stk-code_catmod/src/utils/mini_glm.hpp
2021-10-01 12:57:07 +08:00

617 lines
20 KiB
C++

// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2017 SuperTuxKart-Team
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifndef HEADER_MINI_GLM_HPP
#define HEADER_MINI_GLM_HPP
#include "LinearMath/btQuaternion.h"
#include "LinearMath/btTransform.h"
#include "utils/vec3.hpp"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <quaternion.h>
#include <vector3d.h>
#include "irrMath.h"
using namespace irr;
// GLM without template
namespace MiniGLM
{
// ------------------------------------------------------------------------
inline float overflow()
{
volatile float f = 1e10;
for (int i = 0; i < 10; i++)
f *= f; // this will overflow before the for loop terminates
return f;
} // overflow
// ------------------------------------------------------------------------
inline float toFloat32(short value)
{
int s = (value >> 15) & 0x00000001;
int e = (value >> 10) & 0x0000001f;
int m = value & 0x000003ff;
if (e == 0)
{
if (m == 0)
{
//
// Plus or minus zero
//
uint32_t tmp_data = (unsigned int)(s << 31);
float ret;
memcpy(&ret, &tmp_data, 4);
return ret;
}
else
{
//
// Denormalized number -- renormalize it
//
while(!(m & 0x00000400))
{
m <<= 1;
e -= 1;
}
e += 1;
m &= ~0x00000400;
}
}
else if (e == 31)
{
if (m == 0)
{
//
// Positive or negative infinity
//
uint32_t tmp_data = (unsigned int)((s << 31) | 0x7f800000);
float ret;
memcpy(&ret, &tmp_data, 4);
return ret;
}
else
{
//
// Nan -- preserve sign and significand bits
//
uint32_t tmp_data = (unsigned int)((s << 31) | 0x7f800000 |
(m << 13));
float ret;
memcpy(&ret, &tmp_data, 4);
return ret;
}
}
//
// Normalized number
//
e = e + (127 - 15);
m = m << 13;
//
// Assemble s, e and m.
//
uint32_t tmp_data = (unsigned int)((s << 31) | (e << 23) | m);
float ret;
memcpy(&ret, &tmp_data, 4);
return ret;
} // toFloat32
// ------------------------------------------------------------------------
inline short toFloat16(float const & f)
{
int i;
memcpy(&i, &f, 4);
//
// Our floating point number, f, is represented by the bit
// pattern in integer i. Disassemble that bit pattern into
// the sign, s, the exponent, e, and the significand, m.
// Shift s into the position where it will go in in the
// resulting half number.
// Adjust e, accounting for the different exponent bias
// of float and half (127 versus 15).
//
int s = (i >> 16) & 0x00008000;
int e = ((i >> 23) & 0x000000ff) - (127 - 15);
int m = i & 0x007fffff;
//
// Now reassemble s, e and m into a half:
//
if (e <= 0)
{
if (e < -10)
{
//
// E is less than -10. The absolute value of f is
// less than half_MIN (f may be a small normalized
// float, a denormalized float or a zero).
//
// We convert f to a half zero.
//
return short(s);
}
//
// E is between -10 and 0. F is a normalized float,
// whose magnitude is less than __half_NRM_MIN.
//
// We convert f to a denormalized half.
//
m = (m | 0x00800000) >> (1 - e);
//
// Round to nearest, round "0.5" up.
//
// Rounding may cause the significand to overflow and make
// our number normalized. Because of the way a half's bits
// are laid out, we don't have to treat this case separately;
// the code below will handle it correctly.
//
if (m & 0x00001000)
m += 0x00002000;
//
// Assemble the half from s, e (zero) and m.
//
return short(s | (m >> 13));
}
else if (e == 0xff - (127 - 15))
{
if (m == 0)
{
//
// F is an infinity; convert f to a half
// infinity with the same sign as f.
//
return short(s | 0x7c00);
}
else
{
//
// F is a NAN; we produce a half NAN that preserves
// the sign bit and the 10 leftmost bits of the
// significand of f, with one exception: If the 10
// leftmost bits are all zero, the NAN would turn
// into an infinity, so we have to set at least one
// bit in the significand.
//
m >>= 13;
return short(s | 0x7c00 | m | (m == 0));
}
}
else
{
//
// E is greater than zero. F is a normalized float.
// We try to convert f to a normalized half.
//
//
// Round to nearest, round "0.5" up
//
if (m & 0x00001000)
{
m += 0x00002000;
if (m & 0x00800000)
{
m = 0; // overflow in significand,
e += 1; // adjust exponent
}
}
//
// Handle exponent overflow
//
if (e > 30)
{
overflow(); // Cause a hardware floating point overflow;
return short(s | 0x7c00);
// if this returns, the half becomes an
} // infinity with the same sign as f.
//
// Assemble the half from s, e and m.
//
return short(s | (e << 10) | (m >> 13));
}
} // toFloat16
// ------------------------------------------------------------------------
inline uint32_t normalizedSignedFloatsTo1010102
(const std::array<float, 3>& src, int extra_2_bit = -1)
{
int part = 0;
uint32_t packed = 0;
float v = fminf(1.0f, fmaxf(-1.0f, src[0]));
if (v > 0.0f)
{
part = (int)((v * 511.0f) + 0.5f);
}
else
{
part = (int)((v * 512.0f) - 0.5f);
}
packed |= ((uint32_t)part & 1023) << 0;
v = fminf(1.0f, fmaxf(-1.0f, src[1]));
if (v > 0.0f)
{
part = (int)((v * 511.0f) + 0.5f);
}
else
{
part = (int)((v * 512.0f) - 0.5f);
}
packed |= ((uint32_t)part & 1023) << 10;
v = fminf(1.0f, fmaxf(-1.0f, src[2]));
if (v > 0.0f)
{
part = (int)((v * 511.0f) + 0.5f);
}
else
{
part = (int)((v * 512.0f) - 0.5f);
}
packed |= ((uint32_t)part & 1023) << 20;
if (extra_2_bit >= 0)
{
part = extra_2_bit;
}
else
{
part = (int)(-0.5f);
}
packed |= ((uint32_t)part & 3) << 30;
return packed;
} // normalizedSignedFloatsTo1010102
// ------------------------------------------------------------------------
inline std::array<short, 4> vertexType2101010RevTo4HF(uint32_t packed)
{
std::array<float, 4> ret;
int part = packed & 1023;
if (part & 512)
{
ret[0] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[0] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 10) & 1023;
if (part & 512)
{
ret[1] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[1] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 20) & 1023;
if (part & 512)
{
ret[2] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[2] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 30) & 3;
if (part & 2)
{
ret[3] = (float)(4 - part) * (-1.0f / 2.0f);
}
else
{
ret[3] = (float)part;
}
std::array<short, 4> result;
for (int i = 0; i < 4; i++)
{
result[i] = toFloat16(ret[i]);
}
return result;
} // vertexType2101010RevTo4HF
// ------------------------------------------------------------------------
inline std::array<float, 4> extractNormalizedSignedFloats(uint32_t packed,
bool calculate_w = false)
{
std::array<float, 4> ret = {};
int part = packed & 1023;
if (part & 512)
{
ret[0] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[0] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 10) & 1023;
if (part & 512)
{
ret[1] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[1] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 20) & 1023;
if (part & 512)
{
ret[2] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[2] = (float)part * (1.0f / 511.0f);
}
if (calculate_w)
{
float inv_sqrt_2 = 1.0f / sqrtf(2.0f);
ret[0] *= inv_sqrt_2;
ret[1] *= inv_sqrt_2;
ret[2] *= inv_sqrt_2;
float largest_val = sqrtf(fmaxf(0.0f, 1.0f -
(ret[0] * ret[0]) - (ret[1] * ret[1]) - (ret[2] * ret[2])));
part = (packed >> 30) & 3;
switch(part)
{
case 0:
{
auto tmp = ret;
ret[0] = largest_val;
ret[1] = tmp[0];
ret[2] = tmp[1];
ret[3] = tmp[2];
break;
}
case 1:
{
auto tmp = ret;
ret[0] = tmp[0];
ret[1] = largest_val;
ret[2] = tmp[1];
ret[3] = tmp[2];
break;
}
case 2:
{
auto tmp = ret;
ret[0] = tmp[0];
ret[1] = tmp[1];
ret[2] = largest_val;
ret[3] = tmp[2];
break;
}
case 3:
ret[3] = largest_val;
break;
default:
assert(false);
break;
}
}
return ret;
} // extractNormalizedSignedFloats
// ------------------------------------------------------------------------
// Please normalize vector before compressing
// ------------------------------------------------------------------------
inline uint32_t compressVector3(const irr::core::vector3df& vec)
{
return normalizedSignedFloatsTo1010102({{vec.X, vec.Y, vec.Z}});
} // compressVector3
// ------------------------------------------------------------------------
inline core::vector3df decompressVector3(uint32_t packed)
{
const std::array<float, 4> out = extractNormalizedSignedFloats(packed);
core::vector3df ret(out[0], out[1], out[2]);
return ret.normalize();
} // decompressVector3
// ------------------------------------------------------------------------
inline uint32_t compressQuaternion(const btQuaternion& q)
{
const float length = q.length();
assert(length != 0.0f);
std::array<float, 4> tmp_2 =
{{
q.x() / length,
q.y() / length,
q.z() / length,
q.w() / length
}};
std::array<float, 3> tmp_3 = {};
auto ret = std::max_element(tmp_2.begin(), tmp_2.end(),
[](float a, float b) { return std::abs(a) < std::abs(b); });
int extra_2_bit = int(std::distance(tmp_2.begin(), ret));
float sqrt_2 = sqrtf(2.0f);
switch (extra_2_bit)
{
case 0:
{
float neg = tmp_2[0] < 0.0f ? -1.0f : 1.0f;
tmp_3[0] = tmp_2[1] * neg * sqrt_2;
tmp_3[1] = tmp_2[2] * neg * sqrt_2;
tmp_3[2] = tmp_2[3] * neg * sqrt_2;
break;
}
case 1:
{
float neg = tmp_2[1] < 0.0f ? -1.0f : 1.0f;
tmp_3[0] = tmp_2[0] * neg * sqrt_2;
tmp_3[1] = tmp_2[2] * neg * sqrt_2;
tmp_3[2] = tmp_2[3] * neg * sqrt_2;
break;
}
case 2:
{
float neg = tmp_2[2] < 0.0f ? -1.0f : 1.0f;
tmp_3[0] = tmp_2[0] * neg * sqrt_2;
tmp_3[1] = tmp_2[1] * neg * sqrt_2;
tmp_3[2] = tmp_2[3] * neg * sqrt_2;
break;
}
case 3:
{
float neg = tmp_2[3] < 0.0f ? -1.0f : 1.0f;
tmp_3[0] = tmp_2[0] * neg * sqrt_2;
tmp_3[1] = tmp_2[1] * neg * sqrt_2;
tmp_3[2] = tmp_2[2] * neg * sqrt_2;
break;
}
default:
assert(false);
break;
}
return normalizedSignedFloatsTo1010102(tmp_3, extra_2_bit);
} // compressQuaternion
// ------------------------------------------------------------------------
inline uint32_t compressIrrQuaternion(const core::quaternion& q)
{
return compressQuaternion(btQuaternion(q.X, q.Y, q.Z, q.W));
}
// ------------------------------------------------------------------------
inline core::quaternion decompressQuaternion(uint32_t packed)
{
const std::array<float, 4> out = extractNormalizedSignedFloats(packed,
true/*calculate_w*/);
core::quaternion ret(out[0], out[1], out[2], out[3]);
return ret.normalize();
} // decompressQuaternion
// ------------------------------------------------------------------------
inline btQuaternion decompressbtQuaternion(uint32_t packed)
{
const std::array<float, 4> out = extractNormalizedSignedFloats(packed,
true/*calculate_w*/);
btQuaternion ret(out[0], out[1], out[2], out[3]);
return ret.normalize();
} // decompressbtQuaternion
// ------------------------------------------------------------------------
inline core::quaternion getQuaternion(const core::matrix4& m)
{
Vec3 row[3];
memcpy(&row[0][0], &m[0], 12);
memcpy(&row[1][0], &m[4], 12);
memcpy(&row[2][0], &m[8], 12);
Vec3 q;
float root = row[0].x() + row[1].y() + row[2].z();
const float trace = root;
if (trace > 0.0f)
{
root = sqrtf(trace + 1.0f);
q[3] = 0.5f * root;
root = 0.5f / root;
q[0] = root * (row[1].z() - row[2].y());
q[1] = root * (row[2].x() - row[0].z());
q[2] = root * (row[0].y() - row[1].x());
}
else
{
static int next[3] = {1, 2, 0};
int i = 0;
int j = 0;
int k = 0;
if (row[1].y() > row[0].x())
{
i = 1;
}
if (row[2].z() > row[i][i])
{
i = 2;
}
j = next[i];
k = next[j];
root = sqrtf(row[i][i] - row[j][j] - row[k][k] + 1.0f);
q[i] = 0.5f * root;
root = 0.5f / root;
q[j] = root * (row[i][j] + row[j][i]);
q[k] = root * (row[i][k] + row[k][i]);
q[3] = root * (row[j][k] - row[k][j]);
}
return core::quaternion(q[0], q[1], q[2], q[3]).normalize();
}
// ------------------------------------------------------------------------
inline uint32_t quickTangent(uint32_t packed_normal)
{
core::vector3df normal = decompressVector3(packed_normal);
core::vector3df tangent;
core::vector3df c1 =
normal.crossProduct(core::vector3df(0.0f, 0.0f, 1.0f));
core::vector3df c2 =
normal.crossProduct(core::vector3df(0.0f, 1.0f, 0.0f));
if (c1.getLengthSQ() > c2.getLengthSQ())
{
tangent = c1;
}
else
{
tangent = c2;
}
tangent.normalize();
// Assume bitangent sign is positive 1.0f
return compressVector3(tangent) | 1 << 30;
} // quickTangent
// ------------------------------------------------------------------------
/** Round and save compressed values (optionally) btTransform.
* It will round with 2 digits with min / max +/- 2^23 / 100 for origin in
* btTransform and call compressQuaternion above to compress the rotation
* part, if compressed_data is provided, 3 24 bits and 1 32 bits of
* compressed data will be written in an int[4] array.
*/
inline void compressbtTransform(btTransform& cur_t,
int* compressed_data = NULL)
{
int x = (int)(cur_t.getOrigin().x() * 100.0f);
int y = (int)(cur_t.getOrigin().y() * 100.0f);
int z = (int)(cur_t.getOrigin().z() * 100.0f);
x = core::clamp(x, -0x800000, 0x7fffff);
y = core::clamp(y, -0x800000, 0x7fffff);
z = core::clamp(z, -0x800000, 0x7fffff);
uint32_t compressed_q = compressQuaternion(cur_t.getRotation());
cur_t.setOrigin(btVector3(
(float)x / 100.0f,
(float)y / 100.0f,
(float)z / 100.0f));
cur_t.setRotation(decompressbtQuaternion(compressed_q));
if (compressed_data)
{
compressed_data[0] = x;
compressed_data[1] = y;
compressed_data[2] = z;
compressed_data[3] = (int)compressed_q;
}
} // compressbtTransform
// ------------------------------------------------------------------------
inline btTransform decompressbtTransform(int* compressed_data)
{
btTransform trans;
trans.setOrigin(btVector3(
(float)compressed_data[0] / 100.0f,
(float)compressed_data[1] / 100.0f,
(float)compressed_data[2] / 100.0f));
trans.setRotation(decompressbtQuaternion(
(uint32_t)compressed_data[3]));
return trans;
} // decompressbtTransform
// ------------------------------------------------------------------------
void unitTesting();
}
#endif