stk-code_catmod/lib/graphics_engine/include/ge_vulkan_driver.hpp

483 lines
22 KiB
C++

#ifndef __VULKAN_DRIVER_INCLUDED__
#define __VULKAN_DRIVER_INCLUDED__
#include "IrrCompileConfig.h"
#ifdef _IRR_COMPILE_WITH_VULKAN_
#include "vulkan_wrapper.h"
#include "SDL_video.h"
#include "../source/Irrlicht/CNullDriver.h"
#include "SIrrCreationParameters.h"
#include "SColor.h"
#include <array>
#include <memory>
#include <string>
#include <vector>
using namespace irr;
using namespace video;
namespace GE
{
enum GEVulkanSampler : unsigned
{
GVS_MIN = 0,
GVS_NEAREST = GVS_MIN,
GVS_COUNT,
};
class GEVulkanDriver : public video::CNullDriver
{
public:
//! constructor
GEVulkanDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, SDL_Window* window);
//! destructor
virtual ~GEVulkanDriver();
//! applications must call this method before performing any rendering. returns false if failed.
virtual bool beginScene(bool backBuffer=true, bool zBuffer=true,
SColor color=SColor(255,0,0,0),
const SExposedVideoData& videoData=SExposedVideoData(),
core::rect<s32>* sourceRect=0);
//! applications must call this method after performing any rendering. returns false if failed.
virtual bool endScene();
//! queries the features of the driver, returns true if feature is available
virtual bool queryFeature(E_VIDEO_DRIVER_FEATURE feature) const { return true; }
//! sets transformation
virtual void setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) {}
//! sets a material
virtual void setMaterial(const SMaterial& material) { Material = material; }
//! sets a render target
virtual bool setRenderTarget(video::ITexture* texture,
bool clearBackBuffer=true, bool clearZBuffer=true,
SColor color=video::SColor(0,0,0,0)) { return true; }
//! Sets multiple render targets
virtual bool setRenderTarget(const core::array<video::IRenderTarget>& texture,
bool clearBackBuffer=true, bool clearZBuffer=true,
SColor color=video::SColor(0,0,0,0)) { return true; }
//! sets a viewport
virtual void setViewPort(const core::rect<s32>& area);
//! gets the area of the current viewport
virtual const core::rect<s32>& getViewPort() const { return m_viewport; }
//! updates hardware buffer if needed
virtual bool updateHardwareBuffer(SHWBufferLink *HWBuffer) { return false; }
//! Create hardware buffer from mesh
virtual SHWBufferLink *createHardwareBuffer(const scene::IMeshBuffer* mb) { return NULL; }
//! Delete hardware buffer (only some drivers can)
virtual void deleteHardwareBuffer(SHWBufferLink *HWBuffer) {}
//! Draw hardware buffer
virtual void drawHardwareBuffer(SHWBufferLink *HWBuffer) {}
//! Create occlusion query.
/** Use node for identification and mesh for occlusion test. */
virtual void addOcclusionQuery(scene::ISceneNode* node,
const scene::IMesh* mesh=0) {}
//! Remove occlusion query.
virtual void removeOcclusionQuery(scene::ISceneNode* node) {}
//! Run occlusion query. Draws mesh stored in query.
/** If the mesh shall not be rendered visible, use
overrideMaterial to disable the color and depth buffer. */
virtual void runOcclusionQuery(scene::ISceneNode* node, bool visible=false) {}
//! Update occlusion query. Retrieves results from GPU.
/** If the query shall not block, set the flag to false.
Update might not occur in this case, though */
virtual void updateOcclusionQuery(scene::ISceneNode* node, bool block=true) {}
//! Return query result.
/** Return value is the number of visible pixels/fragments.
The value is a safe approximation, i.e. can be larger then the
actual value of pixels. */
virtual u32 getOcclusionQueryResult(scene::ISceneNode* node) const { return 0; }
//! draws a vertex primitive list
virtual void drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType) {}
//! draws a vertex primitive list in 2d
virtual void draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType);
//! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted.
virtual void draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect = 0,
SColor color=SColor(255,255,255,255), bool useAlphaChannelOfTexture=false);
//! Draws a part of the texture into the rectangle.
virtual void draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect = 0,
const video::SColor* const colors=0, bool useAlphaChannelOfTexture=false);
//! Draws a set of 2d images, using a color and the alpha channel of the texture.
virtual void draw2DImageBatch(const video::ITexture* texture,
const core::array<core::position2d<s32> >& positions,
const core::array<core::rect<s32> >& sourceRects,
const core::rect<s32>* clipRect=0,
SColor color=SColor(255,255,255,255),
bool useAlphaChannelOfTexture=false);
//!Draws an 2d rectangle with a gradient.
virtual void draw2DRectangle(const core::rect<s32>& pos,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
SColor color[4] = { colorLeftUp, colorLeftDown, colorRightDown, colorRightUp };
draw2DImage(m_white_texture, pos, core::recti(0, 0, 2, 2), clip, color, true);
}
//! Draws a 2d line.
virtual void draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color=SColor(255,255,255,255)) {}
//! Draws a pixel.
virtual void drawPixel(u32 x, u32 y, const SColor & color) {}
//! Draws a 3d line.
virtual void draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color = SColor(255,255,255,255)) {}
//! \return Returns the name of the video driver. Example: In case of the DIRECT3D8
//! driver, it would return "Direct3D8.1".
virtual const wchar_t* getName() const { return L""; }
//! deletes all dynamic lights there are
virtual void deleteAllDynamicLights() {}
//! adds a dynamic light, returning an index to the light
//! \param light: the light data to use to create the light
//! \return An index to the light, or -1 if an error occurs
virtual s32 addDynamicLight(const SLight& light) { return -1; }
//! Turns a dynamic light on or off
//! \param lightIndex: the index returned by addDynamicLight
//! \param turnOn: true to turn the light on, false to turn it off
virtual void turnLightOn(s32 lightIndex, bool turnOn) {}
//! returns the maximal amount of dynamic lights the device can handle
virtual u32 getMaximalDynamicLightAmount() const { return (u32)-1; }
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
virtual void setAmbientLight(const SColorf& color) {}
//! Draws a shadow volume into the stencil buffer.
virtual void drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail=true, u32 debugDataVisible=0) {}
//! Fills the stencil shadow with color.
virtual void drawStencilShadow(bool clearStencilBuffer=false,
video::SColor leftUpEdge = video::SColor(0,0,0,0),
video::SColor rightUpEdge = video::SColor(0,0,0,0),
video::SColor leftDownEdge = video::SColor(0,0,0,0),
video::SColor rightDownEdge = video::SColor(0,0,0,0)) {}
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
virtual u32 getMaximalPrimitiveCount() const { return (u32)-1; }
//! Enables or disables a texture creation flag.
virtual void setTextureCreationFlag(E_TEXTURE_CREATION_FLAG flag, bool enabled) {}
//! Sets the fog mode.
virtual void setFog(SColor color, E_FOG_TYPE fogType, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog) {}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
virtual void OnResize(const core::dimension2d<u32>& size);
//! Returns type of video driver
virtual E_DRIVER_TYPE getDriverType() const { return video::EDT_VULKAN; }
//! Returns the transformation set by setTransform
virtual const core::matrix4& getTransform(E_TRANSFORMATION_STATE state) const
{
static core::matrix4 unused;
return unused;
}
//! Creates a render target texture.
virtual ITexture* addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name, const ECOLOR_FORMAT format = ECF_UNKNOWN, const bool useStencil = false) { return NULL; }
//! Clears the ZBuffer.
virtual void clearZBuffer() {}
//! Returns an image created from the last rendered frame.
virtual IImage* createScreenShot(video::ECOLOR_FORMAT format=video::ECF_UNKNOWN, video::E_RENDER_TARGET target=video::ERT_FRAME_BUFFER) { return NULL; }
//! Set/unset a clipping plane.
virtual bool setClipPlane(u32 index, const core::plane3df& plane, bool enable=false) { return true; }
//! Enable/disable a clipping plane.
virtual void enableClipPlane(u32 index, bool enable) {}
//! Returns the graphics card vendor name.
virtual core::stringc getVendorInfo()
{
switch (m_properties.vendorID)
{
case 0x1002: return "AMD";
case 0x1010: return "ImgTec";
case 0x106B: return "Apple";
case 0x10DE: return "NVIDIA";
case 0x13B5: return "ARM";
case 0x14e4: return "Broadcom";
case 0x5143: return "Qualcomm";
case 0x8086: return "INTEL";
// llvmpipe
case 0x10005: return "Mesa";
default: return "Unknown";
}
}
//! Enable the 2d override material
virtual void enableMaterial2D(bool enable=true) {}
//! Check if the driver was recently reset.
virtual bool checkDriverReset() { return false; }
//! Get the current color format of the color buffer
/** \return Color format of the color buffer. */
virtual ECOLOR_FORMAT getColorFormat() const { return ECF_A8R8G8B8; }
//! Returns the maximum texture size supported.
virtual core::dimension2du getMaxTextureSize() const { return core::dimension2du(16384, 16384); }
virtual void enableScissorTest(const core::rect<s32>& r) { m_clip = r; }
core::rect<s32> getFullscreenClip() const
{
return core::rect<s32>(0, 0, ScreenSize.Width, ScreenSize.Height);
}
virtual void disableScissorTest() { m_clip = getFullscreenClip(); }
virtual const core::dimension2d<u32>& getCurrentRenderTargetSize() const { return ScreenSize; }
VkSampler getSampler(GEVulkanSampler s) const
{
if (s >= GVS_COUNT)
return VK_NULL_HANDLE;
return m_vk->samplers[s];
}
VkDevice getDevice() const { return m_vk->device; }
void destroyVulkan();
bool createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
VkMemoryPropertyFlags properties, VkBuffer& buffer,
VkDeviceMemory& buffer_memory);
VkPhysicalDevice getPhysicalDevice() const { return m_physical_device; }
void waitIdle() { vkQueueWaitIdle(m_graphics_queue); }
const VkPhysicalDeviceFeatures& getPhysicalDeviceFeatures() const
{ return m_features; }
const VkPhysicalDeviceProperties& getPhysicalDeviceProperties() const
{ return m_properties; }
VkCommandBuffer beginSingleTimeCommands();
void endSingleTimeCommands(VkCommandBuffer command_buffer);
io::IFileSystem* getFileSystem() const { return FileSystem; }
VkExtent2D getSwapChainExtent() const { return m_swap_chain_extent; }
size_t getSwapChainImagesCount() const
{ return m_vk->swap_chain_images.size(); }
VkRenderPass getRenderPass() const { return m_vk->render_pass; }
void copyBuffer(VkBuffer src_buffer, VkBuffer dst_buffer, VkDeviceSize size);
VkCommandBuffer getCurrentCommandBuffer()
{ return m_vk->command_buffers[m_current_frame]; }
std::vector<VkImage>& getSwapChainImages()
{ return m_vk->swap_chain_images; }
std::vector<VkFramebuffer>& getSwapChainFramebuffers()
{ return m_vk->swap_chain_framebuffers; }
unsigned int getCurrentFrame() const { return m_current_frame; }
unsigned int getCurrentImageIndex() const { return m_image_index; }
constexpr static unsigned getMaxFrameInFlight() { return 2; }
video::SColor getClearColor() const { return m_clear_color; }
const core::rect<s32>& getCurrentClip() const { return m_clip; }
video::ITexture* getWhiteTexture() const { return m_white_texture; }
video::ITexture* getTransparentTexture() const
{ return m_transparent_texture; }
void getRotatedRect2D(VkRect2D* rect);
void getRotatedViewport(VkViewport* vp);
const core::matrix4& getPreRotationMatrix()
{ return m_pre_rotation_matrix; }
virtual void pauseRendering();
virtual void unpauseRendering();
void updateSwapInterval(int value)
{
if (m_params.SwapInterval == value)
return;
m_params.SwapInterval = value;
destroySwapChainRelated(false/*handle_surface*/);
createSwapChainRelated(false/*handle_surface*/);
}
private:
struct SwapChainSupportDetails
{
VkSurfaceCapabilitiesKHR capabilities;
std::vector<VkSurfaceFormatKHR> formats;
std::vector<VkPresentModeKHR> presentModes;
};
//! returns a device dependent texture from a software surface (IImage)
//! THIS METHOD HAS TO BE OVERRIDDEN BY DERIVED DRIVERS WITH OWN TEXTURES
virtual video::ITexture* createDeviceDependentTexture(IImage* surface, const io::path& name, void* mipmapData=0) { return NULL; }
//! Adds a new material renderer to the VideoDriver, based on a high level shading
//! language.
virtual s32 addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8* geometryShaderProgram,
const c8* geometryShaderEntryPointName = "main",
E_GEOMETRY_SHADER_TYPE gsCompileTarget = EGST_GS_4_0,
scene::E_PRIMITIVE_TYPE inType = scene::EPT_TRIANGLES,
scene::E_PRIMITIVE_TYPE outType = scene::EPT_TRIANGLE_STRIP,
u32 verticesOut = 0,
IShaderConstantSetCallBack* callback = 0,
E_MATERIAL_TYPE baseMaterial = video::EMT_SOLID,
s32 userData = 0,
E_GPU_SHADING_LANGUAGE shadingLang = EGSL_DEFAULT) { return 0; }
SIrrlichtCreationParameters m_params;
SMaterial Material;
// RAII to auto cleanup
struct VK
{
VkInstance instance;
VkSurfaceKHR surface;
VkDevice device;
VkSwapchainKHR swap_chain;
std::vector<VkImage> swap_chain_images;
std::vector<VkImageView> swap_chain_image_views;
std::vector<VkSemaphore> image_available_semaphores;
std::vector<VkSemaphore> render_finished_semaphores;
std::vector<VkFence> in_flight_fences;
VkCommandPool command_pool;
std::vector<VkCommandBuffer> command_buffers;
std::array<VkSampler, GVS_COUNT> samplers;
VkRenderPass render_pass;
std::vector<VkFramebuffer> swap_chain_framebuffers;
VK()
{
instance = VK_NULL_HANDLE;
surface = VK_NULL_HANDLE;
device = VK_NULL_HANDLE;
swap_chain = VK_NULL_HANDLE;
command_pool = VK_NULL_HANDLE;
samplers = {{}};
render_pass = VK_NULL_HANDLE;
}
~VK()
{
for (VkFramebuffer& framebuffer : swap_chain_framebuffers)
vkDestroyFramebuffer(device, framebuffer, NULL);
if (render_pass != VK_NULL_HANDLE)
vkDestroyRenderPass(device, render_pass, NULL);
for (unsigned i = 0; i < GVS_COUNT; i++)
vkDestroySampler(device, samplers[i], NULL);
if (!command_buffers.empty())
{
vkFreeCommandBuffers(device, command_pool,
(uint32_t)(command_buffers.size()),
&command_buffers[0]);
}
if (command_pool != VK_NULL_HANDLE)
vkDestroyCommandPool(device, command_pool, NULL);
for (VkSemaphore& semaphore : image_available_semaphores)
vkDestroySemaphore(device, semaphore, NULL);
for (VkSemaphore& semaphore : render_finished_semaphores)
vkDestroySemaphore(device, semaphore, NULL);
for (VkFence& fence : in_flight_fences)
vkDestroyFence(device, fence, NULL);
for (VkImageView& image_view : swap_chain_image_views)
vkDestroyImageView(device, image_view, NULL);
if (swap_chain != VK_NULL_HANDLE)
vkDestroySwapchainKHR(device, swap_chain, NULL);
if (device != VK_NULL_HANDLE)
vkDestroyDevice(device, NULL);
if (surface != VK_NULL_HANDLE)
vkDestroySurfaceKHR(instance, surface, NULL);
if (instance != VK_NULL_HANDLE)
vkDestroyInstance(instance, NULL);
}
};
std::unique_ptr<VK> m_vk;
VkFormat m_swap_chain_image_format;
VkExtent2D m_swap_chain_extent;
VkPhysicalDevice m_physical_device;
std::vector<const char*> m_device_extensions;
VkSurfaceCapabilitiesKHR m_surface_capabilities;
std::vector<VkSurfaceFormatKHR> m_surface_formats;
std::vector<VkPresentModeKHR> m_present_modes;
VkQueue m_graphics_queue;
VkQueue m_present_queue;
uint32_t m_graphics_family;
uint32_t m_present_family;
VkPhysicalDeviceProperties m_properties;
VkPhysicalDeviceFeatures m_features;
unsigned int m_current_frame;
uint32_t m_image_index;
video::SColor m_clear_color;
core::rect<s32> m_clip;
core::rect<s32> m_viewport;
core::matrix4 m_pre_rotation_matrix;
video::ITexture* m_white_texture;
video::ITexture* m_transparent_texture;
SDL_Window* m_window;
void createInstance(SDL_Window* window);
void findPhysicalDevice();
bool checkDeviceExtensions(VkPhysicalDevice device);
bool findQueueFamilies(VkPhysicalDevice device, uint32_t* graphics_family, uint32_t* present_family);
bool updateSurfaceInformation(VkPhysicalDevice device,
VkSurfaceCapabilitiesKHR* surface_capabilities,
std::vector<VkSurfaceFormatKHR>* surface_formats,
std::vector<VkPresentModeKHR>* present_modes);
void createDevice();
void createSwapChain();
void createSyncObjects();
void createCommandPool();
void createCommandBuffers();
void createSamplers();
void createRenderPass();
void createFramebuffers();
void createUnicolorTextures();
void initPreRotationMatrix();
std::string getVulkanVersionString() const;
std::string getDriverVersionString() const;
void destroySwapChainRelated(bool handle_surface);
void createSwapChainRelated(bool handle_surface);
};
}
#endif // _IRR_COMPILE_WITH_VULKAN_
#endif // __VULKAN_DRIVER_INCLUDED__