stk-code_catmod/lib/irrlicht/source/Irrlicht/CD3D9Driver.cpp
2021-04-23 10:58:19 +08:00

3654 lines
110 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#define _IRR_D3D_NO_SHADER_DEBUGGING 1
#define _IRR_DONT_DO_MEMORY_DEBUGGING_HERE
#include "CD3D9Driver.h"
#ifdef _IRR_COMPILE_WITH_DIRECT3D_9_
#include "os.h"
#include "S3DVertex.h"
#include "CD3D9Texture.h"
#include "CD3D9MaterialRenderer.h"
#include "CD3D9ShaderMaterialRenderer.h"
#include "CD3D9NormalMapRenderer.h"
#include "CD3D9ParallaxMapRenderer.h"
#include "CD3D9HLSLMaterialRenderer.h"
#include "SIrrCreationParameters.h"
namespace irr
{
namespace video
{
namespace
{
inline DWORD F2DW( FLOAT f ) { return *((DWORD*)&f); }
}
//! constructor
CD3D9Driver::CD3D9Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io)
: CNullDriver(io, params.WindowSize), CurrentRenderMode(ERM_NONE),
ResetRenderStates(true), Transformation3DChanged(false),
D3DLibrary(0), pID3D(0), pID3DDevice(0), PrevRenderTarget(0),
WindowId(0), SceneSourceRect(0),
LastVertexType((video::E_VERTEX_TYPE)-1), VendorID(0),
MaxTextureUnits(0), MaxUserClipPlanes(0), MaxMRTs(1), NumSetMRTs(1),
MaxLightDistance(0.f), LastSetLight(-1),
ColorFormat(ECF_A8R8G8B8), DeviceLost(false),
DriverWasReset(true), OcclusionQuerySupport(false),
AlphaToCoverageSupport(false), Params(params)
{
#ifdef _DEBUG
setDebugName("CD3D9Driver");
#endif
printVersion();
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
{
CurrentTexture[i] = 0;
LastTextureMipMapsAvailable[i] = false;
}
MaxLightDistance = sqrtf(FLT_MAX);
// create sphere map matrix
SphereMapMatrixD3D9._11 = 0.5f; SphereMapMatrixD3D9._12 = 0.0f;
SphereMapMatrixD3D9._13 = 0.0f; SphereMapMatrixD3D9._14 = 0.0f;
SphereMapMatrixD3D9._21 = 0.0f; SphereMapMatrixD3D9._22 =-0.5f;
SphereMapMatrixD3D9._23 = 0.0f; SphereMapMatrixD3D9._24 = 0.0f;
SphereMapMatrixD3D9._31 = 0.0f; SphereMapMatrixD3D9._32 = 0.0f;
SphereMapMatrixD3D9._33 = 1.0f; SphereMapMatrixD3D9._34 = 0.0f;
SphereMapMatrixD3D9._41 = 0.5f; SphereMapMatrixD3D9._42 = 0.5f;
SphereMapMatrixD3D9._43 = 0.0f; SphereMapMatrixD3D9._44 = 1.0f;
core::matrix4 mat;
UnitMatrixD3D9 = *(D3DMATRIX*)((void*)mat.pointer());
#ifdef _IRR_COMPILE_WITH_CG_
CgContext = 0;
#endif
// init direct 3d is done in the factory function
}
//! destructor
CD3D9Driver::~CD3D9Driver()
{
deleteMaterialRenders();
deleteAllTextures();
removeAllOcclusionQueries();
removeAllHardwareBuffers();
for (u32 i=0; i<DepthBuffers.size(); ++i)
{
DepthBuffers[i]->drop();
}
DepthBuffers.clear();
// drop d3d9
if (pID3DDevice)
pID3DDevice->Release();
if (pID3D)
pID3D->Release();
#ifdef _IRR_COMPILE_WITH_CG_
cgD3D9SetDevice(0);
if(CgContext)
{
cgDestroyContext(CgContext);
}
#endif
}
void CD3D9Driver::createMaterialRenderers()
{
// create D3D9 material renderers
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_SOLID(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_SOLID_2_LAYER(pID3DDevice, this));
// add the same renderer for all lightmap types
CD3D9MaterialRenderer_LIGHTMAP* lmr = new CD3D9MaterialRenderer_LIGHTMAP(pID3DDevice, this);
addMaterialRenderer(lmr); // for EMT_LIGHTMAP:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_ADD:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M4:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M4:
lmr->drop();
// add remaining fixed function pipeline material renderers
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_DETAIL_MAP(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_SPHERE_MAP(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_REFLECTION_2_LAYER(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_ADD_COLOR(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_VERTEX_ALPHA(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_REFLECTION_2_LAYER(pID3DDevice, this));
// add normal map renderers
s32 tmp = 0;
video::IMaterialRenderer* renderer = 0;
renderer = new CD3D9NormalMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_SOLID].Renderer);
renderer->drop();
renderer = new CD3D9NormalMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer);
renderer->drop();
renderer = new CD3D9NormalMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer);
renderer->drop();
// add parallax map renderers
renderer = new CD3D9ParallaxMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_SOLID].Renderer);
renderer->drop();
renderer = new CD3D9ParallaxMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer);
renderer->drop();
renderer = new CD3D9ParallaxMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer);
renderer->drop();
// add basic 1 texture blending
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_ONETEXTURE_BLEND(pID3DDevice, this));
}
//! initialises the Direct3D API
bool CD3D9Driver::initDriver(HWND hwnd, bool pureSoftware)
{
if (!pID3D)
{
D3DLibrary = LoadLibraryA("d3d9.dll");
if (!D3DLibrary)
{
os::Printer::log("Error, could not load d3d9.dll.", ELL_ERROR);
return false;
}
typedef IDirect3D9 * (__stdcall *D3DCREATETYPE)(UINT);
D3DCREATETYPE d3dCreate = (D3DCREATETYPE) GetProcAddress(D3DLibrary, "Direct3DCreate9");
if (!d3dCreate)
{
os::Printer::log("Error, could not get proc adress of Direct3DCreate9.", ELL_ERROR);
return false;
}
//just like pID3D = Direct3DCreate9(D3D_SDK_VERSION);
pID3D = (*d3dCreate)(D3D_SDK_VERSION);
if (!pID3D)
{
os::Printer::log("Error initializing D3D.", ELL_ERROR);
return false;
}
}
// print device information
D3DADAPTER_IDENTIFIER9 dai;
if (!FAILED(pID3D->GetAdapterIdentifier(Params.DisplayAdapter, 0, &dai)))
{
char tmp[512];
s32 Product = HIWORD(dai.DriverVersion.HighPart);
s32 Version = LOWORD(dai.DriverVersion.HighPart);
s32 SubVersion = HIWORD(dai.DriverVersion.LowPart);
s32 Build = LOWORD(dai.DriverVersion.LowPart);
sprintf(tmp, "%s %s %d.%d.%d.%d", dai.Description, dai.Driver, Product, Version,
SubVersion, Build);
os::Printer::log(tmp, ELL_INFORMATION);
// Assign vendor name based on vendor id.
VendorID= static_cast<u16>(dai.VendorId);
switch(dai.VendorId)
{
case 0x1002 : VendorName = "ATI Technologies Inc."; break;
case 0x10DE : VendorName = "NVIDIA Corporation"; break;
case 0x102B : VendorName = "Matrox Electronic Systems Ltd."; break;
case 0x121A : VendorName = "3dfx Interactive Inc"; break;
case 0x5333 : VendorName = "S3 Graphics Co., Ltd."; break;
case 0x8086 : VendorName = "Intel Corporation"; break;
default: VendorName = "Unknown VendorId: ";VendorName += (u32)dai.VendorId; break;
}
}
D3DDISPLAYMODE d3ddm;
if (FAILED(pID3D->GetAdapterDisplayMode(Params.DisplayAdapter, &d3ddm)))
{
os::Printer::log("Error: Could not get Adapter Display mode.", ELL_ERROR);
return false;
}
ZeroMemory(&present, sizeof(present));
present.BackBufferCount = 1;
present.EnableAutoDepthStencil = TRUE;
if (Params.SwapInterval == 1)
present.PresentationInterval = D3DPRESENT_INTERVAL_ONE;
else
present.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;
if (Params.Fullscreen)
{
present.BackBufferWidth = Params.WindowSize.Width;
present.BackBufferHeight = Params.WindowSize.Height;
// request 32bit mode if user specified 32 bit, added by Thomas Stuefe
if (Params.Bits == 32)
present.BackBufferFormat = D3DFMT_X8R8G8B8;
else
present.BackBufferFormat = D3DFMT_R5G6B5;
present.SwapEffect = D3DSWAPEFFECT_FLIP;
present.Windowed = FALSE;
present.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;
}
else
{
present.BackBufferFormat = d3ddm.Format;
present.SwapEffect = D3DSWAPEFFECT_DISCARD;
present.Windowed = TRUE;
}
UINT adapter = Params.DisplayAdapter;
D3DDEVTYPE devtype = D3DDEVTYPE_HAL;
#ifndef _IRR_D3D_NO_SHADER_DEBUGGING
devtype = D3DDEVTYPE_REF;
#elif defined(_IRR_USE_NVIDIA_PERFHUD_)
for (UINT adapter_i = 0; adapter_i < pID3D->GetAdapterCount(); ++adapter_i)
{
D3DADAPTER_IDENTIFIER9 identifier;
pID3D->GetAdapterIdentifier(adapter_i,0,&identifier);
if (strstr(identifier.Description,"PerfHUD") != 0)
{
adapter = adapter_i;
devtype = D3DDEVTYPE_REF;
break;
}
}
#endif
// enable anti alias if possible and desired
if (Params.AntiAlias > 0)
{
if (Params.AntiAlias > 32)
Params.AntiAlias = 32;
DWORD qualityLevels = 0;
while(Params.AntiAlias > 0)
{
if(SUCCEEDED(pID3D->CheckDeviceMultiSampleType(adapter,
devtype, present.BackBufferFormat, !Params.Fullscreen,
(D3DMULTISAMPLE_TYPE)Params.AntiAlias, &qualityLevels)))
{
present.MultiSampleType = (D3DMULTISAMPLE_TYPE)Params.AntiAlias;
present.MultiSampleQuality = qualityLevels-1;
present.SwapEffect = D3DSWAPEFFECT_DISCARD;
break;
}
--Params.AntiAlias;
}
if (Params.AntiAlias==0)
{
os::Printer::log("Anti aliasing disabled because hardware/driver lacks necessary caps.", ELL_WARNING);
}
}
// check stencil buffer compatibility
if (Params.Stencilbuffer)
{
present.AutoDepthStencilFormat = D3DFMT_D24S8;
if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
present.AutoDepthStencilFormat = D3DFMT_D24X4S4;
if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
present.AutoDepthStencilFormat = D3DFMT_D15S1;
if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
os::Printer::log("Device does not support stencilbuffer, disabling stencil buffer.", ELL_WARNING);
Params.Stencilbuffer = false;
}
}
}
else
if(FAILED(pID3D->CheckDepthStencilMatch(adapter, devtype,
present.BackBufferFormat, present.BackBufferFormat, present.AutoDepthStencilFormat)))
{
os::Printer::log("Depth-stencil format is not compatible with display format, disabling stencil buffer.", ELL_WARNING);
Params.Stencilbuffer = false;
}
}
// do not use else here to cope with flag change in previous block
if (!Params.Stencilbuffer)
{
present.AutoDepthStencilFormat = D3DFMT_D32;
if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
present.AutoDepthStencilFormat = D3DFMT_D24X8;
if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
present.AutoDepthStencilFormat = D3DFMT_D16;
if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
os::Printer::log("Device does not support required depth buffer.", ELL_WARNING);
return false;
}
}
}
}
// create device
DWORD fpuPrecision = Params.HighPrecisionFPU ? D3DCREATE_FPU_PRESERVE : 0;
DWORD multithreaded = Params.DriverMultithreaded ? D3DCREATE_MULTITHREADED : 0;
if (pureSoftware)
{
if (FAILED(pID3D->CreateDevice(Params.DisplayAdapter, D3DDEVTYPE_REF, hwnd,
fpuPrecision | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &present, &pID3DDevice)))
os::Printer::log("Was not able to create Direct3D9 software device.", ELL_ERROR);
}
else
{
HRESULT hr = pID3D->CreateDevice(adapter, devtype, hwnd,
fpuPrecision | multithreaded | D3DCREATE_HARDWARE_VERTEXPROCESSING, &present, &pID3DDevice);
if(FAILED(hr))
hr = pID3D->CreateDevice(adapter, devtype, hwnd,
fpuPrecision | multithreaded | D3DCREATE_MIXED_VERTEXPROCESSING , &present, &pID3DDevice);
if(FAILED(hr))
hr = pID3D->CreateDevice(adapter, devtype, hwnd,
fpuPrecision | multithreaded | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &present, &pID3DDevice);
if (FAILED(hr))
os::Printer::log("Was not able to create Direct3D9 device.", ELL_ERROR);
}
if (!pID3DDevice)
{
os::Printer::log("Was not able to create DIRECT3D9 device.", ELL_ERROR);
return false;
}
// get caps
pID3DDevice->GetDeviceCaps(&Caps);
os::Printer::log("Currently available Video Memory (kB)", core::stringc(pID3DDevice->GetAvailableTextureMem()/1024).c_str());
// disable stencilbuffer if necessary
if (Params.Stencilbuffer &&
(!(Caps.StencilCaps & D3DSTENCILCAPS_DECRSAT) ||
!(Caps.StencilCaps & D3DSTENCILCAPS_INCRSAT) ||
!(Caps.StencilCaps & D3DSTENCILCAPS_KEEP)))
{
os::Printer::log("Device not able to use stencil buffer, disabling stencil buffer.", ELL_WARNING);
Params.Stencilbuffer = false;
}
// set default vertex shader
setVertexShader(EVT_STANDARD);
// set fog mode
setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
// set exposed data
ExposedData.D3D9.D3D9 = pID3D;
ExposedData.D3D9.D3DDev9 = pID3DDevice;
ExposedData.D3D9.HWnd = hwnd;
ResetRenderStates = true;
// create materials
createMaterialRenderers();
MaxTextureUnits = core::min_((u32)Caps.MaxSimultaneousTextures, MATERIAL_MAX_TEXTURES);
MaxUserClipPlanes = (u32)Caps.MaxUserClipPlanes;
MaxMRTs = (s32)Caps.NumSimultaneousRTs;
OcclusionQuerySupport=(pID3DDevice->CreateQuery(D3DQUERYTYPE_OCCLUSION, NULL) == S_OK);
if (VendorID==0x10DE)//NVidia
AlphaToCoverageSupport = (pID3D->CheckDeviceFormat(adapter, D3DDEVTYPE_HAL,
D3DFMT_X8R8G8B8, 0,D3DRTYPE_SURFACE,
(D3DFORMAT)MAKEFOURCC('A', 'T', 'O', 'C')) == S_OK);
else if (VendorID==0x1002)//ATI
AlphaToCoverageSupport = true; // TODO: Check unknown
#if 0
AlphaToCoverageSupport = (pID3D->CheckDeviceFormat(adapter, D3DDEVTYPE_HAL,
D3DFMT_X8R8G8B8, 0,D3DRTYPE_SURFACE,
(D3DFORMAT)MAKEFOURCC('A','2','M','1')) == S_OK);
#endif
DriverAttributes->setAttribute("MaxTextures", (s32)MaxTextureUnits);
DriverAttributes->setAttribute("MaxSupportedTextures", (s32)Caps.MaxSimultaneousTextures);
DriverAttributes->setAttribute("MaxLights", (s32)Caps.MaxActiveLights);
DriverAttributes->setAttribute("MaxAnisotropy", (s32)Caps.MaxAnisotropy);
DriverAttributes->setAttribute("MaxUserClipPlanes", (s32)Caps.MaxUserClipPlanes);
DriverAttributes->setAttribute("MaxMultipleRenderTargets", (s32)Caps.NumSimultaneousRTs);
DriverAttributes->setAttribute("MaxIndices", (s32)Caps.MaxVertexIndex);
DriverAttributes->setAttribute("MaxTextureSize", (s32)core::min_(Caps.MaxTextureHeight,Caps.MaxTextureWidth));
DriverAttributes->setAttribute("MaxTextureLODBias", 16);
DriverAttributes->setAttribute("Version", 901);
DriverAttributes->setAttribute("ShaderLanguageVersion", (s32)(((0x00ff00 & Caps.VertexShaderVersion)>>8)*100 + (Caps.VertexShaderVersion&0xff)));
DriverAttributes->setAttribute("AntiAlias", Params.AntiAlias);
// set the renderstates
setRenderStates3DMode();
// store the screen's depth buffer
DepthBuffers.push_back(new SDepthSurface());
if (SUCCEEDED(pID3DDevice->GetDepthStencilSurface(&(DepthBuffers[0]->Surface))))
{
D3DSURFACE_DESC desc;
DepthBuffers[0]->Surface->GetDesc(&desc);
DepthBuffers[0]->Size.set(desc.Width, desc.Height);
}
else
{
os::Printer::log("Was not able to get main depth buffer.", ELL_ERROR);
return false;
}
D3DColorFormat = D3DFMT_A8R8G8B8;
IDirect3DSurface9* bb=0;
if (SUCCEEDED(pID3DDevice->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &bb)))
{
D3DSURFACE_DESC desc;
bb->GetDesc(&desc);
D3DColorFormat = desc.Format;
if (D3DColorFormat == D3DFMT_X8R8G8B8)
D3DColorFormat = D3DFMT_A8R8G8B8;
bb->Release();
}
ColorFormat = getColorFormatFromD3DFormat(D3DColorFormat);
#ifdef _IRR_COMPILE_WITH_CG_
CgContext = cgCreateContext();
cgD3D9SetDevice(pID3DDevice);
#endif
// so far so good.
return true;
}
//! applications must call this method before performing any rendering. returns false if failed.
bool CD3D9Driver::beginScene(bool backBuffer, bool zBuffer, SColor color,
const SExposedVideoData& videoData, core::rect<s32>* sourceRect)
{
CNullDriver::beginScene(backBuffer, zBuffer, color, videoData, sourceRect);
WindowId = (HWND)videoData.D3D9.HWnd;
SceneSourceRect = sourceRect;
if (!pID3DDevice)
return false;
HRESULT hr;
if (DeviceLost)
{
if (FAILED(hr = pID3DDevice->TestCooperativeLevel()))
{
if (hr == D3DERR_DEVICELOST)
{
Sleep(100);
hr = pID3DDevice->TestCooperativeLevel();
if (hr == D3DERR_DEVICELOST)
return false;
}
if ((hr == D3DERR_DEVICENOTRESET) && !reset())
return false;
}
}
DWORD flags = 0;
if (backBuffer)
flags |= D3DCLEAR_TARGET;
if (zBuffer)
flags |= D3DCLEAR_ZBUFFER;
if (Params.Stencilbuffer)
flags |= D3DCLEAR_STENCIL;
if (flags)
{
hr = pID3DDevice->Clear( 0, NULL, flags, color.color, 1.0, 0);
if (FAILED(hr))
os::Printer::log("DIRECT3D9 clear failed.", ELL_WARNING);
}
hr = pID3DDevice->BeginScene();
if (FAILED(hr))
{
os::Printer::log("DIRECT3D9 begin scene failed.", ELL_WARNING);
return false;
}
return true;
}
//! applications must call this method after performing any rendering. returns false if failed.
bool CD3D9Driver::endScene()
{
CNullDriver::endScene();
DriverWasReset=false;
HRESULT hr = pID3DDevice->EndScene();
if (FAILED(hr))
{
os::Printer::log("DIRECT3D9 end scene failed.", ELL_WARNING);
return false;
}
RECT* srcRct = 0;
RECT sourceRectData;
if ( SceneSourceRect )
{
srcRct = &sourceRectData;
sourceRectData.left = SceneSourceRect->UpperLeftCorner.X;
sourceRectData.top = SceneSourceRect->UpperLeftCorner.Y;
sourceRectData.right = SceneSourceRect->LowerRightCorner.X;
sourceRectData.bottom = SceneSourceRect->LowerRightCorner.Y;
}
IDirect3DSwapChain9* swChain;
hr = pID3DDevice->GetSwapChain(0, &swChain);
DWORD flags = (Params.HandleSRGB && (Caps.Caps3&D3DCAPS3_LINEAR_TO_SRGB_PRESENTATION))?D3DPRESENT_LINEAR_CONTENT:0;
hr = swChain->Present(srcRct, NULL, WindowId, NULL, flags);
swChain->Release();
if (SUCCEEDED(hr))
return true;
if (hr == D3DERR_DEVICELOST)
{
DeviceLost = true;
os::Printer::log("Present failed", "DIRECT3D9 device lost.", ELL_WARNING);
}
#ifdef D3DERR_DEVICEREMOVED
else if (hr == D3DERR_DEVICEREMOVED)
{
os::Printer::log("Present failed", "Device removed.", ELL_WARNING);
}
#endif
else if (hr == D3DERR_INVALIDCALL)
{
os::Printer::log("Present failed", "Invalid Call", ELL_WARNING);
}
else
os::Printer::log("DIRECT3D9 present failed.", ELL_WARNING);
return false;
}
//! queries the features of the driver, returns true if feature is available
bool CD3D9Driver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const
{
if (!FeatureEnabled[feature])
return false;
switch (feature)
{
case EVDF_MULTITEXTURE:
case EVDF_BILINEAR_FILTER:
return true;
case EVDF_RENDER_TO_TARGET:
return Caps.NumSimultaneousRTs > 0;
case EVDF_HARDWARE_TL:
return (Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT) != 0;
case EVDF_MIP_MAP:
return (Caps.TextureCaps & D3DPTEXTURECAPS_MIPMAP) != 0;
case EVDF_MIP_MAP_AUTO_UPDATE:
// always return false because a lot of drivers claim they do
// this but actually don't do this at all.
return false; //(Caps.Caps2 & D3DCAPS2_CANAUTOGENMIPMAP) != 0;
case EVDF_STENCIL_BUFFER:
return Params.Stencilbuffer && Caps.StencilCaps;
case EVDF_VERTEX_SHADER_1_1:
return Caps.VertexShaderVersion >= D3DVS_VERSION(1,1);
case EVDF_VERTEX_SHADER_2_0:
return Caps.VertexShaderVersion >= D3DVS_VERSION(2,0);
case EVDF_VERTEX_SHADER_3_0:
return Caps.VertexShaderVersion >= D3DVS_VERSION(3,0);
case EVDF_PIXEL_SHADER_1_1:
return Caps.PixelShaderVersion >= D3DPS_VERSION(1,1);
case EVDF_PIXEL_SHADER_1_2:
return Caps.PixelShaderVersion >= D3DPS_VERSION(1,2);
case EVDF_PIXEL_SHADER_1_3:
return Caps.PixelShaderVersion >= D3DPS_VERSION(1,3);
case EVDF_PIXEL_SHADER_1_4:
return Caps.PixelShaderVersion >= D3DPS_VERSION(1,4);
case EVDF_PIXEL_SHADER_2_0:
return Caps.PixelShaderVersion >= D3DPS_VERSION(2,0);
case EVDF_PIXEL_SHADER_3_0:
return Caps.PixelShaderVersion >= D3DPS_VERSION(3,0);
case EVDF_HLSL:
return Caps.VertexShaderVersion >= D3DVS_VERSION(1,1);
case EVDF_TEXTURE_NSQUARE:
return (Caps.TextureCaps & D3DPTEXTURECAPS_SQUAREONLY) == 0;
case EVDF_TEXTURE_NPOT:
return (Caps.TextureCaps & D3DPTEXTURECAPS_POW2) == 0;
case EVDF_COLOR_MASK:
return (Caps.PrimitiveMiscCaps & D3DPMISCCAPS_COLORWRITEENABLE) != 0;
case EVDF_MULTIPLE_RENDER_TARGETS:
return Caps.NumSimultaneousRTs > 1;
case EVDF_MRT_COLOR_MASK:
return (Caps.PrimitiveMiscCaps & D3DPMISCCAPS_INDEPENDENTWRITEMASKS) != 0;
case EVDF_MRT_BLEND:
return (Caps.PrimitiveMiscCaps & D3DPMISCCAPS_MRTPOSTPIXELSHADERBLENDING) != 0;
case EVDF_OCCLUSION_QUERY:
return OcclusionQuerySupport;
case EVDF_POLYGON_OFFSET:
return (Caps.RasterCaps & (D3DPRASTERCAPS_DEPTHBIAS|D3DPRASTERCAPS_SLOPESCALEDEPTHBIAS)) != 0;
case EVDF_BLEND_OPERATIONS:
case EVDF_TEXTURE_MATRIX:
#ifdef _IRR_COMPILE_WITH_CG_
// available iff. define is present
case EVDF_CG:
#endif
return true;
default:
return false;
};
}
//! sets transformation
void CD3D9Driver::setTransform(E_TRANSFORMATION_STATE state,
const core::matrix4& mat)
{
Transformation3DChanged = true;
switch(state)
{
case ETS_VIEW:
pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)mat.pointer()));
break;
case ETS_WORLD:
pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)mat.pointer()));
break;
case ETS_PROJECTION:
pID3DDevice->SetTransform( D3DTS_PROJECTION, (D3DMATRIX*)((void*)mat.pointer()));
break;
case ETS_COUNT:
return;
default:
if (state-ETS_TEXTURE_0 < MATERIAL_MAX_TEXTURES)
{
if (mat.isIdentity())
pID3DDevice->SetTextureStageState( state - ETS_TEXTURE_0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_DISABLE );
else
{
pID3DDevice->SetTextureStageState( state - ETS_TEXTURE_0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2 );
pID3DDevice->SetTransform((D3DTRANSFORMSTATETYPE)(D3DTS_TEXTURE0+ ( state - ETS_TEXTURE_0 )),
(D3DMATRIX*)((void*)mat.pointer()));
}
}
break;
}
Matrices[state] = mat;
}
//! sets the current Texture
bool CD3D9Driver::setActiveTexture(u32 stage, const video::ITexture* texture)
{
if (CurrentTexture[stage] == texture)
return true;
if (texture && texture->getDriverType() != EDT_DIRECT3D9)
{
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
CurrentTexture[stage] = texture;
if (!texture)
{
pID3DDevice->SetTexture(stage, 0);
pID3DDevice->SetTextureStageState( stage, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_DISABLE );
}
else
{
IDirect3DBaseTexture9* tex = (IDirect3DBaseTexture9*)texture->getTextureHandler();
pID3DDevice->SetTexture(stage, tex);
}
return true;
}
//! sets a material
void CD3D9Driver::setMaterial(const SMaterial& material)
{
Material = material;
OverrideMaterial.apply(Material);
for (u32 i=0; i<MaxTextureUnits; ++i)
{
setActiveTexture(i, Material.getTexture(i));
setTransform((E_TRANSFORMATION_STATE) ( ETS_TEXTURE_0 + i ),
material.getTextureMatrix(i));
}
}
//! returns a device dependent texture from a software surface (IImage)
video::ITexture* CD3D9Driver::createDeviceDependentTexture(IImage* surface,const io::path& name, void* mipmapData)
{
return new CD3D9Texture(surface, this, TextureCreationFlags, name, mipmapData);
}
//! Enables or disables a texture creation flag.
void CD3D9Driver::setTextureCreationFlag(E_TEXTURE_CREATION_FLAG flag,
bool enabled)
{
if (flag == video::ETCF_CREATE_MIP_MAPS && !queryFeature(EVDF_MIP_MAP))
enabled = false;
CNullDriver::setTextureCreationFlag(flag, enabled);
}
//! sets a render target
bool CD3D9Driver::setRenderTarget(video::ITexture* texture,
bool clearBackBuffer, bool clearZBuffer, SColor color)
{
// check for right driver type
if (texture && texture->getDriverType() != EDT_DIRECT3D9)
{
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
// check for valid render target
if (texture && !texture->isRenderTarget())
{
os::Printer::log("Fatal Error: Tried to set a non render target texture as render target.", ELL_ERROR);
return false;
}
CD3D9Texture* tex = static_cast<CD3D9Texture*>(texture);
// check if we should set the previous RT back
bool ret = true;
for(u32 i = 1; i < NumSetMRTs; i++)
{
// First texture handled elsewhere
pID3DDevice->SetRenderTarget(i, NULL);
}
if (tex == 0)
{
if (PrevRenderTarget)
{
if (FAILED(pID3DDevice->SetRenderTarget(0, PrevRenderTarget)))
{
os::Printer::log("Error: Could not set back to previous render target.", ELL_ERROR);
ret = false;
}
if (FAILED(pID3DDevice->SetDepthStencilSurface(DepthBuffers[0]->Surface)))
{
os::Printer::log("Error: Could not set main depth buffer.", ELL_ERROR);
}
CurrentRendertargetSize = core::dimension2d<u32>(0,0);
PrevRenderTarget->Release();
PrevRenderTarget = 0;
}
}
else
{
// we want to set a new target. so do this.
// store previous target
if (!PrevRenderTarget)
{
if (FAILED(pID3DDevice->GetRenderTarget(0, &PrevRenderTarget)))
{
os::Printer::log("Could not get previous render target.", ELL_ERROR);
return false;
}
}
// set new render target
if (FAILED(pID3DDevice->SetRenderTarget(0, tex->getRenderTargetSurface())))
{
os::Printer::log("Error: Could not set render target.", ELL_ERROR);
return false;
}
CurrentRendertargetSize = tex->getSize();
if (FAILED(pID3DDevice->SetDepthStencilSurface(tex->DepthSurface->Surface)))
{
os::Printer::log("Error: Could not set new depth buffer.", ELL_ERROR);
}
}
Transformation3DChanged=true;
if (clearBackBuffer || clearZBuffer)
{
DWORD flags = 0;
if (clearBackBuffer)
flags |= D3DCLEAR_TARGET;
if (clearZBuffer)
flags |= D3DCLEAR_ZBUFFER;
pID3DDevice->Clear(0, NULL, flags, color.color, 1.0f, 0);
}
return ret;
}
//! Sets multiple render targets
bool CD3D9Driver::setRenderTarget(const core::array<video::IRenderTarget>& targets,
bool clearBackBuffer, bool clearZBuffer, SColor color)
{
if (targets.size()==0)
return setRenderTarget(0, clearBackBuffer, clearZBuffer, color);
u32 maxMultipleRTTs = core::min_(MaxMRTs, targets.size());
for (u32 i = 0; i < maxMultipleRTTs; ++i)
{
if (targets[i].TargetType != ERT_RENDER_TEXTURE || !targets[i].RenderTexture)
{
maxMultipleRTTs = i;
os::Printer::log("Missing texture for MRT.", ELL_WARNING);
break;
}
// check for right driver type
if (targets[i].RenderTexture->getDriverType() != EDT_DIRECT3D9)
{
maxMultipleRTTs = i;
os::Printer::log("Tried to set a texture not owned by this driver.", ELL_WARNING);
break;
}
// check for valid render target
if (!targets[i].RenderTexture->isRenderTarget())
{
maxMultipleRTTs = i;
os::Printer::log("Tried to set a non render target texture as render target.", ELL_WARNING);
break;
}
// check for valid size
if (targets[0].RenderTexture->getSize() != targets[i].RenderTexture->getSize())
{
maxMultipleRTTs = i;
os::Printer::log("Render target texture has wrong size.", ELL_WARNING);
break;
}
}
if (maxMultipleRTTs==0)
{
os::Printer::log("Fatal Error: No valid MRT found.", ELL_ERROR);
return false;
}
CD3D9Texture* tex = static_cast<CD3D9Texture*>(targets[0].RenderTexture);
// check if we should set the previous RT back
bool ret = true;
// we want to set a new target. so do this.
// store previous target
if (!PrevRenderTarget)
{
if (FAILED(pID3DDevice->GetRenderTarget(0, &PrevRenderTarget)))
{
os::Printer::log("Could not get previous render target.", ELL_ERROR);
return false;
}
}
// set new render target
// In d3d9 we have at most 4 MRTs, so the following is enough
D3DRENDERSTATETYPE colorWrite[4]={D3DRS_COLORWRITEENABLE, D3DRS_COLORWRITEENABLE1, D3DRS_COLORWRITEENABLE2, D3DRS_COLORWRITEENABLE3};
for (u32 i = 0; i < maxMultipleRTTs; ++i)
{
if (FAILED(pID3DDevice->SetRenderTarget(i, static_cast<CD3D9Texture*>(targets[i].RenderTexture)->getRenderTargetSurface())))
{
os::Printer::log("Error: Could not set render target.", ELL_ERROR);
return false;
}
if (i<4 && (i==0 || queryFeature(EVDF_MRT_COLOR_MASK)))
{
const DWORD flag =
((targets[i].ColorMask & ECP_RED)?D3DCOLORWRITEENABLE_RED:0) |
((targets[i].ColorMask & ECP_GREEN)?D3DCOLORWRITEENABLE_GREEN:0) |
((targets[i].ColorMask & ECP_BLUE)?D3DCOLORWRITEENABLE_BLUE:0) |
((targets[i].ColorMask & ECP_ALPHA)?D3DCOLORWRITEENABLE_ALPHA:0);
pID3DDevice->SetRenderState(colorWrite[i], flag);
}
}
for(u32 i = maxMultipleRTTs; i < NumSetMRTs; i++)
{
pID3DDevice->SetRenderTarget(i, NULL);
}
NumSetMRTs=maxMultipleRTTs;
CurrentRendertargetSize = tex->getSize();
if (FAILED(pID3DDevice->SetDepthStencilSurface(tex->DepthSurface->Surface)))
{
os::Printer::log("Error: Could not set new depth buffer.", ELL_ERROR);
}
if (clearBackBuffer || clearZBuffer)
{
DWORD flags = 0;
if (clearBackBuffer)
flags |= D3DCLEAR_TARGET;
if (clearZBuffer)
flags |= D3DCLEAR_ZBUFFER;
pID3DDevice->Clear(0, NULL, flags, color.color, 1.0f, 0);
}
return ret;
}
//! sets a viewport
void CD3D9Driver::setViewPort(const core::rect<s32>& area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0,0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
vp.clipAgainst(rendert);
if (vp.getHeight()>0 && vp.getWidth()>0)
{
D3DVIEWPORT9 viewPort;
viewPort.X = vp.UpperLeftCorner.X;
viewPort.Y = vp.UpperLeftCorner.Y;
viewPort.Width = vp.getWidth();
viewPort.Height = vp.getHeight();
viewPort.MinZ = 0.0f;
viewPort.MaxZ = 1.0f;
HRESULT hr = pID3DDevice->SetViewport(&viewPort);
if (FAILED(hr))
os::Printer::log("Failed setting the viewport.", ELL_WARNING);
else
ViewPort = vp;
}
}
//! gets the area of the current viewport
const core::rect<s32>& CD3D9Driver::getViewPort() const
{
return ViewPort;
}
bool CD3D9Driver::updateVertexHardwareBuffer(SHWBufferLink_d3d9 *hwBuffer)
{
if (!hwBuffer)
return false;
const scene::IMeshBuffer* mb = hwBuffer->MeshBuffer;
const void* vertices=mb->getVertices();
const u32 vertexCount=mb->getVertexCount();
const E_VERTEX_TYPE vType=mb->getVertexType();
const u32 vertexSize = getVertexPitchFromType(vType);
const u32 bufSize = vertexSize * vertexCount;
if (!hwBuffer->vertexBuffer || (bufSize > hwBuffer->vertexBufferSize))
{
if (hwBuffer->vertexBuffer)
{
hwBuffer->vertexBuffer->Release();
hwBuffer->vertexBuffer=0;
}
DWORD FVF;
// Get the vertex sizes and cvf
switch (vType)
{
case EVT_STANDARD:
FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX1;
break;
case EVT_2TCOORDS:
FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX2;
break;
case EVT_TANGENTS:
FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX3;
break;
default:
return false;
}
DWORD flags = D3DUSAGE_WRITEONLY; // SIO2: Default to D3DUSAGE_WRITEONLY
if (hwBuffer->Mapped_Vertex != scene::EHM_STATIC)
flags |= D3DUSAGE_DYNAMIC;
if (FAILED(pID3DDevice->CreateVertexBuffer(bufSize, flags, FVF, D3DPOOL_DEFAULT, &hwBuffer->vertexBuffer, NULL)))
return false;
hwBuffer->vertexBufferSize = bufSize;
flags = 0; // SIO2: Reset flags before Lock
if (hwBuffer->Mapped_Vertex != scene::EHM_STATIC)
flags = D3DLOCK_DISCARD;
void* lockedBuffer = 0;
hwBuffer->vertexBuffer->Lock(0, bufSize, (void**)&lockedBuffer, flags);
memcpy(lockedBuffer, vertices, bufSize);
hwBuffer->vertexBuffer->Unlock();
}
else
{
void* lockedBuffer = 0;
hwBuffer->vertexBuffer->Lock(0, bufSize, (void**)&lockedBuffer, D3DLOCK_DISCARD);
memcpy(lockedBuffer, vertices, bufSize);
hwBuffer->vertexBuffer->Unlock();
}
return true;
}
bool CD3D9Driver::updateIndexHardwareBuffer(SHWBufferLink_d3d9 *hwBuffer)
{
if (!hwBuffer)
return false;
const scene::IMeshBuffer* mb = hwBuffer->MeshBuffer;
const u16* indices=mb->getIndices();
const u32 indexCount=mb->getIndexCount();
u32 indexSize = 2;
D3DFORMAT indexType=D3DFMT_UNKNOWN;
switch (mb->getIndexType())
{
case EIT_16BIT:
{
indexType=D3DFMT_INDEX16;
indexSize = 2;
break;
}
case EIT_32BIT:
{
indexType=D3DFMT_INDEX32;
indexSize = 4;
break;
}
}
const u32 bufSize = indexSize * indexCount;
if (!hwBuffer->indexBuffer || (bufSize > hwBuffer->indexBufferSize))
{
if (hwBuffer->indexBuffer)
{
hwBuffer->indexBuffer->Release();
hwBuffer->indexBuffer=0;
}
DWORD flags = D3DUSAGE_WRITEONLY; // SIO2: Default to D3DUSAGE_WRITEONLY
if (hwBuffer->Mapped_Index != scene::EHM_STATIC)
flags |= D3DUSAGE_DYNAMIC; // SIO2: Add DYNAMIC flag for dynamic buffer data
if (FAILED(pID3DDevice->CreateIndexBuffer(bufSize, flags, indexType, D3DPOOL_DEFAULT, &hwBuffer->indexBuffer, NULL)))
return false;
flags = 0; // SIO2: Reset flags before Lock
if (hwBuffer->Mapped_Index != scene::EHM_STATIC)
flags = D3DLOCK_DISCARD;
void* lockedBuffer = 0;
if (FAILED(hwBuffer->indexBuffer->Lock( 0, 0, (void**)&lockedBuffer, flags)))
return false;
memcpy(lockedBuffer, indices, bufSize);
hwBuffer->indexBuffer->Unlock();
hwBuffer->indexBufferSize = bufSize;
}
else
{
void* lockedBuffer = 0;
if( SUCCEEDED(hwBuffer->indexBuffer->Lock( 0, 0, (void**)&lockedBuffer, D3DLOCK_DISCARD)))
{
memcpy(lockedBuffer, indices, bufSize);
hwBuffer->indexBuffer->Unlock();
}
}
return true;
}
//! updates hardware buffer if needed
bool CD3D9Driver::updateHardwareBuffer(SHWBufferLink *hwBuffer)
{
if (!hwBuffer)
return false;
if (hwBuffer->Mapped_Vertex!=scene::EHM_NEVER)
{
if (hwBuffer->ChangedID_Vertex != hwBuffer->MeshBuffer->getChangedID_Vertex()
|| !((SHWBufferLink_d3d9*)hwBuffer)->vertexBuffer)
{
hwBuffer->ChangedID_Vertex = hwBuffer->MeshBuffer->getChangedID_Vertex();
if (!updateVertexHardwareBuffer((SHWBufferLink_d3d9*)hwBuffer))
return false;
}
}
if (hwBuffer->Mapped_Index!=scene::EHM_NEVER)
{
if (hwBuffer->ChangedID_Index != hwBuffer->MeshBuffer->getChangedID_Index()
|| !((SHWBufferLink_d3d9*)hwBuffer)->indexBuffer)
{
hwBuffer->ChangedID_Index = hwBuffer->MeshBuffer->getChangedID_Index();
if (!updateIndexHardwareBuffer((SHWBufferLink_d3d9*)hwBuffer))
return false;
}
}
return true;
}
//! Create hardware buffer from meshbuffer
CD3D9Driver::SHWBufferLink *CD3D9Driver::createHardwareBuffer(const scene::IMeshBuffer* mb)
{
// Looks like d3d does not support only partial buffering, so refuse
// in any case of NEVER
if (!mb || (mb->getHardwareMappingHint_Index()==scene::EHM_NEVER || mb->getHardwareMappingHint_Vertex()==scene::EHM_NEVER))
return 0;
SHWBufferLink_d3d9 *hwBuffer=new SHWBufferLink_d3d9(mb);
//add to map
HWBufferMap.insert(hwBuffer->MeshBuffer, hwBuffer);
hwBuffer->ChangedID_Vertex=hwBuffer->MeshBuffer->getChangedID_Vertex();
hwBuffer->ChangedID_Index=hwBuffer->MeshBuffer->getChangedID_Index();
hwBuffer->Mapped_Vertex=mb->getHardwareMappingHint_Vertex();
hwBuffer->Mapped_Index=mb->getHardwareMappingHint_Index();
hwBuffer->LastUsed=0;
hwBuffer->vertexBuffer=0;
hwBuffer->indexBuffer=0;
hwBuffer->vertexBufferSize=0;
hwBuffer->indexBufferSize=0;
if (!updateHardwareBuffer(hwBuffer))
{
deleteHardwareBuffer(hwBuffer);
return 0;
}
return hwBuffer;
}
void CD3D9Driver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_d3d9 *HWBuffer=(SHWBufferLink_d3d9*)_HWBuffer;
if (HWBuffer->indexBuffer)
{
HWBuffer->indexBuffer->Release();
HWBuffer->indexBuffer = 0;
}
if (HWBuffer->vertexBuffer)
{
HWBuffer->vertexBuffer->Release();
HWBuffer->vertexBuffer = 0;
}
CNullDriver::deleteHardwareBuffer(_HWBuffer);
}
//! Draw hardware buffer
void CD3D9Driver::drawHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_d3d9 *HWBuffer=(SHWBufferLink_d3d9*)_HWBuffer;
updateHardwareBuffer(HWBuffer); //check if update is needed
HWBuffer->LastUsed=0;//reset count
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const E_VERTEX_TYPE vType = mb->getVertexType();
const u32 stride = getVertexPitchFromType(vType);
const void* vPtr = mb->getVertices();
const void* iPtr = mb->getIndices();
if (HWBuffer->vertexBuffer)
{
pID3DDevice->SetStreamSource(0, HWBuffer->vertexBuffer, 0, stride);
vPtr=0;
}
if (HWBuffer->indexBuffer)
{
pID3DDevice->SetIndices(HWBuffer->indexBuffer);
iPtr=0;
}
drawVertexPrimitiveList(vPtr, mb->getVertexCount(), iPtr, mb->getIndexCount()/3, mb->getVertexType(), scene::EPT_TRIANGLES, mb->getIndexType());
if (HWBuffer->vertexBuffer)
pID3DDevice->SetStreamSource(0, 0, 0, 0);
if (HWBuffer->indexBuffer)
pID3DDevice->SetIndices(0);
}
//! Create occlusion query.
/** Use node for identification and mesh for occlusion test. */
void CD3D9Driver::addOcclusionQuery(scene::ISceneNode* node,
const scene::IMesh* mesh)
{
if (!queryFeature(EVDF_OCCLUSION_QUERY))
return;
CNullDriver::addOcclusionQuery(node, mesh);
const s32 index = OcclusionQueries.linear_search(SOccQuery(node));
if ((index != -1) && (OcclusionQueries[index].PID == 0))
pID3DDevice->CreateQuery(D3DQUERYTYPE_OCCLUSION, reinterpret_cast<IDirect3DQuery9**>(&OcclusionQueries[index].PID));
}
//! Remove occlusion query.
void CD3D9Driver::removeOcclusionQuery(scene::ISceneNode* node)
{
const s32 index = OcclusionQueries.linear_search(SOccQuery(node));
if (index != -1)
{
if (OcclusionQueries[index].PID != 0)
reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->Release();
CNullDriver::removeOcclusionQuery(node);
}
}
//! Run occlusion query. Draws mesh stored in query.
/** If the mesh shall not be rendered visible, use
overrideMaterial to disable the color and depth buffer. */
void CD3D9Driver::runOcclusionQuery(scene::ISceneNode* node, bool visible)
{
if (!node)
return;
const s32 index = OcclusionQueries.linear_search(SOccQuery(node));
if (index != -1)
{
if (OcclusionQueries[index].PID)
reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->Issue(D3DISSUE_BEGIN);
CNullDriver::runOcclusionQuery(node,visible);
if (OcclusionQueries[index].PID)
reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->Issue(D3DISSUE_END);
}
}
//! Update occlusion query. Retrieves results from GPU.
/** If the query shall not block, set the flag to false.
Update might not occur in this case, though */
void CD3D9Driver::updateOcclusionQuery(scene::ISceneNode* node, bool block)
{
const s32 index = OcclusionQueries.linear_search(SOccQuery(node));
if (index != -1)
{
// not yet started
if (OcclusionQueries[index].Run==u32(~0))
return;
bool available = block?true:false;
int tmp=0;
if (!block)
available=(reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->GetData(&tmp, sizeof(DWORD), 0)==S_OK);
else
{
do
{
HRESULT hr = reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->GetData(&tmp, sizeof(DWORD), D3DGETDATA_FLUSH);
available = (hr == S_OK);
if (hr!=S_FALSE)
break;
} while (!available);
}
if (available)
OcclusionQueries[index].Result = tmp;
}
}
//! Return query result.
/** Return value is the number of visible pixels/fragments.
The value is a safe approximation, i.e. can be larger than the
actual value of pixels. */
u32 CD3D9Driver::getOcclusionQueryResult(scene::ISceneNode* node) const
{
const s32 index = OcclusionQueries.linear_search(SOccQuery(node));
if (index != -1)
return OcclusionQueries[index].Result;
else
return ~0;
}
//! draws a vertex primitive list
void CD3D9Driver::drawVertexPrimitiveList(const void* vertices,
u32 vertexCount, const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType,iType);
if (!vertexCount || !primitiveCount)
return;
draw2D3DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount,
vType, pType, iType, true);
}
//! draws a vertex primitive list
void CD3D9Driver::draw2DVertexPrimitiveList(const void* vertices,
u32 vertexCount, const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType,iType);
if (!vertexCount || !primitiveCount)
return;
draw2D3DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount,
vType, pType, iType, false);
}
void CD3D9Driver::draw2D3DVertexPrimitiveList(const void* vertices,
u32 vertexCount, const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType, bool is3D)
{
setVertexShader(vType);
const u32 stride = getVertexPitchFromType(vType);
D3DFORMAT indexType=D3DFMT_UNKNOWN;
switch (iType)
{
case (EIT_16BIT):
{
indexType=D3DFMT_INDEX16;
break;
}
case (EIT_32BIT):
{
indexType=D3DFMT_INDEX32;
break;
}
}
if (is3D)
{
if (!setRenderStates3DMode())
return;
}
else
{
if (Material.MaterialType==EMT_ONETEXTURE_BLEND)
{
E_BLEND_FACTOR srcFact;
E_BLEND_FACTOR dstFact;
E_MODULATE_FUNC modulo;
u32 alphaSource;
unpack_textureBlendFunc ( srcFact, dstFact, modulo, alphaSource, Material.MaterialTypeParam);
setRenderStates2DMode(alphaSource&video::EAS_VERTEX_COLOR, (Material.getTexture(0) != 0), (alphaSource&video::EAS_TEXTURE) != 0);
}
else
setRenderStates2DMode(Material.MaterialType==EMT_TRANSPARENT_VERTEX_ALPHA, (Material.getTexture(0) != 0), Material.MaterialType==EMT_TRANSPARENT_ALPHA_CHANNEL);
}
switch (pType)
{
case scene::EPT_POINT_SPRITES:
case scene::EPT_POINTS:
{
f32 tmp=Material.Thickness/getScreenSize().Height;
if (pType==scene::EPT_POINT_SPRITES)
pID3DDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_POINTSCALEENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_POINTSIZE, F2DW(tmp));
tmp=1.0f;
pID3DDevice->SetRenderState(D3DRS_POINTSCALE_A, F2DW(tmp));
pID3DDevice->SetRenderState(D3DRS_POINTSCALE_B, F2DW(tmp));
pID3DDevice->SetRenderState(D3DRS_POINTSIZE_MIN, F2DW(tmp));
tmp=0.0f;
pID3DDevice->SetRenderState(D3DRS_POINTSCALE_C, F2DW(tmp));
if (!vertices)
{
pID3DDevice->DrawIndexedPrimitive(D3DPT_POINTLIST, 0, 0, vertexCount, 0, primitiveCount);
}
else
{
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_POINTLIST, 0, vertexCount,
primitiveCount, indexList, indexType, vertices, stride);
}
pID3DDevice->SetRenderState(D3DRS_POINTSCALEENABLE, FALSE);
if (pType==scene::EPT_POINT_SPRITES)
pID3DDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, FALSE);
}
break;
case scene::EPT_LINE_STRIP:
if(!vertices)
pID3DDevice->DrawIndexedPrimitive(D3DPT_LINESTRIP, 0, 0, vertexCount, 0, primitiveCount);
else
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINESTRIP, 0, vertexCount,
primitiveCount, indexList, indexType, vertices, stride);
break;
case scene::EPT_LINE_LOOP:
if(!vertices)
{
// TODO: Implement proper hardware support for this primitive type.
// (No looping occurs currently because this would require a way to
// draw the hardware buffer with a custom set of indices. We may even
// need to create a new mini index buffer specifically for this
// primitive type.)
pID3DDevice->DrawIndexedPrimitive(D3DPT_LINELIST, 0, 0, vertexCount, 0, primitiveCount);
}
else
{
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINESTRIP, 0, vertexCount,
primitiveCount - 1, indexList, indexType, vertices, stride);
u16 tmpIndices[] = {static_cast<u16>(primitiveCount - 1), 0};
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINELIST, 0, vertexCount,
1, tmpIndices, indexType, vertices, stride);
}
break;
case scene::EPT_LINES:
if(!vertices)
pID3DDevice->DrawIndexedPrimitive(D3DPT_LINELIST, 0, 0, vertexCount, 0, primitiveCount);
else
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINELIST, 0, vertexCount,
primitiveCount, indexList, indexType, vertices, stride);
break;
case scene::EPT_TRIANGLE_STRIP:
if(!vertices)
pID3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLESTRIP, 0, 0, vertexCount, 0, primitiveCount);
else
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLESTRIP, 0, vertexCount, primitiveCount,
indexList, indexType, vertices, stride);
break;
case scene::EPT_TRIANGLE_FAN:
if(!vertices)
pID3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLEFAN, 0, 0, vertexCount, 0, primitiveCount);
else
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLEFAN, 0, vertexCount, primitiveCount,
indexList, indexType, vertices, stride);
break;
case scene::EPT_TRIANGLES:
if(!vertices)
{
pID3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, vertexCount, 0, primitiveCount);
}
else
{
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, vertexCount,
primitiveCount, indexList, indexType, vertices, stride);
}
break;
}
}
void CD3D9Driver::draw2DImage(const video::ITexture* texture,
const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect,
const video::SColor* const colors,
bool useAlphaChannelOfTexture)
{
if(!texture)
return;
const core::dimension2d<u32>& ss = texture->getOriginalSize();
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (f32)sourceRect.UpperLeftCorner.X / (f32)ss.Width;
tcoords.UpperLeftCorner.Y = (f32)sourceRect.UpperLeftCorner.Y / (f32)ss.Height;
tcoords.LowerRightCorner.X = (f32)sourceRect.LowerRightCorner.X / (f32)ss.Width;
tcoords.LowerRightCorner.Y = (f32)sourceRect.LowerRightCorner.Y / (f32)ss.Height;
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
const video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
const video::SColor* const useColor = colors ? colors : temp;
S3DVertex vtx[4]; // clock wise
vtx[0] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, useColor[0],
tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vtx[1] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, useColor[3],
tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vtx[2] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, useColor[2],
tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vtx[3] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, useColor[1],
tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
s16 indices[6] = {0,1,2,0,2,3};
setActiveTexture(0, const_cast<video::ITexture*>(texture));
setRenderStates2DMode(useColor[0].getAlpha()<255 || useColor[1].getAlpha()<255 ||
useColor[2].getAlpha()<255 || useColor[3].getAlpha()<255,
true, useAlphaChannelOfTexture);
setVertexShader(EVT_STANDARD);
if (clipRect)
{
pID3DDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE);
RECT scissor;
scissor.left = clipRect->UpperLeftCorner.X;
scissor.top = clipRect->UpperLeftCorner.Y;
scissor.right = clipRect->LowerRightCorner.X;
scissor.bottom = clipRect->LowerRightCorner.Y;
pID3DDevice->SetScissorRect(&scissor);
}
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0],
D3DFMT_INDEX16,&vtx[0], sizeof(S3DVertex));
if (clipRect)
pID3DDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE);
}
void CD3D9Driver::draw2DImageBatch(const video::ITexture* texture,
const core::array<core::position2d<s32> >& positions,
const core::array<core::rect<s32> >& sourceRects,
const core::rect<s32>* clipRect,
SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!setActiveTexture(0, const_cast<video::ITexture*>(texture)))
return;
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
const irr::u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size());
core::array<S3DVertex> vtx(drawCount * 4);
core::array<u16> indices(drawCount * 6);
for(u32 i = 0;i < drawCount;i++)
{
core::position2d<s32> targetPos = positions[i];
core::position2d<s32> sourcePos = sourceRects[i].UpperLeftCorner;
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRects[i].getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + (s32)sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + (s32)sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
continue;
}
}
// clip these coordinates
if (targetPos.X<0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y<0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
continue;
}
// ok, we've clipped everything.
// now draw it.
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getOriginalSize().Width ;
tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getOriginalSize().Height;
tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getOriginalSize().Width);
tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getOriginalSize().Height);
const core::rect<s32> poss(targetPos, sourceSize);
vtx.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y));
vtx.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y));
vtx.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y));
vtx.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y));
const u32 curPos = vtx.size()-4;
indices.push_back(0+curPos);
indices.push_back(1+curPos);
indices.push_back(2+curPos);
indices.push_back(0+curPos);
indices.push_back(2+curPos);
indices.push_back(3+curPos);
}
if (vtx.size())
{
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, vtx.size(), indices.size() / 3, indices.pointer(),
D3DFMT_INDEX16,vtx.pointer(), sizeof(S3DVertex));
}
}
//! draws a 2d image, using a color and the alpha channel of the texture if
//! desired. The image is drawn at pos and clipped against clipRect (if != 0).
void CD3D9Driver::draw2DImage(const video::ITexture* texture,
const core::position2d<s32>& pos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
if (!setActiveTexture(0, const_cast<video::ITexture*>(texture)))
return;
core::position2d<s32> targetPos = pos;
core::position2d<s32> sourcePos = sourceRect.UpperLeftCorner;
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRect.getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + (s32)sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + (s32)sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
return;
}
}
// clip these coordinates
if (targetPos.X<0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y<0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
return;
}
// ok, we've clipped everything.
// now draw it.
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getOriginalSize().Width ;
tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getOriginalSize().Height;
tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getOriginalSize().Width);
tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getOriginalSize().Height);
const core::rect<s32> poss(targetPos, sourceSize);
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
S3DVertex vtx[4];
vtx[0] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vtx[1] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vtx[2] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vtx[3] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
s16 indices[6] = {0,1,2,0,2,3};
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0],
D3DFMT_INDEX16,&vtx[0], sizeof(S3DVertex));
}
//!Draws a 2d rectangle with a gradient.
void CD3D9Driver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> pos(position);
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
S3DVertex vtx[4];
vtx[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, colorLeftUp, 0.0f, 0.0f);
vtx[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, colorRightUp, 0.0f, 1.0f);
vtx[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, colorRightDown, 1.0f, 0.0f);
vtx[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f,
0.0f, 0.0f, 0.0f, colorLeftDown, 1.0f, 1.0f);
s16 indices[6] = {0,1,2,0,2,3};
setRenderStates2DMode(
colorLeftUp.getAlpha() < 255 ||
colorRightUp.getAlpha() < 255 ||
colorLeftDown.getAlpha() < 255 ||
colorRightDown.getAlpha() < 255, false, false);
setActiveTexture(0,0);
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0],
D3DFMT_INDEX16, &vtx[0], sizeof(S3DVertex));
}
//! Draws a 2d line.
void CD3D9Driver::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color)
{
if (start==end)
drawPixel(start.X, start.Y, color);
else
{
// thanks to Vash TheStampede who sent in his implementation
S3DVertex vtx[2];
vtx[0] = S3DVertex((f32)start.X+0.375f, (f32)start.Y+0.375f, 0.0f,
0.0f, 0.0f, 0.0f, // normal
color, 0.0f, 0.0f); // texture
vtx[1] = S3DVertex((f32)end.X+0.375f, (f32)end.Y+0.375f, 0.0f,
0.0f, 0.0f, 0.0f,
color, 0.0f, 0.0f);
setRenderStates2DMode(color.getAlpha() < 255, false, false);
setActiveTexture(0,0);
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawPrimitiveUP(D3DPT_LINELIST, 1,
&vtx[0], sizeof(S3DVertex) );
}
}
//! Draws a pixel
void CD3D9Driver::drawPixel(u32 x, u32 y, const SColor & color)
{
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if(x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height)
return;
setRenderStates2DMode(color.getAlpha() < 255, false, false);
setActiveTexture(0,0);
setVertexShader(EVT_STANDARD);
S3DVertex vertex((f32)x+0.375f, (f32)y+0.375f, 0.f, 0.f, 0.f, 0.f, color, 0.f, 0.f);
pID3DDevice->DrawPrimitiveUP(D3DPT_POINTLIST, 1, &vertex, sizeof(vertex));
}
//! sets right vertex shader
void CD3D9Driver::setVertexShader(E_VERTEX_TYPE newType)
{
if (newType != LastVertexType)
{
LastVertexType = newType;
HRESULT hr = 0;
switch(newType)
{
case EVT_STANDARD:
hr = pID3DDevice->SetFVF(D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX1);
break;
case EVT_2TCOORDS:
hr = pID3DDevice->SetFVF(D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX2);
break;
case EVT_TANGENTS:
hr = pID3DDevice->SetFVF(D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX3 |
D3DFVF_TEXCOORDSIZE2(0) | // real texture coord
D3DFVF_TEXCOORDSIZE3(1) | // misuse texture coord 2 for tangent
D3DFVF_TEXCOORDSIZE3(2) // misuse texture coord 3 for binormal
);
break;
}
if (FAILED(hr))
{
os::Printer::log("Could not set vertex Shader.", ELL_ERROR);
return;
}
}
}
//! sets the needed renderstates
bool CD3D9Driver::setRenderStates3DMode()
{
if (!pID3DDevice)
return false;
if (CurrentRenderMode != ERM_3D)
{
// switch back the matrices
pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)&Matrices[ETS_VIEW]));
pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)&Matrices[ETS_WORLD]));
pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)&Matrices[ETS_PROJECTION]));
pID3DDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
pID3DDevice->SetRenderState(D3DRS_CLIPPING, TRUE);
ResetRenderStates = true;
}
if (ResetRenderStates || LastMaterial != Material)
{
// unset old material
if (CurrentRenderMode == ERM_3D &&
LastMaterial.MaterialType != Material.MaterialType &&
LastMaterial.MaterialType >= 0 && LastMaterial.MaterialType < (s32)MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
// set new material.
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial(
Material, LastMaterial, ResetRenderStates, this);
}
bool shaderOK = true;
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
shaderOK = MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, LastVertexType);
LastMaterial = Material;
ResetRenderStates = false;
CurrentRenderMode = ERM_3D;
return shaderOK;
}
//! Map Irrlicht texture wrap mode to native values
D3DTEXTUREADDRESS CD3D9Driver::getTextureWrapMode(const u8 clamp)
{
switch (clamp)
{
case ETC_REPEAT:
if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_WRAP)
return D3DTADDRESS_WRAP;
case ETC_CLAMP:
case ETC_CLAMP_TO_EDGE:
if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_CLAMP)
return D3DTADDRESS_CLAMP;
case ETC_MIRROR:
if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_MIRROR)
return D3DTADDRESS_MIRROR;
case ETC_CLAMP_TO_BORDER:
if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_BORDER)
return D3DTADDRESS_BORDER;
else
return D3DTADDRESS_CLAMP;
case ETC_MIRROR_CLAMP:
case ETC_MIRROR_CLAMP_TO_EDGE:
case ETC_MIRROR_CLAMP_TO_BORDER:
if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_MIRRORONCE)
return D3DTADDRESS_MIRRORONCE;
else
return D3DTADDRESS_CLAMP;
default:
return D3DTADDRESS_WRAP;
}
}
//! Can be called by an IMaterialRenderer to make its work easier.
void CD3D9Driver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial,
bool resetAllRenderstates)
{
// This needs only to be updated onresets
if (Params.HandleSRGB && resetAllRenderstates)
pID3DDevice->SetRenderState(D3DRS_SRGBWRITEENABLE, TRUE);
if (resetAllRenderstates ||
lastmaterial.AmbientColor != material.AmbientColor ||
lastmaterial.DiffuseColor != material.DiffuseColor ||
lastmaterial.SpecularColor != material.SpecularColor ||
lastmaterial.EmissiveColor != material.EmissiveColor ||
lastmaterial.Shininess != material.Shininess)
{
D3DMATERIAL9 mat;
mat.Diffuse = colorToD3D(material.DiffuseColor);
mat.Ambient = colorToD3D(material.AmbientColor);
mat.Specular = colorToD3D(material.SpecularColor);
mat.Emissive = colorToD3D(material.EmissiveColor);
mat.Power = material.Shininess;
pID3DDevice->SetMaterial(&mat);
}
if (lastmaterial.ColorMaterial != material.ColorMaterial)
{
pID3DDevice->SetRenderState(D3DRS_COLORVERTEX, (material.ColorMaterial != ECM_NONE));
pID3DDevice->SetRenderState(D3DRS_DIFFUSEMATERIALSOURCE,
((material.ColorMaterial == ECM_DIFFUSE)||
(material.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT))?D3DMCS_COLOR1:D3DMCS_MATERIAL);
pID3DDevice->SetRenderState(D3DRS_AMBIENTMATERIALSOURCE,
((material.ColorMaterial == ECM_AMBIENT)||
(material.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT))?D3DMCS_COLOR1:D3DMCS_MATERIAL);
pID3DDevice->SetRenderState(D3DRS_EMISSIVEMATERIALSOURCE,
(material.ColorMaterial == ECM_EMISSIVE)?D3DMCS_COLOR1:D3DMCS_MATERIAL);
pID3DDevice->SetRenderState(D3DRS_SPECULARMATERIALSOURCE,
(material.ColorMaterial == ECM_SPECULAR)?D3DMCS_COLOR1:D3DMCS_MATERIAL);
}
// fillmode
if (resetAllRenderstates || lastmaterial.Wireframe != material.Wireframe || lastmaterial.PointCloud != material.PointCloud)
{
if (material.Wireframe)
pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
else
if (material.PointCloud)
pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_POINT);
else
pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
}
// shademode
if (resetAllRenderstates || lastmaterial.GouraudShading != material.GouraudShading)
{
if (material.GouraudShading)
pID3DDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);
else
pID3DDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);
}
// lighting
if (resetAllRenderstates || lastmaterial.Lighting != material.Lighting)
{
if (material.Lighting)
pID3DDevice->SetRenderState(D3DRS_LIGHTING, TRUE);
else
pID3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
}
// zbuffer
if (resetAllRenderstates || lastmaterial.ZBuffer != material.ZBuffer)
{
switch (material.ZBuffer)
{
case ECFN_NEVER:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
break;
case ECFN_LESSEQUAL:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESSEQUAL);
break;
case ECFN_EQUAL:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_EQUAL);
break;
case ECFN_LESS:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESS);
break;
case ECFN_NOTEQUAL:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_NOTEQUAL);
break;
case ECFN_GREATEREQUAL:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_GREATEREQUAL);
break;
case ECFN_GREATER:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_GREATER);
break;
case ECFN_ALWAYS:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
break;
}
}
// zwrite
// if (resetAllRenderstates || (lastmaterial.ZWriteEnable != material.ZWriteEnable))
{
if ( material.ZWriteEnable && (AllowZWriteOnTransparent || !material.isTransparent()))
pID3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE);
else
pID3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE);
}
// back face culling
if (resetAllRenderstates || (lastmaterial.FrontfaceCulling != material.FrontfaceCulling) || (lastmaterial.BackfaceCulling != material.BackfaceCulling))
{
// if (material.FrontfaceCulling && material.BackfaceCulling)
// pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW|D3DCULL_CCW);
// else
if (material.FrontfaceCulling)
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW);
else
if (material.BackfaceCulling)
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);
else
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
}
// fog
if (resetAllRenderstates || lastmaterial.FogEnable != material.FogEnable)
{
pID3DDevice->SetRenderState(D3DRS_FOGENABLE, material.FogEnable);
}
// specular highlights
if (resetAllRenderstates || !core::equals(lastmaterial.Shininess,material.Shininess))
{
const bool enable = (material.Shininess!=0.0f);
pID3DDevice->SetRenderState(D3DRS_SPECULARENABLE, enable);
pID3DDevice->SetRenderState(D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL);
}
// normalization
if (resetAllRenderstates || lastmaterial.NormalizeNormals != material.NormalizeNormals)
{
pID3DDevice->SetRenderState(D3DRS_NORMALIZENORMALS, material.NormalizeNormals);
}
// Color Mask
if (queryFeature(EVDF_COLOR_MASK) &&
(resetAllRenderstates || lastmaterial.ColorMask != material.ColorMask))
{
const DWORD flag =
((material.ColorMask & ECP_RED)?D3DCOLORWRITEENABLE_RED:0) |
((material.ColorMask & ECP_GREEN)?D3DCOLORWRITEENABLE_GREEN:0) |
((material.ColorMask & ECP_BLUE)?D3DCOLORWRITEENABLE_BLUE:0) |
((material.ColorMask & ECP_ALPHA)?D3DCOLORWRITEENABLE_ALPHA:0);
pID3DDevice->SetRenderState(D3DRS_COLORWRITEENABLE, flag);
}
if (queryFeature(EVDF_BLEND_OPERATIONS) &&
(resetAllRenderstates|| lastmaterial.BlendOperation != material.BlendOperation))
{
if (material.BlendOperation==EBO_NONE)
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
else
{
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
switch (material.BlendOperation)
{
case EBO_SUBTRACT:
pID3DDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_SUBTRACT);
break;
case EBO_REVSUBTRACT:
pID3DDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_REVSUBTRACT);
break;
case EBO_MIN:
case EBO_MIN_FACTOR:
case EBO_MIN_ALPHA:
pID3DDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_MIN);
break;
case EBO_MAX:
case EBO_MAX_FACTOR:
case EBO_MAX_ALPHA:
pID3DDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_MAX);
break;
default:
pID3DDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_ADD);
break;
}
}
}
// Polygon offset
if (queryFeature(EVDF_POLYGON_OFFSET) && (resetAllRenderstates ||
lastmaterial.PolygonOffsetDirection != material.PolygonOffsetDirection ||
lastmaterial.PolygonOffsetFactor != material.PolygonOffsetFactor))
{
if (material.PolygonOffsetFactor)
{
if (material.PolygonOffsetDirection==EPO_BACK)
{
pID3DDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, F2DW(1.f));
pID3DDevice->SetRenderState(D3DRS_DEPTHBIAS, F2DW((FLOAT)material.PolygonOffsetFactor));
}
else
{
pID3DDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, F2DW(-1.f));
pID3DDevice->SetRenderState(D3DRS_DEPTHBIAS, F2DW((FLOAT)-material.PolygonOffsetFactor));
}
}
else
{
pID3DDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, 0);
pID3DDevice->SetRenderState(D3DRS_DEPTHBIAS, 0);
}
}
// Anti Aliasing
if (resetAllRenderstates || lastmaterial.AntiAliasing != material.AntiAliasing)
{
if (AlphaToCoverageSupport && (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE))
{
if (VendorID==0x10DE)//NVidia
pID3DDevice->SetRenderState(D3DRS_ADAPTIVETESS_Y, MAKEFOURCC('A','T','O','C'));
// SSAA could give better results on NVidia cards
else if (VendorID==0x1002)//ATI
pID3DDevice->SetRenderState(D3DRS_POINTSIZE, MAKEFOURCC('A','2','M','1'));
}
else if (AlphaToCoverageSupport && (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE))
{
if (VendorID==0x10DE)
pID3DDevice->SetRenderState(D3DRS_ADAPTIVETESS_Y, D3DFMT_UNKNOWN);
else if (VendorID==0x1002)
pID3DDevice->SetRenderState(D3DRS_POINTSIZE, MAKEFOURCC('A','2','M','0'));
}
// enable antialiasing
if (Params.AntiAlias)
{
if (material.AntiAliasing & (EAAM_SIMPLE|EAAM_QUALITY))
pID3DDevice->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, TRUE);
else if (lastmaterial.AntiAliasing & (EAAM_SIMPLE|EAAM_QUALITY))
pID3DDevice->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, FALSE);
if (material.AntiAliasing & (EAAM_LINE_SMOOTH))
pID3DDevice->SetRenderState(D3DRS_ANTIALIASEDLINEENABLE, TRUE);
else if (lastmaterial.AntiAliasing & (EAAM_LINE_SMOOTH))
pID3DDevice->SetRenderState(D3DRS_ANTIALIASEDLINEENABLE, FALSE);
}
}
// thickness
if (resetAllRenderstates || lastmaterial.Thickness != material.Thickness)
{
pID3DDevice->SetRenderState(D3DRS_POINTSIZE, F2DW(material.Thickness));
}
// texture address mode
for (u32 st=0; st<MaxTextureUnits; ++st)
{
if (resetAllRenderstates && Params.HandleSRGB)
pID3DDevice->SetSamplerState(st, D3DSAMP_SRGBTEXTURE, TRUE);
if (resetAllRenderstates || lastmaterial.TextureLayer[st].LODBias != material.TextureLayer[st].LODBias)
{
const float tmp = material.TextureLayer[st].LODBias * 0.125f;
pID3DDevice->SetSamplerState(st, D3DSAMP_MIPMAPLODBIAS, F2DW(tmp));
}
if (resetAllRenderstates || lastmaterial.TextureLayer[st].TextureWrapU != material.TextureLayer[st].TextureWrapU)
pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSU, getTextureWrapMode(material.TextureLayer[st].TextureWrapU));
// If separate UV not supported reuse U for V
if (!(Caps.TextureAddressCaps & D3DPTADDRESSCAPS_INDEPENDENTUV))
pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSV, getTextureWrapMode(material.TextureLayer[st].TextureWrapU));
else if (resetAllRenderstates || lastmaterial.TextureLayer[st].TextureWrapV != material.TextureLayer[st].TextureWrapV)
pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSV, getTextureWrapMode(material.TextureLayer[st].TextureWrapV));
// Bilinear, trilinear, and anisotropic filter
if (resetAllRenderstates ||
lastmaterial.TextureLayer[st].BilinearFilter != material.TextureLayer[st].BilinearFilter ||
lastmaterial.TextureLayer[st].TrilinearFilter != material.TextureLayer[st].TrilinearFilter ||
lastmaterial.TextureLayer[st].AnisotropicFilter != material.TextureLayer[st].AnisotropicFilter ||
lastmaterial.UseMipMaps != material.UseMipMaps)
{
if (material.TextureLayer[st].BilinearFilter || material.TextureLayer[st].TrilinearFilter || material.TextureLayer[st].AnisotropicFilter)
{
D3DTEXTUREFILTERTYPE tftMag = ((Caps.TextureFilterCaps & D3DPTFILTERCAPS_MAGFANISOTROPIC) &&
material.TextureLayer[st].AnisotropicFilter) ? D3DTEXF_ANISOTROPIC : D3DTEXF_LINEAR;
D3DTEXTUREFILTERTYPE tftMin = ((Caps.TextureFilterCaps & D3DPTFILTERCAPS_MINFANISOTROPIC) &&
material.TextureLayer[st].AnisotropicFilter) ? D3DTEXF_ANISOTROPIC : D3DTEXF_LINEAR;
D3DTEXTUREFILTERTYPE tftMip = material.UseMipMaps? (material.TextureLayer[st].TrilinearFilter ? D3DTEXF_LINEAR : D3DTEXF_POINT) : D3DTEXF_NONE;
if (tftMag==D3DTEXF_ANISOTROPIC || tftMin == D3DTEXF_ANISOTROPIC)
pID3DDevice->SetSamplerState(st, D3DSAMP_MAXANISOTROPY, core::min_((DWORD)material.TextureLayer[st].AnisotropicFilter, Caps.MaxAnisotropy));
pID3DDevice->SetSamplerState(st, D3DSAMP_MAGFILTER, tftMag);
pID3DDevice->SetSamplerState(st, D3DSAMP_MINFILTER, tftMin);
pID3DDevice->SetSamplerState(st, D3DSAMP_MIPFILTER, tftMip);
}
else
{
pID3DDevice->SetSamplerState(st, D3DSAMP_MINFILTER, D3DTEXF_POINT);
pID3DDevice->SetSamplerState(st, D3DSAMP_MIPFILTER, D3DTEXF_NONE);
pID3DDevice->SetSamplerState(st, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
}
}
}
}
//! sets the needed renderstates
void CD3D9Driver::setRenderStatesStencilShadowMode(bool zfail, u32 debugDataVisible)
{
if ((CurrentRenderMode != ERM_SHADOW_VOLUME_ZFAIL &&
CurrentRenderMode != ERM_SHADOW_VOLUME_ZPASS) ||
Transformation3DChanged)
{
// unset last 3d material
if (CurrentRenderMode == ERM_3D &&
static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
{
MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial();
ResetRenderStates = true;
}
// switch back the matrices
pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)&Matrices[ETS_VIEW]));
pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)&Matrices[ETS_WORLD]));
pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)&Matrices[ETS_PROJECTION]));
Transformation3DChanged = false;
setActiveTexture(0,0);
setActiveTexture(1,0);
setActiveTexture(2,0);
setActiveTexture(3,0);
pID3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetFVF(D3DFVF_XYZ);
LastVertexType = (video::E_VERTEX_TYPE)(-1);
pID3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
pID3DDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);
//pID3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
//pID3DDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
pID3DDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
pID3DDevice->SetRenderState(D3DRS_STENCILREF, 0x0);
pID3DDevice->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);
pID3DDevice->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff);
pID3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE );
pID3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_ZERO );
pID3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ONE );
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESS);
//if (!(debugDataVisible & (scene::EDS_SKELETON|scene::EDS_MESH_WIRE_OVERLAY)))
// pID3DDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
if ((debugDataVisible & scene::EDS_MESH_WIRE_OVERLAY))
pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
}
if (CurrentRenderMode != ERM_SHADOW_VOLUME_ZPASS && !zfail)
{
// USE THE ZPASS METHOD
pID3DDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);
pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP);
//pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_INCR); // does not matter, will be set later
}
else
if (CurrentRenderMode != ERM_SHADOW_VOLUME_ZFAIL && zfail)
{
// USE THE ZFAIL METHOD
pID3DDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);
//pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_INCR); // does not matter, will be set later
pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP);
}
CurrentRenderMode = zfail ? ERM_SHADOW_VOLUME_ZFAIL : ERM_SHADOW_VOLUME_ZPASS;
}
//! sets the needed renderstates
void CD3D9Driver::setRenderStatesStencilFillMode(bool alpha)
{
if (CurrentRenderMode != ERM_STENCIL_FILL || Transformation3DChanged)
{
core::matrix4 mat;
pID3DDevice->SetTransform(D3DTS_VIEW, &UnitMatrixD3D9);
pID3DDevice->SetTransform(D3DTS_WORLD, &UnitMatrixD3D9);
pID3DDevice->SetTransform(D3DTS_PROJECTION, &UnitMatrixD3D9);
pID3DDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
pID3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
pID3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
pID3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetRenderState(D3DRS_STENCILREF, 0x1);
pID3DDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_LESSEQUAL);
//pID3DDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_GREATEREQUAL);
pID3DDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);
pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP);
pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP);
pID3DDevice->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);
pID3DDevice->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff);
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);
Transformation3DChanged = false;
pID3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE);
if (alpha)
{
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pID3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
}
else
{
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
}
CurrentRenderMode = ERM_STENCIL_FILL;
}
//! Enable the 2d override material
void CD3D9Driver::enableMaterial2D(bool enable)
{
if (!enable)
CurrentRenderMode = ERM_NONE;
CNullDriver::enableMaterial2D(enable);
}
//! sets the needed renderstates
void CD3D9Driver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel)
{
if (!pID3DDevice)
return;
if (CurrentRenderMode != ERM_2D || Transformation3DChanged)
{
// unset last 3d material
if (CurrentRenderMode == ERM_3D)
{
if (static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
}
if (!OverrideMaterial2DEnabled)
{
setBasicRenderStates(InitMaterial2D, LastMaterial, true);
LastMaterial=InitMaterial2D;
// fix everything that is wrongly set by InitMaterial2D default
pID3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
core::matrix4 m;
// this fixes some problems with pixel exact rendering, but also breaks nice texturing
// moreover, it would have to be tested in each call, as the texture flag can change each time
// if (!texture)
// m.setTranslation(core::vector3df(0.5f,0.5f,0));
pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)m.pointer()));
// adjust the view such that pixel center aligns with texels
// Otherwise, subpixel artifacts will occur
m.setTranslation(core::vector3df(-0.5f,-0.5f,0));
pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)m.pointer()));
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0, 1.0);
m.setTranslation(core::vector3df(-1,1,0));
pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)m.pointer()));
// 2d elements are clipped in software
pID3DDevice->SetRenderState(D3DRS_CLIPPING, FALSE);
Transformation3DChanged = false;
}
if (OverrideMaterial2DEnabled)
{
OverrideMaterial2D.Lighting=false;
setBasicRenderStates(OverrideMaterial2D, LastMaterial, false);
LastMaterial = OverrideMaterial2D;
}
// no alphaChannel without texture
alphaChannel &= texture;
if (alpha || alphaChannel)
{
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pID3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
}
else
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
pID3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
if (texture)
{
setTransform(ETS_TEXTURE_0, core::IdentityMatrix);
// Due to the transformation change, the previous line would call a reset each frame
// but we can safely reset the variable as it was false before
Transformation3DChanged=false;
}
if (alphaChannel)
{
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
if (alpha)
{
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
}
else
{
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
}
}
else
{
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
if (alpha)
{
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2);
}
else
{
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
}
}
CurrentRenderMode = ERM_2D;
}
//! deletes all dynamic lights there are
void CD3D9Driver::deleteAllDynamicLights()
{
for (s32 i=0; i<LastSetLight+1; ++i)
pID3DDevice->LightEnable(i, false);
LastSetLight = -1;
CNullDriver::deleteAllDynamicLights();
}
//! adds a dynamic light
s32 CD3D9Driver::addDynamicLight(const SLight& dl)
{
CNullDriver::addDynamicLight(dl);
D3DLIGHT9 light;
switch (dl.Type)
{
case ELT_POINT:
light.Type = D3DLIGHT_POINT;
break;
case ELT_SPOT:
light.Type = D3DLIGHT_SPOT;
break;
case ELT_DIRECTIONAL:
light.Type = D3DLIGHT_DIRECTIONAL;
break;
}
light.Position = *(D3DVECTOR*)((void*)(&dl.Position));
light.Direction = *(D3DVECTOR*)((void*)(&dl.Direction));
light.Range = core::min_(dl.Radius, MaxLightDistance);
light.Falloff = dl.Falloff;
light.Diffuse = *(D3DCOLORVALUE*)((void*)(&dl.DiffuseColor));
light.Specular = *(D3DCOLORVALUE*)((void*)(&dl.SpecularColor));
light.Ambient = *(D3DCOLORVALUE*)((void*)(&dl.AmbientColor));
light.Attenuation0 = dl.Attenuation.X;
light.Attenuation1 = dl.Attenuation.Y;
light.Attenuation2 = dl.Attenuation.Z;
light.Theta = dl.InnerCone * 2.0f * core::DEGTORAD;
light.Phi = dl.OuterCone * 2.0f * core::DEGTORAD;
++LastSetLight;
if(D3D_OK == pID3DDevice->SetLight(LastSetLight, &light))
{
// I don't care if this succeeds
(void)pID3DDevice->LightEnable(LastSetLight, true);
return LastSetLight;
}
return -1;
}
//! Turns a dynamic light on or off
//! \param lightIndex: the index returned by addDynamicLight
//! \param turnOn: true to turn the light on, false to turn it off
void CD3D9Driver::turnLightOn(s32 lightIndex, bool turnOn)
{
if(lightIndex < 0 || lightIndex > LastSetLight)
return;
(void)pID3DDevice->LightEnable(lightIndex, turnOn);
}
//! returns the maximal amount of dynamic lights the device can handle
u32 CD3D9Driver::getMaximalDynamicLightAmount() const
{
return Caps.MaxActiveLights;
}
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
void CD3D9Driver::setAmbientLight(const SColorf& color)
{
if (!pID3DDevice)
return;
AmbientLight = color;
D3DCOLOR col = color.toSColor().color;
pID3DDevice->SetRenderState(D3DRS_AMBIENT, col);
}
//! \return Returns the name of the video driver. Example: In case of the DIRECT3D9
//! driver, it would return "Direct3D9.0".
const wchar_t* CD3D9Driver::getName() const
{
return L"Direct3D 9.0";
}
//! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do
//! this: First, draw all geometry. Then use this method, to draw the shadow
//! volume. Then, use IVideoDriver::drawStencilShadow() to visualize the shadow.
void CD3D9Driver::drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail, u32 debugDataVisible)
{
if (!Params.Stencilbuffer)
return;
setRenderStatesStencilShadowMode(zfail, debugDataVisible);
const u32 count = triangles.size();
if (!count)
return;
if (!zfail)
{
// ZPASS Method
// Draw front-side of shadow volume in stencil only
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);
pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_INCR);
pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles.const_pointer(), sizeof(core::vector3df));
// Now reverse cull order so front sides of shadow volume are written.
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW);
pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_DECR);
pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles.const_pointer(), sizeof(core::vector3df));
}
else
{
// ZFAIL Method
// Draw front-side of shadow volume in stencil only
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW);
pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_INCR);
pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles.const_pointer(), sizeof(core::vector3df));
// Now reverse cull order so front sides of shadow volume are written.
pID3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW);
pID3DDevice->SetRenderState( D3DRS_STENCILZFAIL, D3DSTENCILOP_DECR);
pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles.const_pointer(), sizeof(core::vector3df));
}
}
//! Fills the stencil shadow with color. After the shadow volume has been drawn
//! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this
//! to draw the color of the shadow.
void CD3D9Driver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge,
video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge)
{
if (!Params.Stencilbuffer)
return;
S3DVertex vtx[4];
vtx[0] = S3DVertex(1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, leftUpEdge, 0.0f, 0.0f);
vtx[1] = S3DVertex(1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, rightUpEdge, 0.0f, 1.0f);
vtx[2] = S3DVertex(-1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, leftDownEdge, 1.0f, 0.0f);
vtx[3] = S3DVertex(-1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, rightDownEdge, 1.0f, 1.0f);
s16 indices[6] = {0,1,2,1,3,2};
setRenderStatesStencilFillMode(
leftUpEdge.getAlpha() < 255 ||
rightUpEdge.getAlpha() < 255 ||
leftDownEdge.getAlpha() < 255 ||
rightDownEdge.getAlpha() < 255);
setActiveTexture(0,0);
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0],
D3DFMT_INDEX16, &vtx[0], sizeof(S3DVertex));
if (clearStencilBuffer)
pID3DDevice->Clear( 0, NULL, D3DCLEAR_STENCIL,0, 1.0, 0);
}
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
u32 CD3D9Driver::getMaximalPrimitiveCount() const
{
return Caps.MaxPrimitiveCount;
}
//! Sets the fog mode.
void CD3D9Driver::setFog(SColor color, E_FOG_TYPE fogType, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog)
{
CNullDriver::setFog(color, fogType, start, end, density, pixelFog, rangeFog);
if (!pID3DDevice)
return;
pID3DDevice->SetRenderState(D3DRS_FOGCOLOR, color.color);
pID3DDevice->SetRenderState(
pixelFog ? D3DRS_FOGTABLEMODE : D3DRS_FOGVERTEXMODE,
(fogType==EFT_FOG_LINEAR)? D3DFOG_LINEAR : (fogType==EFT_FOG_EXP)?D3DFOG_EXP:D3DFOG_EXP2);
if (fogType==EFT_FOG_LINEAR)
{
pID3DDevice->SetRenderState(D3DRS_FOGSTART, F2DW(start));
pID3DDevice->SetRenderState(D3DRS_FOGEND, F2DW(end));
}
else
pID3DDevice->SetRenderState(D3DRS_FOGDENSITY, F2DW(density));
if(!pixelFog)
pID3DDevice->SetRenderState(D3DRS_RANGEFOGENABLE, rangeFog);
}
//! Draws a 3d line.
void CD3D9Driver::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color)
{
setVertexShader(EVT_STANDARD);
setRenderStates3DMode();
video::S3DVertex v[2];
v[0].Color = color;
v[1].Color = color;
v[0].Pos = start;
v[1].Pos = end;
pID3DDevice->DrawPrimitiveUP(D3DPT_LINELIST, 1, v, sizeof(S3DVertex));
}
//! resets the device
bool CD3D9Driver::reset()
{
u32 i;
os::Printer::log("Resetting D3D9 device.", ELL_INFORMATION);
for (i=0; i<Textures.size(); ++i)
{
if (Textures[i].Surface->isRenderTarget())
{
IDirect3DBaseTexture9* tex = ((CD3D9Texture*)(Textures[i].Surface))->getDX9Texture();
if (tex)
tex->Release();
}
}
for (i=0; i<DepthBuffers.size(); ++i)
{
if (DepthBuffers[i]->Surface)
DepthBuffers[i]->Surface->Release();
}
for (i=0; i<OcclusionQueries.size(); ++i)
{
if (OcclusionQueries[i].PID)
{
reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[i].PID)->Release();
OcclusionQueries[i].PID=0;
}
}
// this does not require a restore in the reset method, it's updated
// automatically in the next render cycle.
removeAllHardwareBuffers();
DriverWasReset=true;
HRESULT hr = pID3DDevice->Reset(&present);
// restore RTTs
for (i=0; i<Textures.size(); ++i)
{
if (Textures[i].Surface->isRenderTarget())
((CD3D9Texture*)(Textures[i].Surface))->createRenderTarget();
}
// restore screen depthbuffer
pID3DDevice->GetDepthStencilSurface(&(DepthBuffers[0]->Surface));
D3DSURFACE_DESC desc;
// restore other depth buffers
// depth format is taken from main depth buffer
DepthBuffers[0]->Surface->GetDesc(&desc);
// multisampling is taken from rendertarget
D3DSURFACE_DESC desc2;
for (i=1; i<DepthBuffers.size(); ++i)
{
for (u32 j=0; j<Textures.size(); ++j)
{
// all textures sharing this depth buffer must have the same setting
// so take first one
if (((CD3D9Texture*)(Textures[j].Surface))->DepthSurface==DepthBuffers[i])
{
((CD3D9Texture*)(Textures[j].Surface))->Texture->GetLevelDesc(0,&desc2);
break;
}
}
pID3DDevice->CreateDepthStencilSurface(DepthBuffers[i]->Size.Width,
DepthBuffers[i]->Size.Height,
desc.Format,
desc2.MultiSampleType,
desc2.MultiSampleQuality,
TRUE,
&(DepthBuffers[i]->Surface),
NULL);
}
for (i=0; i<OcclusionQueries.size(); ++i)
{
pID3DDevice->CreateQuery(D3DQUERYTYPE_OCCLUSION, reinterpret_cast<IDirect3DQuery9**>(&OcclusionQueries[i].PID));
}
if (FAILED(hr))
{
if (hr == D3DERR_DEVICELOST)
{
DeviceLost = true;
os::Printer::log("Resetting failed due to device lost.", ELL_WARNING);
}
#ifdef D3DERR_DEVICEREMOVED
else if (hr == D3DERR_DEVICEREMOVED)
{
os::Printer::log("Resetting failed due to device removed.", ELL_WARNING);
}
#endif
else if (hr == D3DERR_DRIVERINTERNALERROR)
{
os::Printer::log("Resetting failed due to internal error.", ELL_WARNING);
}
else if (hr == D3DERR_OUTOFVIDEOMEMORY)
{
os::Printer::log("Resetting failed due to out of memory.", ELL_WARNING);
}
else if (hr == D3DERR_DEVICENOTRESET)
{
os::Printer::log("Resetting failed due to not reset.", ELL_WARNING);
}
else if (hr == D3DERR_INVALIDCALL)
{
os::Printer::log("Resetting failed due to invalid call", "You need to release some more surfaces.", ELL_WARNING);
}
else
{
os::Printer::log("Resetting failed due to unknown reason.", core::stringc((int)hr).c_str(), ELL_WARNING);
}
return false;
}
DeviceLost = false;
ResetRenderStates = true;
LastVertexType = (E_VERTEX_TYPE)-1;
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
CurrentTexture[i] = 0;
setVertexShader(EVT_STANDARD);
setRenderStates3DMode();
setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
setAmbientLight(AmbientLight);
return true;
}
void CD3D9Driver::OnResize(const core::dimension2d<u32>& size)
{
if (!pID3DDevice)
return;
CNullDriver::OnResize(size);
present.BackBufferWidth = size.Width;
present.BackBufferHeight = size.Height;
reset();
}
//! Returns type of video driver
E_DRIVER_TYPE CD3D9Driver::getDriverType() const
{
return EDT_DIRECT3D9;
}
//! Returns the transformation set by setTransform
const core::matrix4& CD3D9Driver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Matrices[state];
}
//! Sets a vertex shader constant.
void CD3D9Driver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
if (data)
pID3DDevice->SetVertexShaderConstantF(startRegister, data, constantAmount);
}
//! Sets a pixel shader constant.
void CD3D9Driver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
if (data)
pID3DDevice->SetPixelShaderConstantF(startRegister, data, constantAmount);
}
//! Sets a constant for the vertex shader based on a name.
bool CD3D9Driver::setVertexShaderConstant(const c8* name, const f32* floats, int count)
{
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
{
CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer;
return r->setVariable(true, name, floats, count);
}
return false;
}
//! Bool interface for the above.
bool CD3D9Driver::setVertexShaderConstant(const c8* name, const bool* bools, int count)
{
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
{
CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer;
return r->setVariable(true, name, bools, count);
}
return false;
}
//! Int interface for the above.
bool CD3D9Driver::setVertexShaderConstant(const c8* name, const s32* ints, int count)
{
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
{
CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer;
return r->setVariable(true, name, ints, count);
}
return false;
}
//! Sets a constant for the pixel shader based on a name.
bool CD3D9Driver::setPixelShaderConstant(const c8* name, const f32* floats, int count)
{
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
{
CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer;
return r->setVariable(false, name, floats, count);
}
return false;
}
//! Bool interface for the above.
bool CD3D9Driver::setPixelShaderConstant(const c8* name, const bool* bools, int count)
{
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
{
CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer;
return r->setVariable(false, name, bools, count);
}
return false;
}
//! Int interface for the above.
bool CD3D9Driver::setPixelShaderConstant(const c8* name, const s32* ints, int count)
{
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
{
CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer;
return r->setVariable(false, name, ints, count);
}
return false;
}
//! Adds a new material renderer to the VideoDriver, using pixel and/or
//! vertex shaders to render geometry.
s32 CD3D9Driver::addShaderMaterial(const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial, s32 userData)
{
s32 nr = -1;
CD3D9ShaderMaterialRenderer* r = new CD3D9ShaderMaterialRenderer(
pID3DDevice, this, nr, vertexShaderProgram, pixelShaderProgram,
callback, getMaterialRenderer(baseMaterial), userData);
r->drop();
return nr;
}
//! Adds a new material renderer to the VideoDriver, based on a high level shading
//! language.
s32 CD3D9Driver::addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8* geometryShaderProgram,
const c8* geometryShaderEntryPointName,
E_GEOMETRY_SHADER_TYPE gsCompileTarget,
scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial, s32 userData, E_GPU_SHADING_LANGUAGE shadingLang)
{
s32 nr = -1;
#ifdef _IRR_COMPILE_WITH_CG_
if(shadingLang == EGSL_CG)
{
CD3D9CgMaterialRenderer* r = new CD3D9CgMaterialRenderer(
this, nr,
vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget,
pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget,
geometryShaderProgram, geometryShaderEntryPointName, gsCompileTarget,
inType, outType, verticesOut,
callback,getMaterialRenderer(baseMaterial), userData);
r->drop();
}
else
#endif
{
CD3D9HLSLMaterialRenderer* r = new CD3D9HLSLMaterialRenderer(
pID3DDevice, this, nr,
vertexShaderProgram,
vertexShaderEntryPointName,
vsCompileTarget,
pixelShaderProgram,
pixelShaderEntryPointName,
psCompileTarget,
callback,
getMaterialRenderer(baseMaterial),
userData);
r->drop();
}
return nr;
}
//! Returns a pointer to the IVideoDriver interface. (Implementation for
//! IMaterialRendererServices)
IVideoDriver* CD3D9Driver::getVideoDriver()
{
return this;
}
//! Creates a render target texture.
ITexture* CD3D9Driver::addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name,
const ECOLOR_FORMAT format, const bool useStencil)
{
CD3D9Texture* tex = new CD3D9Texture(this, size, name, format);
if (tex)
{
if (!tex->Texture)
{
tex->drop();
return 0;
}
checkDepthBuffer(tex);
addTexture(tex);
tex->drop();
}
return tex;
}
//! Clears the ZBuffer.
void CD3D9Driver::clearZBuffer()
{
HRESULT hr = pID3DDevice->Clear( 0, NULL, D3DCLEAR_ZBUFFER, 0, 1.0, 0);
if (FAILED(hr))
os::Printer::log("CD3D9Driver clearZBuffer() failed.", ELL_WARNING);
}
//! Returns an image created from the last rendered frame.
IImage* CD3D9Driver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target)
{
if (target != video::ERT_FRAME_BUFFER)
return 0;
// query the screen dimensions of the current adapter
D3DDISPLAYMODE displayMode;
pID3DDevice->GetDisplayMode(0, &displayMode);
if (format==video::ECF_UNKNOWN)
format=video::ECF_A8R8G8B8;
// create the image surface to store the front buffer image [always A8R8G8B8]
HRESULT hr;
LPDIRECT3DSURFACE9 lpSurface;
if (FAILED(hr = pID3DDevice->CreateOffscreenPlainSurface(displayMode.Width, displayMode.Height, D3DFMT_A8R8G8B8, D3DPOOL_SCRATCH, &lpSurface, 0)))
return 0;
// read the front buffer into the image surface
if (FAILED(hr = pID3DDevice->GetFrontBufferData(0, lpSurface)))
{
lpSurface->Release();
return 0;
}
RECT clientRect;
{
POINT clientPoint;
clientPoint.x = 0;
clientPoint.y = 0;
ClientToScreen((HWND)getExposedVideoData().D3D9.HWnd, &clientPoint);
clientRect.left = clientPoint.x;
clientRect.top = clientPoint.y;
clientRect.right = clientRect.left + ScreenSize.Width;
clientRect.bottom = clientRect.top + ScreenSize.Height;
// window can be off-screen partly, we can't take screenshots from that
clientRect.left = core::max_(clientRect.left, 0l);
clientRect.top = core::max_(clientRect.top, 0l);
clientRect.right = core::min_(clientRect.right, (long)displayMode.Width);
clientRect.bottom = core::min_(clientRect.bottom, (long)displayMode.Height );
}
// lock our area of the surface
D3DLOCKED_RECT lockedRect;
if (FAILED(lpSurface->LockRect(&lockedRect, &clientRect, D3DLOCK_READONLY)))
{
lpSurface->Release();
return 0;
}
irr::core::dimension2d<u32> shotSize;
shotSize.Width = core::min_( ScreenSize.Width, (u32)(clientRect.right-clientRect.left) );
shotSize.Height = core::min_( ScreenSize.Height, (u32)(clientRect.bottom-clientRect.top) );
// this could throw, but we aren't going to worry about that case very much
IImage* newImage = createImage(format, shotSize);
if (newImage)
{
// d3d pads the image, so we need to copy the correct number of bytes
u32* dP = (u32*)newImage->lock();
u8 * sP = (u8 *)lockedRect.pBits;
// If the display mode format doesn't promise anything about the Alpha value
// and it appears that it's not presenting 255, then we should manually
// set each pixel alpha value to 255.
if (D3DFMT_X8R8G8B8 == displayMode.Format && (0xFF000000 != (*dP & 0xFF000000)))
{
for (u32 y = 0; y < shotSize.Height; ++y)
{
for (u32 x = 0; x < shotSize.Width; ++x)
{
newImage->setPixel(x,y,*((u32*)sP) | 0xFF000000);
sP += 4;
}
sP += lockedRect.Pitch - (4 * shotSize.Width);
}
}
else
{
for (u32 y = 0; y < shotSize.Height; ++y)
{
convertColor(sP, video::ECF_A8R8G8B8, shotSize.Width, dP, format);
sP += lockedRect.Pitch;
dP += shotSize.Width;
}
}
newImage->unlock();
}
// we can unlock and release the surface
lpSurface->UnlockRect();
// release the image surface
lpSurface->Release();
// return status of save operation to caller
return newImage;
}
//! returns color format
ECOLOR_FORMAT CD3D9Driver::getColorFormat() const
{
return ColorFormat;
}
//! returns color format
D3DFORMAT CD3D9Driver::getD3DColorFormat() const
{
return D3DColorFormat;
}
// returns the current size of the screen or rendertarget
const core::dimension2d<u32>& CD3D9Driver::getCurrentRenderTargetSize() const
{
if ( CurrentRendertargetSize.Width == 0 )
return ScreenSize;
else
return CurrentRendertargetSize;
}
// Set/unset a clipping plane.
bool CD3D9Driver::setClipPlane(u32 index, const core::plane3df& plane, bool enable)
{
if (index >= MaxUserClipPlanes)
return false;
HRESULT ok = pID3DDevice->SetClipPlane(index, (const float*)&(plane.Normal.X));
if (D3D_OK == ok)
enableClipPlane(index, enable);
return true;
}
// Enable/disable a clipping plane.
void CD3D9Driver::enableClipPlane(u32 index, bool enable)
{
if (index >= MaxUserClipPlanes)
return;
DWORD renderstate;
HRESULT ok = pID3DDevice->GetRenderState(D3DRS_CLIPPLANEENABLE, &renderstate);
if (S_OK == ok)
{
if (enable)
renderstate |= (1 << index);
else
renderstate &= ~(1 << index);
ok = pID3DDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, renderstate);
}
}
D3DFORMAT CD3D9Driver::getD3DFormatFromColorFormat(ECOLOR_FORMAT format) const
{
switch(format)
{
case ECF_A1R5G5B5:
return D3DFMT_A1R5G5B5;
case ECF_R5G6B5:
return D3DFMT_R5G6B5;
case ECF_R8G8B8:
return D3DFMT_R8G8B8;
case ECF_A8R8G8B8:
return D3DFMT_A8R8G8B8;
// Floating Point formats. Thanks to Patryk "Nadro" Nadrowski.
case ECF_R16F:
return D3DFMT_R16F;
case ECF_G16R16F:
return D3DFMT_G16R16F;
case ECF_A16B16G16R16F:
return D3DFMT_A16B16G16R16F;
case ECF_R32F:
return D3DFMT_R32F;
case ECF_G32R32F:
return D3DFMT_G32R32F;
case ECF_A32B32G32R32F:
return D3DFMT_A32B32G32R32F;
}
return D3DFMT_UNKNOWN;
}
ECOLOR_FORMAT CD3D9Driver::getColorFormatFromD3DFormat(D3DFORMAT format) const
{
switch(format)
{
case D3DFMT_X1R5G5B5:
case D3DFMT_A1R5G5B5:
return ECF_A1R5G5B5;
case D3DFMT_A8B8G8R8:
case D3DFMT_A8R8G8B8:
case D3DFMT_X8R8G8B8:
return ECF_A8R8G8B8;
case D3DFMT_R5G6B5:
return ECF_R5G6B5;
case D3DFMT_R8G8B8:
return ECF_R8G8B8;
// Floating Point formats. Thanks to Patryk "Nadro" Nadrowski.
case D3DFMT_R16F:
return ECF_R16F;
case D3DFMT_G16R16F:
return ECF_G16R16F;
case D3DFMT_A16B16G16R16F:
return ECF_A16B16G16R16F;
case D3DFMT_R32F:
return ECF_R32F;
case D3DFMT_G32R32F:
return ECF_G32R32F;
case D3DFMT_A32B32G32R32F:
return ECF_A32B32G32R32F;
default:
return (ECOLOR_FORMAT)0;
};
}
void CD3D9Driver::checkDepthBuffer(ITexture* tex)
{
if (!tex)
return;
const core::dimension2du optSize = tex->getSize().getOptimalSize(
!queryFeature(EVDF_TEXTURE_NPOT),
!queryFeature(EVDF_TEXTURE_NSQUARE), true);
SDepthSurface* depth=0;
core::dimension2du destSize(0x7fffffff, 0x7fffffff);
for (u32 i=0; i<DepthBuffers.size(); ++i)
{
if ((DepthBuffers[i]->Size.Width>=optSize.Width) &&
(DepthBuffers[i]->Size.Height>=optSize.Height))
{
if ((DepthBuffers[i]->Size.Width<destSize.Width) &&
(DepthBuffers[i]->Size.Height<destSize.Height))
{
depth = DepthBuffers[i];
destSize=DepthBuffers[i]->Size;
}
}
}
if (!depth)
{
D3DSURFACE_DESC desc;
DepthBuffers[0]->Surface->GetDesc(&desc);
// the multisampling needs to match the RTT
D3DSURFACE_DESC desc2;
((CD3D9Texture*)tex)->Texture->GetLevelDesc(0,&desc2);
DepthBuffers.push_back(new SDepthSurface());
HRESULT hr=pID3DDevice->CreateDepthStencilSurface(optSize.Width,
optSize.Height,
desc.Format,
desc2.MultiSampleType,
desc2.MultiSampleQuality,
TRUE,
&(DepthBuffers.getLast()->Surface),
NULL);
if (SUCCEEDED(hr))
{
depth=DepthBuffers.getLast();
depth->Surface->GetDesc(&desc);
depth->Size.set(desc.Width, desc.Height);
}
else
{
if (hr == D3DERR_OUTOFVIDEOMEMORY)
os::Printer::log("Could not create DepthBuffer","out of video memory",ELL_ERROR);
else if( hr == E_OUTOFMEMORY )
os::Printer::log("Could not create DepthBuffer","out of memory",ELL_ERROR);
else
{
char buffer[128];
sprintf(buffer,"Could not create DepthBuffer of %ix%i",optSize.Width,optSize.Height);
os::Printer::log(buffer,ELL_ERROR);
}
DepthBuffers.erase(DepthBuffers.size()-1);
}
}
else
depth->grab();
static_cast<CD3D9Texture*>(tex)->DepthSurface=depth;
}
void CD3D9Driver::removeDepthSurface(SDepthSurface* depth)
{
for (u32 i=0; i<DepthBuffers.size(); ++i)
{
if (DepthBuffers[i]==depth)
{
DepthBuffers.erase(i);
return;
}
}
}
core::dimension2du CD3D9Driver::getMaxTextureSize() const
{
return core::dimension2du(Caps.MaxTextureWidth, Caps.MaxTextureHeight);
}
void CD3D9Driver::enableScissorTest(const core::rect<s32>& r)
{
pID3DDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE);
RECT rect;
rect.left = r.UpperLeftCorner.X;
rect.top = r.UpperLeftCorner.Y;
rect.right = r.LowerRightCorner.X;
rect.bottom = r.LowerRightCorner.Y;
pID3DDevice->SetScissorRect(&rect);
}
void CD3D9Driver::disableScissorTest()
{
pID3DDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE);
}
#ifdef _IRR_COMPILE_WITH_CG_
const CGcontext& CD3D9Driver::getCgContext()
{
return CgContext;
}
#endif
} // end namespace video
} // end namespace irr
#endif // _IRR_COMPILE_WITH_DIRECT3D_9_
namespace irr
{
namespace video
{
#ifdef _IRR_COMPILE_WITH_DIRECT3D_9_
//! creates a video driver
IVideoDriver* createDirectX9Driver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, HWND window)
{
const bool pureSoftware = false;
CD3D9Driver* dx9 = new CD3D9Driver(params, io);
if (!dx9->initDriver(window, pureSoftware))
{
dx9->drop();
dx9 = 0;
}
return dx9;
}
#endif // _IRR_COMPILE_WITH_DIRECT3D_9_
} // end namespace video
} // end namespace irr