkCmdNextSubpass2KHR",
"vkCmdPipelineBarrier",
"vkCmdPreprocessGeneratedCommandsNV",
"vkCmdPushConstants",
"vkCmdPushDescriptorSetKHR",
"vkCmdPushDescriptorSetWithTemplateKHR",
"vkCmdResetEvent",
"vkCmdResetQueryPool",
"vkCmdResolveImage",
"vkCmdSetBlendConstants",
"vkCmdSetCheckpointNV",
"vkCmdSetCoarseSampleOrderNV",
"vkCmdSetCullModeEXT",
"vkCmdSetDepthBias",
"vkCmdSetDepthBounds",
"vkCmdSetDepthBoundsTestEnableEXT",
"vkCmdSetDepthCompareOpEXT",
"vkCmdSetDepthTestEnableEXT",
"vkCmdSetDepthWriteEnableEXT",
"vkCmdSetDeviceMask",
"vkCmdSetDeviceMaskKHR",
"vkCmdSetDiscardRectangleEXT",
"vkCmdSetEvent",
"vkCmdSetExclusiveScissorNV",
"vkCmdSetFrontFaceEXT",
"vkCmdSetLineStippleEXT",
"vkCmdSetLineWidth",
"vkCmdSetPerformanceMarkerINTEL",
"vkCmdSetPerformanceOverrideINTEL",
"vkCmdSetPerformanceStreamMarkerINTEL",
"vkCmdSetPrimitiveTopologyEXT",
"vkCmdSetSampleLocationsEXT",
"vkCmdSetScissor",
"vkCmdSetScissorWithCountEXT",
"vkCmdSetStencilCompareMask",
"vkCmdSetStencilOpEXT",
"vkCmdSetStencilReference",
"vkCmdSetStencilTestEnableEXT",
"vkCmdSetStencilWriteMask",
"vkCmdSetViewport",
"vkCmdSetViewportShadingRatePaletteNV",
"vkCmdSetViewportWScalingNV",
"vkCmdSetViewportWithCountEXT",
"vkCmdTraceRaysIndirectKHR",
"vkCmdTraceRaysKHR",
"vkCmdTraceRaysNV",
"vkCmdUpdateBuffer",
"vkCmdWaitEvents",
"vkCmdWriteAccelerationStructuresPropertiesKHR",
"vkCmdWriteAccelerationStructuresPropertiesNV",
"vkCmdWriteBufferMarkerAMD",
"vkCmdWriteTimestamp",
"vkCompileDeferredNV",
"vkCopyAccelerationStructureKHR",
"vkCopyAccelerationStructureToMemoryKHR",
"vkCopyMemoryToAccelerationStructureKHR",
"vkCreateAccelerationStructureKHR",
"vkCreateAccelerationStructureNV",
"vkCreateBuffer",
"vkCreateBufferView",
"vkCreateCommandPool",
"vkCreateComputePipelines",
"vkCreateDeferredOperationKHR",
"vkCreateDescriptorPool",
"vkCreateDescriptorSetLayout",
"vkCreateDescriptorUpdateTemplate",
"vkCreateDescriptorUpdateTemplateKHR",
"vkCreateEvent",
"vkCreateFence",
"vkCreateFramebuffer",
"vkCreateGraphicsPipelines",
"vkCreateImage",
"vkCreateImageView",
"vkCreateIndirectCommandsLayoutNV",
"vkCreatePipelineCache",
"vkCreatePipelineLayout",
"vkCreatePrivateDataSlotEXT",
"vkCreateQueryPool",
"vkCreateRayTracingPipelinesKHR",
"vkCreateRayTracingPipelinesNV",
"vkCreateRenderPass",
"vkCreateRenderPass2",
"vkCreateRenderPass2KHR",
"vkCreateSampler",
"vkCreateSamplerYcbcrConversion",
"vkCreateSamplerYcbcrConversionKHR",
"vkCreateSemaphore",
"vkCreateShaderModule",
"vkCreateSharedSwapchainsKHR",
"vkCreateSwapchainKHR",
"vkCreateValidationCacheEXT",
"vkDebugMarkerSetObjectNameEXT",
"vkDebugMarkerSetObjectTagEXT",
"vkDeferredOperationJoinKHR",
"vkDestroyAccelerationStructureKHR",
"vkDestroyAccelerationStructureNV",
"vkDestroyBuffer",
"vkDestroyBufferView",
"vkDestroyCommandPool",
"vkDestroyDeferredOperationKHR",
"vkDestroyDescriptorPool",
"vkDestroyDescriptorSetLayout",
"vkDestroyDescriptorUpdateTemplate",
"vkDestroyDescriptorUpdateTemplateKHR",
"vkDestroyDevice",
"vkDestroyEvent",
"vkDestroyFence",
"vkDestroyFramebuffer",
"vkDestroyImage",
"vkDestroyImageView",
"vkDestroyIndirectCommandsLayoutNV",
"vkDestroyPipeline",
"vkDestroyPipelineCache",
"vkDestroyPipelineLayout",
"vkDestroyPrivateDataSlotEXT",
"vkDestroyQueryPool",
"vkDestroyRenderPass",
"vkDestroySampler",
"vkDestroySamplerYcbcrConversion",
"vkDestroySamplerYcbcrConversionKHR",
"vkDestroySemaphore",
"vkDestroyShaderModule",
"vkDestroySwapchainKHR",
"vkDestroyValidationCacheEXT",
"vkDeviceWaitIdle",
"vkDisplayPowerControlEXT",
"vkEndCommandBuffer",
"vkFlushMappedMemoryRanges",
"vkFreeCommandBuffers",
"vkFreeDescriptorSets",
"vkFreeMemory",
"vkGetAccelerationStructureDeviceAddressKHR",
"vkGetAccelerationStructureHandleNV",
"vkGetAccelerationStructureMemoryRequirementsKHR",
"vkGetAccelerationStructureMemoryRequirementsNV",
"vkGetAndroidHardwareBufferPropertiesANDROID",
"vkGetBufferDeviceAddress",
"vkGetBufferDeviceAddressEXT",
"vkGetBufferDeviceAddressKHR",
"vkGetBufferMemoryRequirements",
"vkGetBufferMemoryRequirements2",
"vkGetBufferMemoryRequirements2KHR",
"vkGetBufferOpaqueCaptureAddress",
"vkGetBufferOpaqueCaptureAddressKHR",
"vkGetCalibratedTimestampsEXT",
"vkGetDeferredOperationMaxConcurrencyKHR",
"vkGetDeferredOperationResultKHR",
"vkGetDescriptorSetLayoutSupport",
"vkGetDescriptorSetLayoutSupportKHR",
"vkGetDeviceAccelerationStructureCompatibilityKHR",
"vkGetDeviceGroupPeerMemoryFeatures",
"vkGetDeviceGroupPeerMemoryFeaturesKHR",
"vkGetDeviceGroupPresentCapabilitiesKHR",
"vkGetDeviceGroupSurfacePresentModes2EXT",
"vkGetDeviceGroupSurfacePresentModesKHR",
"vkGetDeviceMemoryCommitment",
"vkGetDeviceMemoryOpaqueCaptureAddress",
"vkGetDeviceMemoryOpaqueCaptureAddressKHR",
"vkGetDeviceProcAddr",
"vkGetDeviceQueue",
"vkGetDeviceQueue2",
"vkGetEventStatus",
"vkGetFenceFdKHR",
"vkGetFenceStatus",
"vkGetFenceWin32HandleKHR",
"vkGetGeneratedCommandsMemoryRequirementsNV",
"vkGetImageDrmFormatModifierPropertiesEXT",
"vkGetImageMemoryRequirements",
"vkGetImageMemoryRequirements2",
"vkGetImageMemoryRequirements2KHR",
"vkGetImageSparseMemoryRequirements",
"vkGetImageSparseMemoryRequirements2",
"vkGetImageSparseMemoryRequirements2KHR",
"vkGetImageSubresourceLayout",
"vkGetImageViewAddressNVX",
"vkGetImageViewHandleNVX",
"vkGetMemoryAndroidHardwareBufferANDROID",
"vkGetMemoryFdKHR",
"vkGetMemoryFdPropertiesKHR",
"vkGetMemoryHostPointerPropertiesEXT",
"vkGetMemoryWin32HandleKHR",
"vkGetMemoryWin32HandleNV",
"vkGetMemoryWin32HandlePropertiesKHR",
"vkGetPastPresentationTimingGOOGLE",
"vkGetPerformanceParameterINTEL",
"vkGetPipelineCacheData",
"vkGetPipelineExecutableInternalRepresentationsKHR",
"vkGetPipelineExecutablePropertiesKHR",
"vkGetPipelineExecutableStatisticsKHR",
"vkGetPrivateDataEXT",
"vkGetQueryPoolResults",
"vkGetQueueCheckpointDataNV",
"vkGetRayTracingCaptureReplayShaderGroupHandlesKHR",
"vkGetRayTracingShaderGroupHandlesKHR",
"vkGetRayTracingShaderGroupHandlesNV",
"vkGetRefreshCycleDurationGOOGLE",
"vkGetRenderAreaGranularity",
"vkGetSemaphoreCounterValue",
"vkGetSemaphoreCounterValueKHR",
"vkGetSemaphoreFdKHR",
"vkGetSemaphoreWin32HandleKHR",
"vkGetShaderInfoAMD",
"vkGetSwapchainCounterEXT",
"vkGetSwapchainImagesKHR",
"vkGetSwapchainStatusKHR",
"vkGetValidationCacheDataEXT",
"vkImportFenceFdKHR",
"vkImportFenceWin32HandleKHR",
"vkImportSemaphoreFdKHR",
"vkImportSemaphoreWin32HandleKHR",
"vkInitializePerformanceApiINTEL",
"vkInvalidateMappedMemoryRanges",
"vkMapMemory",
"vkMergePipelineCaches",
"vkMergeValidationCachesEXT",
"vkQueueBeginDebugUtilsLabelEXT",
"vkQueueBindSparse",
"vkQueueEndDebugUtilsLabelEXT",
"vkQueueInsertDebugUtilsLabelEXT",
"vkQueuePresentKHR",
"vkQueueSetPerformanceConfigurationINTEL",
"vkQueueSubmit",
"vkQueueWaitIdle",
"vkRegisterDeviceEventEXT",
"vkRegisterDisplayEventEXT",
"vkReleaseFullScreenExclusiveModeEXT",
"vkReleasePerformanceConfigurationINTEL",
"vkReleaseProfilingLockKHR",
"vkResetCommandBuffer",
"vkResetCommandPool",
"vkResetDescriptorPool",
"vkResetEvent",
"vkResetFences",
"vkResetQueryPool",
"vkResetQueryPoolEXT",
"vkSetDebugUtilsObjectNameEXT",
"vkSetDebugUtilsObjectTagEXT",
"vkSetEvent",
"vkSetHdrMetadataEXT",
"vkSetLocalDimmingAMD",
"vkSetPrivateDataEXT",
"vkSignalSemaphore",
"vkSignalSemaphoreKHR",
"vkTrimCommandPool",
"vkTrimCommandPoolKHR",
"vkUninitializePerformanceApiINTEL",
"vkUnmapMemory",
"vkUpdateDescriptorSetWithTemplate",
"vkUpdateDescriptorSetWithTemplateKHR",
"vkUpdateDescriptorSets",
"vkWaitForFences",
"vkWaitSemaphores",
"vkWaitSemaphoresKHR",
"vkWriteAccelerationStructuresPropertiesKHR",
}};
/* Exists as a workaround for:
* https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/issues/2323
*
* `vkGetDeviceProcAddr` does not return NULL for non-device functions.
*/
if (!get_device_proc_addr && instance)
{
get_device_proc_addr = (PFN_vkGetDeviceProcAddr)
get_instance_proc_addr(instance, "vkGetDeviceProcAddr");
if (user_ptr)
{
((GE_VK_UserPointer*)user_ptr)->get_device_proc_addr =
get_device_proc_addr;
}
}
if (device && get_device_proc_addr &&
device_function.find(name) != device_function.end())
{
PFN_vkVoidFunction ret = get_device_proc_addr(device, name);
if (ret)
return ret;
}
// Workaround for android vulkan driver return NULL function pointer with
// non-NULL instance
// See https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/vkGetInstanceProcAddr.html
// Also slient the warnings when loading with NULL instance in android
if (strcmp(name, "vkGetInstanceProcAddr") == 0)
return (PFN_vkVoidFunction)get_instance_proc_addr;
static std::set<std::string> instance_function =
{{
"vkEnumerateInstanceVersion",
"vkEnumerateInstanceExtensionProperties",
"vkEnumerateInstanceLayerProperties",
"vkCreateInstance",
}};
if (instance_function.find(name) != instance_function.end())
return get_instance_proc_addr(NULL, name);
else if (instance == VK_NULL_HANDLE &&
instance_function.find(name) == instance_function.end())
return NULL;
return get_instance_proc_addr(instance, name);
} // loader
#endif
namespace GE
{
std::atomic_bool g_device_created(false);
std::atomic_bool g_schedule_pausing_rendering(false);
std::atomic_bool g_paused_rendering(false);
GEVulkanDriver::GEVulkanDriver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, SDL_Window* window)
: CNullDriver(io, core::dimension2d<u32>(0, 0)),
m_params(params)
{
m_vk.reset(new VK());
m_physical_device = VK_NULL_HANDLE;
m_graphics_queue = VK_NULL_HANDLE;
m_present_queue = VK_NULL_HANDLE;
m_graphics_family = m_present_family = 0;
m_properties = {};
m_features = {};
m_current_frame = 0;
m_image_index = 0;
m_clear_color = video::SColor(0);
m_white_texture = NULL;
m_transparent_texture = NULL;
m_pre_rotation_matrix = core::matrix4(core::matrix4::EM4CONST_IDENTITY);
m_window = window;
g_schedule_pausing_rendering.store(false);
g_paused_rendering.store(false);
g_device_created.store(true);
createInstance(window);
#if !defined(__APPLE__) || defined(DLOPEN_MOLTENVK)
GE_VK_UserPointer user_ptr = {};
user_ptr.instance = m_vk->instance;
if (gladLoadVulkanUserPtr(NULL,
(GLADuserptrloadfunc)loader, &user_ptr) == 0)
{
throw std::runtime_error("gladLoadVulkanUserPtr failed "
"with non-NULL instance");
}
#endif
if (SDL_Vulkan_CreateSurface(window, m_vk->instance, &m_vk->surface) == SDL_FALSE)
throw std::runtime_error("SDL_Vulkan_CreateSurface failed");
int w, h = 0;
SDL_Vulkan_GetDrawableSize(window, &w, &h);
ScreenSize.Width = w;
ScreenSize.Height = h;
m_device_extensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
findPhysicalDevice();
vkGetPhysicalDeviceProperties(m_physical_device, &m_properties);
GEVulkanFeatures::init(this);
createDevice();
#if !defined(__APPLE__) || defined(DLOPEN_MOLTENVK)
user_ptr.device = m_vk->device;
if (gladLoadVulkanUserPtr(m_physical_device,
(GLADuserptrloadfunc)loader, &user_ptr) == 0)
{
throw std::runtime_error("gladLoadVulkanUserPtr failed with "
"non-NULL instance and non-NULL m_physical_device");
}
#endif
createSwapChain();
createSyncObjects();
createCommandPool();
createCommandBuffers();
createSamplers();
createRenderPass();
createFramebuffers();
GEVulkanShaderManager::init(this);
// For GEVulkanDynamicBuffer
GE::setVideoDriver(this);
GEVulkan2dRenderer::init(this);
createUnicolorTextures();
os::Printer::log("Vulkan version", getVulkanVersionString().c_str());
os::Printer::log("Vulkan vendor", getVendorInfo().c_str());
os::Printer::log("Vulkan renderer", m_properties.deviceName);
os::Printer::log("Vulkan driver version", getDriverVersionString().c_str());
for (const char* ext : m_device_extensions)
os::Printer::log("Vulkan enabled extension", ext);
GEVulkanFeatures::printStats();
} // GEVulkanDriver
// ----------------------------------------------------------------------------
GEVulkanDriver::~GEVulkanDriver()
{
g_device_created.store(false);
} // ~GEVulkanDriver
// ----------------------------------------------------------------------------
void GEVulkanDriver::destroyVulkan()
{
if (m_white_texture)
{
m_white_texture->drop();
m_white_texture = NULL;
}
if (m_transparent_texture)
{
m_transparent_texture->drop();
m_transparent_texture = NULL;
}
GEVulkan2dRenderer::destroy();
GEVulkanShaderManager::destroy();
delete m_vk.get();
m_vk.release();
} // destroyVulkan
// ----------------------------------------------------------------------------
void GEVulkanDriver::createUnicolorTextures()
{
constexpr unsigned size = 2;
std::array<uint8_t, size * size * 4> data;
data.fill(255);
video::IImage* img = createImageFromData(video::ECF_A8R8G8B8,
core::dimension2d<u32>(size, size), data.data(),
/*ownForeignMemory*/true, /*deleteMemory*/false);
m_white_texture = new GEVulkanTexture(img, "unicolor_white");
data.fill(0);
img = createImageFromData(video::ECF_A8R8G8B8,
core::dimension2d<u32>(size, size), data.data(),
/*ownForeignMemory*/true, /*deleteMemory*/false);
m_transparent_texture = new GEVulkanTexture(img, "unicolor_transparent");
} // createUnicolorTextures
// ----------------------------------------------------------------------------
void GEVulkanDriver::createInstance(SDL_Window* window)
{
#if !defined(__APPLE__) || defined(DLOPEN_MOLTENVK)
if (gladLoadVulkanUserPtr(NULL, (GLADuserptrloadfunc)loader, NULL) == 0)
{
throw std::runtime_error("gladLoadVulkanUserPtr failed 1st time");
}
#endif
unsigned int count = 0;
if (!SDL_Vulkan_GetInstanceExtensions(window, &count, NULL))
throw std::runtime_error("SDL_Vulkan_GetInstanceExtensions failed with NULL extensions");
std::vector<const char*> extensions(count, NULL);
if (!SDL_Vulkan_GetInstanceExtensions(window, &count, extensions.data()))
throw std::runtime_error("SDL_Vulkan_GetInstanceExtensions failed with extensions vector");
uint32_t vk_version = 0;
bool vulkan_1_1 = false;
#if !defined(__APPLE__) || defined(DLOPEN_MOLTENVK)
PFN_vkEnumerateInstanceVersion e_ver = (PFN_vkEnumerateInstanceVersion)
vkGetInstanceProcAddr(NULL, "vkEnumerateInstanceVersion");
vulkan_1_1 = (e_ver && e_ver(&vk_version) == VK_SUCCESS &&
vk_version >= VK_API_VERSION_1_1);
#else
vulkan_1_1 = (vkEnumerateInstanceVersion(&vk_version) == VK_SUCCESS &&
vk_version >= VK_API_VERSION_1_1);
#endif
uint32_t layer_count = 0;
vkEnumerateInstanceLayerProperties(&layer_count, NULL);
std::vector<VkLayerProperties> available_layers(layer_count);
vkEnumerateInstanceLayerProperties(&layer_count, available_layers.data());
std::vector<const char*> enabled_validation_layers;
#ifdef ENABLE_VALIDATION
for (VkLayerProperties& prop : available_layers)
{
if (std::string(prop.layerName) == "VK_LAYER_KHRONOS_validation")
enabled_validation_layers.push_back("VK_LAYER_KHRONOS_validation");
}
#endif
VkInstanceCreateInfo create_info = {};
VkApplicationInfo app_info = {};
if (vulkan_1_1)
{
// From https://www.khronos.org/registry/vulkan/specs/1.3-extensions/man/html/VkApplicationInfo.html
// Implementations that support Vulkan 1.1 or later must not return VK_ERROR_INCOMPATIBLE_DRIVER for any value of apiVersion.
app_info.apiVersion = VK_API_VERSION_1_2;
}
create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
create_info.enabledExtensionCount = extensions.size();
create_info.ppEnabledExtensionNames = extensions.data();
create_info.pApplicationInfo = &app_info;
create_info.enabledLayerCount = enabled_validation_layers.size();
create_info.ppEnabledLayerNames = enabled_validation_layers.data();
VkResult result = vkCreateInstance(&create_info, NULL, &m_vk->instance);
if (result != VK_SUCCESS)
throw std::runtime_error("vkCreateInstance failed");
} // createInstance
// ----------------------------------------------------------------------------
void GEVulkanDriver::findPhysicalDevice()
{
uint32_t device_count = 0;
vkEnumeratePhysicalDevices(m_vk->instance, &device_count, NULL);
if (device_count < 1)
throw std::runtime_error("findPhysicalDevice has < 1 device_count");
std::vector<VkPhysicalDevice> devices(device_count);
vkEnumeratePhysicalDevices(m_vk->instance, &device_count, &devices[0]);
for (VkPhysicalDevice& device : devices)
{
uint32_t graphics_family = 0;
uint32_t present_family = 0;
bool success = findQueueFamilies(device, &graphics_family, &present_family);
if (!success)
continue;
success = checkDeviceExtensions(device);
if (!success)
continue;
VkSurfaceCapabilitiesKHR surface_capabilities;
std::vector<VkSurfaceFormatKHR> surface_formats;
std::vector<VkPresentModeKHR> present_modes;
success = updateSurfaceInformation(device, &surface_capabilities,
&surface_formats, &present_modes);
if (!success)
continue;
vkGetPhysicalDeviceFeatures(device, &m_features);
m_graphics_family = graphics_family;
m_present_family = present_family;
m_surface_capabilities = surface_capabilities;
m_surface_formats = surface_formats;
m_present_modes = present_modes;
m_physical_device = device;
break;
}
if (m_physical_device == VK_NULL_HANDLE)
throw std::runtime_error("findPhysicalDevice m_physical_device is VK_NULL_HANDLE");
} // findPhysicalDevice
// ----------------------------------------------------------------------------
bool GEVulkanDriver::checkDeviceExtensions(VkPhysicalDevice device)
{
uint32_t extension_count;
vkEnumerateDeviceExtensionProperties(device, NULL, &extension_count, NULL);
std::vector<VkExtensionProperties> extensions(extension_count);
vkEnumerateDeviceExtensionProperties(device, NULL, &extension_count,
&extensions[0]);
std::set<std::string> required_extensions(m_device_extensions.begin(),
m_device_extensions.end());
for (VkExtensionProperties& extension : extensions)
required_extensions.erase(extension.extensionName);
return required_extensions.empty();
} // checkDeviceExtensions
// ----------------------------------------------------------------------------
bool GEVulkanDriver::updateSurfaceInformation(VkPhysicalDevice device,
VkSurfaceCapabilitiesKHR* surface_capabilities,
std::vector<VkSurfaceFormatKHR>* surface_formats,
std::vector<VkPresentModeKHR>* present_modes)
{
uint32_t format_count;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, m_vk->surface, &format_count, NULL);
if (format_count < 1)
return false;
uint32_t mode_count;
vkGetPhysicalDeviceSurfacePresentModesKHR(device, m_vk->surface, &mode_count, NULL);
if (mode_count < 1)
return false;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, m_vk->surface, surface_capabilities);
(*surface_formats).resize(format_count);
vkGetPhysicalDeviceSurfaceFormatsKHR(device, m_vk->surface, &format_count,
&(*surface_formats)[0]);
(*present_modes).resize(mode_count);
vkGetPhysicalDeviceSurfacePresentModesKHR(device, m_vk->surface, &mode_count,
&(*present_modes)[0]);
return true;
} // updateSurfaceInformation
// ----------------------------------------------------------------------------
bool GEVulkanDriver::findQueueFamilies(VkPhysicalDevice device,
uint32_t* graphics_family,
uint32_t* present_family)
{
uint32_t queue_family_count = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queue_family_count, NULL);
if (queue_family_count == 0)
return false;
std::vector<VkQueueFamilyProperties> queue_families(queue_family_count);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queue_family_count,
&queue_families[0]);
bool found_graphics_family = false;
bool found_present_family = false;
for (unsigned int i = 0; i < queue_families.size(); i++)
{
if (queue_families[i].queueCount > 0 &&
queue_families[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)
{
*graphics_family = i;
found_graphics_family = true;
break;
}
}
for (unsigned int i = 0; i < queue_families.size(); i++)
{
VkBool32 present_support = false;
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, m_vk->surface, &present_support);
if (queue_families[i].queueCount > 0 && present_support)
{
*present_family = i;
found_present_family = true;
break;
}
}
return found_graphics_family && found_present_family;
} // findQueueFamilies
// ----------------------------------------------------------------------------
void GEVulkanDriver::createDevice()
{
std::vector<VkDeviceQueueCreateInfo> queue_create_infos;
float queue_priority = 1.0f;
VkDeviceQueueCreateInfo queue_create_info = {};
queue_create_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue_create_info.queueFamilyIndex = m_graphics_family;
queue_create_info.queueCount = 1;
queue_create_info.pQueuePriorities = &queue_priority;
queue_create_infos.push_back(queue_create_info);
if (m_present_family != m_graphics_family)
{
queue_create_info.queueFamilyIndex = m_present_family;
queue_create_infos.push_back(queue_create_info);
}
VkPhysicalDeviceFeatures device_features = {};
device_features.shaderSampledImageArrayDynamicIndexing =
GEVulkanFeatures::supportsBindTexturesAtOnce();
VkPhysicalDeviceVulkan12Features vulkan12_features = {};
vulkan12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
vulkan12_features.descriptorIndexing =
GEVulkanFeatures::supportsDescriptorIndexing();
vulkan12_features.shaderSampledImageArrayNonUniformIndexing =
GEVulkanFeatures::supportsNonUniformIndexing();
vulkan12_features.descriptorBindingPartiallyBound =
GEVulkanFeatures::supportsPartiallyBound();
if (m_features.samplerAnisotropy == VK_TRUE)
device_features.samplerAnisotropy = VK_TRUE;
VkDeviceCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
create_info.queueCreateInfoCount = queue_create_infos.size();
create_info.pQueueCreateInfos = &queue_create_infos[0];
create_info.pEnabledFeatures = &device_features;
create_info.enabledExtensionCount = m_device_extensions.size();
create_info.ppEnabledExtensionNames = &m_device_extensions[0];
create_info.enabledLayerCount = 0;
create_info.pNext = &vulkan12_features;
VkResult result = vkCreateDevice(m_physical_device, &create_info, NULL, &m_vk->device);
if (result != VK_SUCCESS)
throw std::runtime_error("vkCreateDevice failed");
vkGetDeviceQueue(m_vk->device, m_graphics_family, 0, &m_graphics_queue);
vkGetDeviceQueue(m_vk->device, m_present_family, 0, &m_present_queue);
} // createDevice
// ----------------------------------------------------------------------------
std::string GEVulkanDriver::getVulkanVersionString() const
{
std::stringstream vk_version;
vk_version << VK_VERSION_MAJOR(m_properties.apiVersion) << "." <<
VK_VERSION_MINOR(m_properties.apiVersion) << "." <<
VK_VERSION_PATCH(m_properties.apiVersion);
return vk_version.str();
} // getVulkanVersionString
// ----------------------------------------------------------------------------
std::string GEVulkanDriver::getDriverVersionString() const
{
#ifdef WIN32
bool is_win = true;
#else
bool is_win = false;
#endif
std::stringstream driver_version;
// Following https://github.com/SaschaWillems/vulkan.gpuinfo.org/blob/master/includes/functions.php
if (m_properties.vendorID == 0x10DE)
{
// NVIDIA
driver_version << ((m_properties.driverVersion >> 22) & 0x3ff) << "." <<
((m_properties.driverVersion >> 14) & 0xff) << "." <<
((m_properties.driverVersion >> 6) & 0xff) << "." <<
(m_properties.driverVersion & 0x3f);
}
else if (m_properties.vendorID == 0x8086 && is_win)
{
// Intel on Windows
driver_version << (m_properties.driverVersion >> 14) << "." <<
(m_properties.driverVersion & 0x3fff);
}
else
{
// Use Vulkan version conventions if vendor mapping is not available
driver_version << VK_VERSION_MAJOR(m_properties.driverVersion) << "." <<
VK_VERSION_MINOR(m_properties.driverVersion) << "." <<
VK_VERSION_PATCH(m_properties.driverVersion);
}
return driver_version.str();
} // getDriverVersionString
// ----------------------------------------------------------------------------
void GEVulkanDriver::createSwapChain()
{
VkSurfaceFormatKHR surface_format = m_surface_formats[0];
if (m_surface_formats.size() == 1 &&
m_surface_formats[0].format == VK_FORMAT_UNDEFINED)
{
surface_format =
{
VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR
};
}
else
{
for (VkSurfaceFormatKHR& available_format : m_surface_formats)
{
if (available_format.format == VK_FORMAT_B8G8R8A8_UNORM &&
available_format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR)
{
surface_format = available_format;
break;
}
}
}
VkPresentModeKHR present_mode = VK_PRESENT_MODE_FIFO_KHR;
if (m_params.SwapInterval == 0)
{
// Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/5516
bool ignore_mailbox_mode = false;
#ifdef __LINUX__
ignore_mailbox_mode = true;
#endif
if (!ignore_mailbox_mode)
{
for (VkPresentModeKHR& available_mode : m_present_modes)
{
if (available_mode == VK_PRESENT_MODE_MAILBOX_KHR)
{
present_mode = available_mode;
goto found_mode;
}
}
}
for (VkPresentModeKHR& available_mode : m_present_modes)
{
if (available_mode == VK_PRESENT_MODE_IMMEDIATE_KHR)
{
present_mode = available_mode;
goto found_mode;
}
}
for (VkPresentModeKHR& available_mode : m_present_modes)
{
if (available_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR)
{
present_mode = available_mode;
goto found_mode;
}
}
}
found_mode:
// Try to get triple buffering by default
// https://vulkan-tutorial.com/Drawing_a_triangle/Presentation/Swap_chain
uint32_t swap_chain_images_count = m_surface_capabilities.minImageCount + 1;
if (m_surface_capabilities.maxImageCount > 0 &&
swap_chain_images_count > m_surface_capabilities.maxImageCount)
{
swap_chain_images_count = m_surface_capabilities.maxImageCount;
}
int w, h = 0;
SDL_Vulkan_GetDrawableSize(m_window, &w, &h);
VkExtent2D max_extent = m_surface_capabilities.maxImageExtent;
VkExtent2D min_extent = m_surface_capabilities.minImageExtent;
VkExtent2D actual_extent =
{
std::max(
std::min((unsigned)w, max_extent.width), min_extent.width),
std::max(
std::min((unsigned)h, max_extent.height), min_extent.height)
};
VkSwapchainCreateInfoKHR create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
create_info.surface = m_vk->surface;
create_info.minImageCount = swap_chain_images_count;
create_info.imageFormat = surface_format.format;
create_info.imageColorSpace = surface_format.colorSpace;
create_info.imageExtent = actual_extent;
create_info.imageArrayLayers = 1;
create_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
uint32_t queueFamilyIndices[] = { m_graphics_family, m_present_family };
if (m_graphics_family != m_present_family)
{
create_info.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
create_info.queueFamilyIndexCount = 2;
create_info.pQueueFamilyIndices = queueFamilyIndices;
}
else
{
create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
}
if (m_surface_capabilities.currentTransform != VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
{
if (m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR ||
m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR ||
m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR)
{
os::Printer::log("Vulkan preTransform", "using pre-rotation matrix");
}
else
{
m_surface_capabilities.currentTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
os::Printer::log("Vulkan preTransform", "forcing identity, may affect performance");
}
}
create_info.preTransform = m_surface_capabilities.currentTransform;
create_info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
if ((m_surface_capabilities.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR) == 0)
create_info.compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
create_info.presentMode = present_mode;
create_info.clipped = VK_TRUE;
create_info.oldSwapchain = VK_NULL_HANDLE;
m_swap_chain_extent = actual_extent;
ScreenSize.Width = m_swap_chain_extent.width;
ScreenSize.Height = m_swap_chain_extent.height;
m_clip = getFullscreenClip();
setViewPort(core::recti(0, 0, ScreenSize.Width, ScreenSize.Height));
initPreRotationMatrix();
if (m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR ||
m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR)
{
std::swap(create_info.imageExtent.width, create_info.imageExtent.height);
std::swap(m_swap_chain_extent.width, m_swap_chain_extent.height);
}
VkResult result = vkCreateSwapchainKHR(m_vk->device, &create_info, NULL,
&m_vk->swap_chain);
if (result != VK_SUCCESS)
throw std::runtime_error("vkCreateSwapchainKHR failed");
vkGetSwapchainImagesKHR(m_vk->device, m_vk->swap_chain, &swap_chain_images_count, NULL);
m_vk->swap_chain_images.resize(swap_chain_images_count);
vkGetSwapchainImagesKHR(m_vk->device, m_vk->swap_chain, &swap_chain_images_count,
&m_vk->swap_chain_images[0]);
m_swap_chain_image_format = surface_format.format;
for (unsigned int i = 0; i < m_vk->swap_chain_images.size(); i++)
{
VkImageViewCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
create_info.image = m_vk->swap_chain_images[i];
create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
create_info.format = m_swap_chain_image_format;
create_info.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
create_info.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
create_info.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
create_info.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
create_info.subresourceRange.baseMipLevel = 0;
create_info.subresourceRange.levelCount = 1;
create_info.subresourceRange.baseArrayLayer = 0;
create_info.subresourceRange.layerCount = 1;
VkImageView swap_chain_image_view = VK_NULL_HANDLE;
VkResult result = vkCreateImageView(m_vk->device, &create_info, NULL,
&swap_chain_image_view);
if (result != VK_SUCCESS)
throw std::runtime_error("vkCreateImageView failed");
m_vk->swap_chain_image_views.push_back(swap_chain_image_view);
}
} // createSwapChain
// ----------------------------------------------------------------------------
void GEVulkanDriver::createSyncObjects()
{
VkSemaphoreCreateInfo semaphore_info = {};
semaphore_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
VkFenceCreateInfo fence_info = {};
fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fence_info.flags = VK_FENCE_CREATE_SIGNALED_BIT;
for (unsigned int i = 0; i < getMaxFrameInFlight(); i++)
{
VkSemaphore image_available_semaphore;
VkResult result = vkCreateSemaphore(m_vk->device, &semaphore_info, NULL,
&image_available_semaphore);
if (result != VK_SUCCESS)
{
throw std::runtime_error(
"vkCreateSemaphore on image_available_semaphore failed");
}
VkSemaphore render_finished_semaphore;
result = vkCreateSemaphore(m_vk->device, &semaphore_info, NULL,
&render_finished_semaphore);
if (result != VK_SUCCESS)
{
throw std::runtime_error(
"vkCreateSemaphore on render_finished_semaphore failed");
}
VkFence in_flight_fence;
result = vkCreateFence(m_vk->device, &fence_info, NULL,
&in_flight_fence);
if (result != VK_SUCCESS)
throw std::runtime_error("vkCreateFence failed");
m_vk->image_available_semaphores.push_back(image_available_semaphore);
m_vk->render_finished_semaphores.push_back(render_finished_semaphore);
m_vk->in_flight_fences.push_back(in_flight_fence);
}
} // createSyncObjects
// ----------------------------------------------------------------------------
void GEVulkanDriver::createCommandPool()
{
VkCommandPoolCreateInfo pool_info = {};
pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
pool_info.queueFamilyIndex = m_graphics_family;
pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VkResult result = vkCreateCommandPool(m_vk->device, &pool_info, NULL,
&m_vk->command_pool);
if (result != VK_SUCCESS)
throw std::runtime_error("vkCreateCommandPool failed");
} // createCommandPool
// ----------------------------------------------------------------------------
void GEVulkanDriver::createCommandBuffers()
{
std::vector<VkCommandBuffer> buffers(getMaxFrameInFlight());
VkCommandBufferAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
alloc_info.commandPool = m_vk->command_pool;
alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
alloc_info.commandBufferCount = (uint32_t)buffers.size();
VkResult result = vkAllocateCommandBuffers(m_vk->device, &alloc_info,
&buffers[0]);
if (result != VK_SUCCESS)
throw std::runtime_error("vkAllocateCommandBuffers failed");
m_vk->command_buffers = buffers;
} // createCommandBuffers
// ----------------------------------------------------------------------------
void GEVulkanDriver::createSamplers()
{
VkSampler sampler = VK_NULL_HANDLE;
bool supported_anisotropy = m_features.samplerAnisotropy == VK_TRUE;
// GVS_NEAREST
VkSamplerCreateInfo sampler_info = {};
sampler_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler_info.magFilter = VK_FILTER_NEAREST;
sampler_info.minFilter = VK_FILTER_NEAREST;
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.anisotropyEnable = supported_anisotropy;
sampler_info.maxAnisotropy = 1.0;
sampler_info.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
sampler_info.unnormalizedCoordinates = VK_FALSE;
sampler_info.compareEnable = VK_FALSE;
sampler_info.compareOp = VK_COMPARE_OP_ALWAYS;
sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
VkResult result = vkCreateSampler(m_vk->device, &sampler_info, NULL,
&sampler);
if (result != VK_SUCCESS)
throw std::runtime_error("vkCreateSampler failed for GVS_NEAREST");
m_vk->samplers[GVS_NEAREST] = sampler;
} // createSamplers
// ----------------------------------------------------------------------------
void GEVulkanDriver::createRenderPass()
{
VkAttachmentDescription color_attachment = {};
color_attachment.format = m_swap_chain_image_format;
color_attachment.samples = VK_SAMPLE_COUNT_1_BIT;
color_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
color_attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
color_attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
color_attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
color_attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
color_attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference color_attachment_ref = {};
color_attachment_ref.attachment = 0;
color_attachment_ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_attachment_ref;
VkSubpassDependency dependency = {};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.srcAccessMask = 0;
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
std::array<VkAttachmentDescription, 1> attachments = { color_attachment };
VkRenderPassCreateInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
render_pass_info.attachmentCount = (uint32_t)(attachments.size());
render_pass_info.pAttachments = &attachments[0];
render_pass_info.subpassCount = 1;
render_pass_info.pSubpasses = &subpass;
render_pass_info.dependencyCount = 1;
render_pass_info.pDependencies = &dependency;
VkResult result = vkCreateRenderPass(m_vk->device, &render_pass_info, NULL,
&m_vk->render_pass);
if (result != VK_SUCCESS)
throw std::runtime_error("vkCreateRenderPass failed");
} // createRenderPass
// ----------------------------------------------------------------------------
void GEVulkanDriver::createFramebuffers()
{
const std::vector<VkImageView>& image_views = m_vk->swap_chain_image_views;
for (unsigned int i = 0; i < image_views.size(); i++)
{
std::array<VkImageView, 1> attachments =
{
image_views[i]
};
VkFramebufferCreateInfo framebuffer_info = {};
framebuffer_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebuffer_info.renderPass = m_vk->render_pass;
framebuffer_info.attachmentCount = (uint32_t)(attachments.size());
framebuffer_info.pAttachments = &attachments[0];
framebuffer_info.width = m_swap_chain_extent.width;
framebuffer_info.height = m_swap_chain_extent.height;
framebuffer_info.layers = 1;
VkFramebuffer swap_chain_framebuffer = VK_NULL_HANDLE;
VkResult result = vkCreateFramebuffer(m_vk->device, &framebuffer_info,
NULL, &swap_chain_framebuffer);
if (result != VK_SUCCESS)
throw std::runtime_error("vkCreateFramebuffer failed");
m_vk->swap_chain_framebuffers.push_back(swap_chain_framebuffer);
}
} // createFramebuffers
// ----------------------------------------------------------------------------
bool GEVulkanDriver::createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
VkMemoryPropertyFlags properties,
VkBuffer& buffer,
VkDeviceMemory& buffer_memory)
{
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = size;
buffer_info.usage = usage;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkResult result = vkCreateBuffer(m_vk->device, &buffer_info, NULL, &buffer);
if (result != VK_SUCCESS)
return false;
VkMemoryRequirements mem_requirements;
vkGetBufferMemoryRequirements(m_vk->device, buffer, &mem_requirements);
VkPhysicalDeviceMemoryProperties mem_properties;
vkGetPhysicalDeviceMemoryProperties(m_physical_device, &mem_properties);
uint32_t memory_type_index = std::numeric_limits<uint32_t>::max();
uint32_t type_filter = mem_requirements.memoryTypeBits;
for (uint32_t i = 0; i < mem_properties.memoryTypeCount; i++)
{
if ((type_filter & (1 << i)) &&
(mem_properties.memoryTypes[i].propertyFlags & properties) == properties)
{
memory_type_index = i;
break;
}
}
if (memory_type_index == std::numeric_limits<uint32_t>::max())
return false;
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = mem_requirements.size;
alloc_info.memoryTypeIndex = memory_type_index;
result = vkAllocateMemory(m_vk->device, &alloc_info, NULL, &buffer_memory);
if (result != VK_SUCCESS)
return false;
vkBindBufferMemory(m_vk->device, buffer, buffer_memory, 0);
return true;
} // createBuffer
// ----------------------------------------------------------------------------
void GEVulkanDriver::copyBuffer(VkBuffer src_buffer, VkBuffer dst_buffer,
VkDeviceSize size)
{
VkCommandBuffer command_buffer = beginSingleTimeCommands();
VkBufferCopy copy_region = {};
copy_region.size = size;
vkCmdCopyBuffer(command_buffer, src_buffer, dst_buffer, 1, &copy_region);
endSingleTimeCommands(command_buffer);
} // copyBuffer
// ----------------------------------------------------------------------------
VkCommandBuffer GEVulkanDriver::beginSingleTimeCommands()
{
VkCommandBufferAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
alloc_info.commandPool = m_vk->command_pool;
alloc_info.commandBufferCount = 1;
VkCommandBuffer command_buffer;
vkAllocateCommandBuffers(m_vk->device, &alloc_info, &command_buffer);
VkCommandBufferBeginInfo begin_info = {};
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
vkBeginCommandBuffer(command_buffer, &begin_info);
return command_buffer;
} // beginSingleTimeCommands
// ----------------------------------------------------------------------------
void GEVulkanDriver::endSingleTimeCommands(VkCommandBuffer command_buffer)
{
vkEndCommandBuffer(command_buffer);
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &command_buffer;
vkQueueSubmit(m_graphics_queue, 1, &submit_info, VK_NULL_HANDLE);
vkQueueWaitIdle(m_graphics_queue);
vkFreeCommandBuffers(m_vk->device, m_vk->command_pool, 1, &command_buffer);
} // beginSingleTimeCommands
// ----------------------------------------------------------------------------
void GEVulkanDriver::OnResize(const core::dimension2d<u32>& size)
{
CNullDriver::OnResize(size);
if (g_paused_rendering.load() == false)
{
destroySwapChainRelated(false/*handle_surface*/);
createSwapChainRelated(false/*handle_surface*/);
}
} // OnResize
// ----------------------------------------------------------------------------
bool GEVulkanDriver::beginScene(bool backBuffer, bool zBuffer, SColor color,
const SExposedVideoData& videoData,
core::rect<s32>* sourceRect)
{
if (g_schedule_pausing_rendering.load())
{
pauseRendering();
g_schedule_pausing_rendering.store(false);
}
if (g_paused_rendering.load() ||
!video::CNullDriver::beginScene(backBuffer, zBuffer, color, videoData,
sourceRect))
return false;
m_clear_color = color;
VkFence fence = m_vk->in_flight_fences[m_current_frame];
vkWaitForFences(m_vk->device, 1, &fence, VK_TRUE,
std::numeric_limits<uint64_t>::max());
vkResetFences(m_vk->device, 1, &fence);
VkSemaphore semaphore = m_vk->image_available_semaphores[m_current_frame];
VkResult result = vkAcquireNextImageKHR(m_vk->device, m_vk->swap_chain,
std::numeric_limits<uint64_t>::max(), semaphore, VK_NULL_HANDLE,
&m_image_index);
return (result != VK_ERROR_OUT_OF_DATE_KHR);
} // beginScene
// ----------------------------------------------------------------------------
bool GEVulkanDriver::endScene()
{
if (g_paused_rendering.load())
{
GEVulkan2dRenderer::clear();
return false;
}
GEVulkan2dRenderer::render();
VkSemaphore wait_semaphores[] = {m_vk->image_available_semaphores[m_current_frame]};
VkPipelineStageFlags wait_stages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
VkSemaphore signal_semaphores[] = {m_vk->render_finished_semaphores[m_current_frame]};
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitSemaphores = wait_semaphores;
submit_info.pWaitDstStageMask = wait_stages;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_vk->command_buffers[m_current_frame];
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = signal_semaphores;
VkResult result = vkQueueSubmit(m_graphics_queue, 1, &submit_info,
m_vk->in_flight_fences[m_current_frame]);
if (result != VK_SUCCESS)
throw std::runtime_error("vkQueueSubmit failed");
VkSemaphore semaphores[] =
{
m_vk->render_finished_semaphores[m_current_frame]
};
VkSwapchainKHR swap_chains[] =
{
m_vk->swap_chain
};
VkPresentInfoKHR present_info = {};
present_info.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
present_info.waitSemaphoreCount = 1;
present_info.pWaitSemaphores = semaphores;
present_info.swapchainCount = 1;
present_info.pSwapchains = swap_chains;
present_info.pImageIndices = &m_image_index;
m_current_frame = (m_current_frame + 1) % getMaxFrameInFlight();
result = vkQueuePresentKHR(m_present_queue, &present_info);
if (!video::CNullDriver::endScene())
return false;
return (result != VK_ERROR_OUT_OF_DATE_KHR && result != VK_SUBOPTIMAL_KHR);
} // endScene
// ----------------------------------------------------------------------------
void GEVulkanDriver::draw2DVertexPrimitiveList(const void* vertices,
u32 vertexCount,
const void* indexList,
u32 primitiveCount,
E_VERTEX_TYPE vType,
scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType)
{
const GEVulkanTexture* texture =
dynamic_cast<const GEVulkanTexture*>(Material.getTexture(0));
if (!texture)
return;
if (vType != EVT_STANDARD || iType != EIT_16BIT)
return;
if (pType == irr::scene::EPT_TRIANGLES)
{
S3DVertex* v = (S3DVertex*)vertices;
u16* i = (u16*)indexList;
GEVulkan2dRenderer::addVerticesIndices(v, vertexCount, i,
primitiveCount, texture);
}
} // draw2DVertexPrimitiveList
// ----------------------------------------------------------------------------
void GEVulkanDriver::draw2DImage(const video::ITexture* tex,
const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect,
SColor color, bool useAlphaChannelOfTexture)
{
const GEVulkanTexture* texture = dynamic_cast<const GEVulkanTexture*>(tex);
if (!texture)
return;
if (!sourceRect.isValid())
return;
core::position2d<s32> targetPos = destPos;
core::position2d<s32> sourcePos = sourceRect.UpperLeftCorner;
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRect.getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + (s32)sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + (s32)sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
return;
}
}
// clip these coordinates
if (targetPos.X<0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y<0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
return;
}
// ok, we've clipped everything.
// now draw it.
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getSize().Width ;
tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getSize().Height;
tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getSize().Width);
tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getSize().Height);
const core::rect<s32> poss(targetPos, sourceSize);
S3DVertex vtx[4];
vtx[0] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vtx[1] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vtx[2] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vtx[3] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
u16 indices[6] = {0,1,2,0,2,3};
if (clipRect)
enableScissorTest(*clipRect);
GEVulkan2dRenderer::addVerticesIndices(&vtx[0], 4, &indices[0], 2, texture);
if (clipRect)
disableScissorTest();
} // draw2DImage
// ----------------------------------------------------------------------------
void GEVulkanDriver::draw2DImage(const video::ITexture* tex,
const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect,
const video::SColor* const colors,
bool useAlphaChannelOfTexture)
{
const GEVulkanTexture* texture = dynamic_cast<const GEVulkanTexture*>(tex);
if (!texture)
return;
const core::dimension2d<u32>& ss = texture->getSize();
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (f32)sourceRect.UpperLeftCorner.X / (f32)ss.Width;
tcoords.UpperLeftCorner.Y = (f32)sourceRect.UpperLeftCorner.Y / (f32)ss.Height;
tcoords.LowerRightCorner.X = (f32)sourceRect.LowerRightCorner.X / (f32)ss.Width;
tcoords.LowerRightCorner.Y = (f32)sourceRect.LowerRightCorner.Y / (f32)ss.Height;
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
const video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
const video::SColor* const useColor = colors ? colors : temp;
S3DVertex vtx[4];
vtx[0] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, useColor[0],
tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vtx[1] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, useColor[3],
tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vtx[2] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, useColor[2],
tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vtx[3] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, useColor[1],
tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
u16 indices[6] = {0,1,2,0,2,3};
if (clipRect)
enableScissorTest(*clipRect);
GEVulkan2dRenderer::addVerticesIndices(&vtx[0], 4, &indices[0], 2, texture);
if (clipRect)
disableScissorTest();
} // draw2DImage
// ----------------------------------------------------------------------------
void GEVulkanDriver::draw2DImageBatch(const video::ITexture* tex,
const core::array<core::position2d<s32> >& positions,
const core::array<core::rect<s32> >& sourceRects,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
const GEVulkanTexture* texture = dynamic_cast<const GEVulkanTexture*>(tex);
if (!texture)
return;
const irr::u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size());
core::array<S3DVertex> vtx(drawCount * 4);
core::array<u16> indices(drawCount * 6);
for(u32 i = 0;i < drawCount;i++)
{
core::position2d<s32> targetPos = positions[i];
core::position2d<s32> sourcePos = sourceRects[i].UpperLeftCorner;
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRects[i].getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + (s32)sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + (s32)sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
continue;
}
}
// clip these coordinates
if (targetPos.X<0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y<0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
continue;
}
// ok, we've clipped everything.
// now draw it.
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getSize().Width ;
tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getSize().Height;
tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getSize().Width);
tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getSize().Height);
const core::rect<s32> poss(targetPos, sourceSize);
vtx.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y));
vtx.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y));
vtx.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y));
vtx.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y));
const u32 curPos = vtx.size()-4;
indices.push_back(0+curPos);
indices.push_back(1+curPos);
indices.push_back(2+curPos);
indices.push_back(0+curPos);
indices.push_back(2+curPos);
indices.push_back(3+curPos);
}
if (vtx.size())
{
if (clipRect)
enableScissorTest(*clipRect);
GEVulkan2dRenderer::addVerticesIndices(vtx.pointer(), vtx.size(),
indices.pointer(), indices.size() / 3, texture);
if (clipRect)
disableScissorTest();
}
} // draw2DImageBatch
// ----------------------------------------------------------------------------
void GEVulkanDriver::setViewPort(const core::rect<s32>& area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0,0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
vp.clipAgainst(rendert);
if (vp.getHeight() > 0 && vp.getWidth() > 0)
m_viewport = vp;
} // setViewPort
// ----------------------------------------------------------------------------
void GEVulkanDriver::getRotatedRect2D(VkRect2D* rect)
{
// https://developer.android.com/games/optimize/vulkan-prerotation
if (m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR)
{
VkRect2D ret =
{
(int)(m_swap_chain_extent.width - rect->extent.height - rect->offset.y),
rect->offset.x,
rect->extent.height,
rect->extent.width
};
*rect = ret;
}
else if (m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR)
{
VkRect2D ret =
{
(int)(m_swap_chain_extent.width - rect->extent.width - rect->offset.x),
(int)(m_swap_chain_extent.height - rect->extent.height - rect->offset.y),
rect->extent.width,
rect->extent.height
};
*rect = ret;
}
else if (m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR)
{
VkRect2D ret =
{
rect->offset.y,
(int)(m_swap_chain_extent.height - rect->extent.width - rect->offset.x),
rect->extent.height,
rect->extent.width
};
*rect = ret;
}
} // getRotatedRect2D
// ----------------------------------------------------------------------------
void GEVulkanDriver::getRotatedViewport(VkViewport* vp)
{
VkRect2D rect;
rect.offset.x = vp->x;
rect.offset.y = vp->y;
rect.extent.width = vp->width;
rect.extent.height = vp->height;
getRotatedRect2D(&rect);
vp->x = rect.offset.x;
vp->y = rect.offset.y;
vp->width = rect.extent.width;
vp->height = rect.extent.height;
} // getRotatedViewport
// ----------------------------------------------------------------------------
void GEVulkanDriver::initPreRotationMatrix()
{
const double pi = 3.14159265358979323846;
if (m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR)
m_pre_rotation_matrix.setRotationAxisRadians(90.0 * pi / 180., core::vector3df(0.0f, 0.0f, 1.0f));
else if (m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR)
m_pre_rotation_matrix.setRotationAxisRadians(180.0 * pi / 180., core::vector3df(0.0f, 0.0f, 1.0f));
else if (m_surface_capabilities.currentTransform == VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR)
m_pre_rotation_matrix.setRotationAxisRadians(270.0 * pi / 180., core::vector3df(0.0f, 0.0f, 1.0f));
} // initPreRotationMatrix
// ----------------------------------------------------------------------------
void GEVulkanDriver::pauseRendering()
{
if (g_paused_rendering.load() != false)
return;
destroySwapChainRelated(true/*handle_surface*/);
g_paused_rendering.store(true);
} // pauseRendering
// ----------------------------------------------------------------------------
void GEVulkanDriver::unpauseRendering()
{
if (g_paused_rendering.load() != true)
return;
createSwapChainRelated(true/*handle_surface*/);
g_paused_rendering.store(false);
} // unpauseRendering
// ----------------------------------------------------------------------------
void GEVulkanDriver::destroySwapChainRelated(bool handle_surface)
{
vkDeviceWaitIdle(m_vk->device);
for (VkFramebuffer& framebuffer : m_vk->swap_chain_framebuffers)
vkDestroyFramebuffer(m_vk->device, framebuffer, NULL);
m_vk->swap_chain_framebuffers.clear();
if (m_vk->render_pass != VK_NULL_HANDLE)
vkDestroyRenderPass(m_vk->device, m_vk->render_pass, NULL);
m_vk->render_pass = VK_NULL_HANDLE;
for (VkImageView& image_view : m_vk->swap_chain_image_views)
vkDestroyImageView(m_vk->device, image_view, NULL);
m_vk->swap_chain_image_views.clear();
if (m_vk->swap_chain != VK_NULL_HANDLE)
vkDestroySwapchainKHR(m_vk->device, m_vk->swap_chain, NULL);
m_vk->swap_chain = VK_NULL_HANDLE;
if (handle_surface)
{
if (m_vk->surface != VK_NULL_HANDLE)
vkDestroySurfaceKHR(m_vk->instance, m_vk->surface, NULL);
m_vk->surface = VK_NULL_HANDLE;
}
} // destroySwapChainRelated
// ----------------------------------------------------------------------------
void GEVulkanDriver::createSwapChainRelated(bool handle_surface)
{
vkDeviceWaitIdle(m_vk->device);
if (handle_surface)
{
if (SDL_Vulkan_CreateSurface(m_window, m_vk->instance, &m_vk->surface) == SDL_FALSE)
throw std::runtime_error("SDL_Vulkan_CreateSurface failed");
}
updateSurfaceInformation(m_physical_device, &m_surface_capabilities,
&m_surface_formats, &m_present_modes);
createSwapChain();
createRenderPass();
createFramebuffers();
} // createSwapChainRelated
}
namespace irr
{
namespace video
{
IVideoDriver* createVulkanDriver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, SDL_Window* window)
{
return new GE::GEVulkanDriver(params, io, window);
} // createVulkanDriver
}
}
#ifdef ANDROID
#include <jni.h>
extern "C" JNIEXPORT void JNICALL pauseRenderingJNI(JNIEnv* env, jclass cls)
{
using namespace GE;
if (g_device_created.load() == false || g_schedule_pausing_rendering.load() == true)
return;
g_schedule_pausing_rendering.store(true);
if (g_paused_rendering.load() == false)
{
while (true)
{
if (g_device_created.load() == false || g_paused_rendering.load() == true)
break;
}
}
} // pauseRenderingJNI
#endif
#endif