hikerstk 5b58714fff Revmoed support for irrlicht 1.5 (which doesn't have all functions we need anyway).
git-svn-id: svn+ssh://svn.code.sf.net/p/supertuxkart/code/main/branches/irrlicht@4236 178a84e3-b1eb-0310-8ba1-8eac791a3b58
2009-12-04 01:09:40 +00:00

954 lines
35 KiB
C++

// $Id$
//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2004 Steve Baker <sjbaker1@airmail.net>
// 2009 Joerg Henrichs, Steve Baker
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#include "tracks/track.hpp"
#include <iostream>
#include <stdexcept>
#include <sstream>
#include "irrlicht.h"
using namespace irr;
#include "animations/animation_manager.hpp"
#include "audio/sound_manager.hpp"
#include "config/stk_config.hpp"
#include "config/user_config.hpp"
#include "graphics/irr_driver.hpp"
#include "graphics/material_manager.hpp"
#include "graphics/mesh_tools.hpp"
#include "graphics/moving_texture.hpp"
#include "io/file_manager.hpp"
#include "io/xml_node.hpp"
#include "items/item.hpp"
#include "items/item_manager.hpp"
#include "lisp/lisp.hpp"
#include "lisp/parser.hpp"
#include "modes/world.hpp"
#include "physics/physical_object.hpp"
#include "physics/triangle_mesh.hpp"
#include "race/race_manager.hpp"
#include "states_screens/race_gui.hpp"
#include "tracks/bezier_curve.hpp"
#include "tracks/check_manager.hpp"
#include "tracks/quad_graph.hpp"
#include "tracks/quad_set.hpp"
#include "utils/constants.hpp"
#include "utils/string_utils.hpp"
#include "utils/translation.hpp"
const float Track::NOHIT = -99999.9f;
// ----------------------------------------------------------------------------
Track::Track(std::string filename)
{
m_filename = filename;
m_root = StringUtils::getPath(StringUtils::removeExtension(m_filename));
m_ident = StringUtils::getBasename(m_root);
m_item_style = "";
m_description = "";
m_designer = "";
m_screenshot = "";
m_version = 0;
m_track_mesh = new TriangleMesh();
m_non_collision_mesh = new TriangleMesh();
m_all_nodes.clear();
m_all_meshes.clear();
m_has_final_camera = false;
m_is_arena = false;
m_quad_graph = NULL;
m_animation_manager = NULL;
m_check_manager = NULL;
loadTrackInfo(m_filename);
} // Track
//-----------------------------------------------------------------------------
/** Destructor, removes quad data structures etc. */
Track::~Track()
{
if(m_quad_graph) delete m_quad_graph;
if(m_check_manager) delete m_check_manager;
if(m_mini_map) irr_driver->removeTexture(m_mini_map);
} // ~Track
//-----------------------------------------------------------------------------
/** Prepates the track for a new race. This function must be called after all
* karts are created, since the check objects allocate data structures
* depending on the number of karts.
*/
void Track::reset()
{
m_ambient_color = m_default_ambient_color;
if(m_animation_manager)
m_animation_manager->reset();
if(m_check_manager)
m_check_manager->reset(*this);
item_manager->reset();
} // reset
//-----------------------------------------------------------------------------
/** Removes the physical body from the world.
* Called at the end of a race.
*/
void Track::cleanup()
{
if(UserConfigParams::m_track_debug)
m_quad_graph->cleanupDebugMesh();
item_manager->cleanup();
for(unsigned int i=0; i<m_animated_textures.size(); i++)
{
delete m_animated_textures[i];
}
m_animated_textures.clear();
for(unsigned int i=0; i<m_all_nodes.size(); i++)
{
irr_driver->removeNode(m_all_nodes[i]);
}
m_all_nodes.clear();
for(unsigned int i=0; i<m_all_meshes.size(); i++)
{
irr_driver->removeMesh(m_all_meshes[i]);
}
m_all_meshes.clear();
if(m_animation_manager)
{
delete m_animation_manager;
m_animation_manager = NULL;
}
for(unsigned int i=0; i<m_physical_objects.size(); i++)
{
delete m_physical_objects[i];
}
m_physical_objects.clear();
irr_driver->removeNode(m_sun);
delete m_non_collision_mesh;
m_non_collision_mesh = new TriangleMesh();
delete m_track_mesh;
m_track_mesh = new TriangleMesh();
// remove temporary materials loaded by the material manager
material_manager->popTempMaterial();
} // cleanup
//-----------------------------------------------------------------------------
const Vec3& Track::trackToSpatial(const int sector) const
{
return m_quad_graph->getQuad(sector).getCenter();
} // trackToSpatial
//-----------------------------------------------------------------------------
/** Returns the start coordinates for a kart on a given position pos
(with pos ranging from 0 to kart_num-1).
*/
btTransform Track::getStartTransform(unsigned int pos) const
{
Vec3 orig = pos<m_start_positions.size()
? m_start_positions[pos]
: Vec3( (pos%2==0)?1.5f:-1.5f, -1.5f*pos-1.5f, 1.0f);
btTransform start;
start.setOrigin(orig);
start.setRotation(btQuaternion(btVector3(0, 0, 1),
pos<m_start_heading.size()
? DEGREE_TO_RAD*m_start_heading[pos]
: 0.0f ));
return start;
} // getStartTransform
//-----------------------------------------------------------------------------
void Track::loadTrackInfo(const std::string &filename)
{
// Default values
m_use_fog = false;
m_fog_density = 1.0f/100.0f;
m_fog_start = 0.0f;
m_fog_end = 1000.0f;
m_gravity = 9.80665f;
/* ARGB */
m_fog_color = video::SColor(255, 77, 179, 230);
m_default_ambient_color = video::SColor(255, 120, 120, 120);
m_sun_specular_color = video::SColor(255, 255, 255, 255);
m_sun_diffuse_color = video::SColor(255, 255, 255, 255);
XMLNode *root = file_manager->createXMLTree(m_filename);
if(!root || root->getName()!="track")
{
std::ostringstream o;
o<<"Can't load track '"<<filename<<"', no track element.";
throw std::runtime_error(o.str());
}
std::string temp_name;
root->get("name", &temp_name);
m_name = _(temp_name.c_str());
root->get("description", &m_description);
root->get("designer", &m_designer);
root->get("version", &m_version);
std::vector<std::string> filenames;
root->get("music", &filenames);
getMusicInformation(filenames, m_music);
root->get("item", &m_item_style);
root->get("screenshot", &m_screenshot);
root->get("gravity", &m_gravity);
root->get("arena", &m_is_arena);
root->get("groups", &m_groups);
for(unsigned int i=0; i<root->getNumNodes(); i++)
{
const XMLNode *mode=root->getNode(i);
if(mode->getName()!="mode") continue;
TrackMode tm;
mode->get("name", &tm.m_name );
mode->get("quads", &tm.m_quad_name );
mode->get("graph", &tm.m_graph_name);
mode->get("scene", &tm.m_scene );
m_all_modes.push_back(tm);
}
// If no mode is specified, add a default mode.
if(m_all_modes.size()==0)
{
TrackMode tm;
m_all_modes.push_back(tm);
}
if(m_groups.size()==0)
m_groups.push_back("standard");
// if both camera position and rotation are defined,
// set the flag that the track has final camera position
m_has_final_camera = root->get("camera-final-position",
&m_camera_final_position)!=1;
m_has_final_camera &= root->get("camera-final-hpr",
&m_camera_final_hpr) !=1;
m_camera_final_hpr.degreeToRad();
const XMLNode *xml_node = root->getNode("curves");
if(xml_node)
loadCurves(*xml_node);
// Set the correct paths
m_screenshot = m_root+"/"+m_screenshot;
delete root;
} // loadTrackInfo
//-----------------------------------------------------------------------------
void Track::loadCurves(const XMLNode &node)
{
for(unsigned int i=0; i<node.getNumNodes(); i++)
{
const XMLNode *curve = node.getNode(i);
m_all_curves.push_back(new BezierCurve(*curve));
} // for i<node.getNumNodes
} // loadCurves
//-----------------------------------------------------------------------------
void Track::getMusicInformation(std::vector<std::string>& filenames,
std::vector<MusicInformation*>& music )
{
for(int i=0; i<(int)filenames.size(); i++)
{
std::string full_path = m_root+"/"+filenames[i];
MusicInformation* mi;
try
{
mi = sound_manager->getMusicInformation(full_path);
}
catch(std::runtime_error)
{
mi = sound_manager->getMusicInformation(m_root+"/"+filenames[i]);
}
if(!mi)
{
fprintf(stderr, "Music information file '%s' not found - ignored.\n",
filenames[i].c_str());
continue;
}
m_music.push_back(mi);
} // for i in filenames
} // getMusicInformation
//-----------------------------------------------------------------------------
void Track::startMusic() const
{
// In case that the music wasn't found (a warning was already printed)
if(m_music.size()>0)
sound_manager->startMusic(m_music[rand()% m_music.size()]);
} // startMusic
//-----------------------------------------------------------------------------
/** Loads the quad graph, i.e. the definition of all quads, and the way
* they are connected to each other.
*/
void Track::loadQuadGraph(unsigned int mode_id)
{
m_quad_graph = new QuadGraph(m_root+"/"+m_all_modes[mode_id].m_quad_name,
m_root+"/"+m_all_modes[mode_id].m_graph_name);
m_mini_map = m_quad_graph->makeMiniMap(RaceManager::getWorld()->getRaceGUI()->getMiniMapSize(),
"minimap::"+m_ident);
if(m_quad_graph->getNumNodes()==0)
{
fprintf(stderr, "No graph nodes defined for track '%s'\n",
m_filename.c_str());
exit(-1);
}
} // loadQuadGraph
// -----------------------------------------------------------------------------
/** Convert the track tree into its physics equivalents.
* \param main_track_count The number of meshes that are already converted
* when the main track was converted. Only the additional meshes
* added later still need to be converted.
*/
void Track::createPhysicsModel(unsigned int main_track_count)
{
// Remove the temporary track rigid body, and then convert all objects
// (i.e. the track and all additional objects) into a new rigid body
// and convert this again. So this way we have an optimised track
// rigid body which includes all track objects.
// Note that removing the rigid body does not remove the already collected
// triangle information, so there is no need to convert the actual track
// (first element in m_track_mesh) again!
if (m_track_mesh == NULL)
{
fprintf(stderr, "ERROR: m_track_mesh == NULL, cannot createPhysicsModel\n");
return;
}
if (m_non_collision_mesh == NULL)
{
fprintf(stderr, "ERROR: m_track_mesh == NULL, cannot createPhysicsModel\n");
return;
}
m_track_mesh->removeBody();
for(unsigned int i=main_track_count; i<m_all_meshes.size(); i++)
{
convertTrackToBullet(m_all_meshes[i], m_all_nodes[i]);
}
m_track_mesh->createBody();
m_non_collision_mesh->createBody(btCollisionObject::CF_NO_CONTACT_RESPONSE);
} // createPhysicsModel
// -----------------------------------------------------------------------------
/** Convert the graohics track into its physics equivalents.
* \param mesh The mesh to convert.
* \param node The scene node.
*/
void Track::convertTrackToBullet(const scene::IMesh *mesh,
const scene::ISceneNode *node)
{
const core::vector3df &pos = node->getPosition();
const core::vector3df &hpr = node->getRotation();
core::matrix4 mat;
mat.setRotationDegrees(hpr);
mat.setTranslation(pos);
for(unsigned int i=0; i<mesh->getMeshBufferCount(); i++) {
scene::IMeshBuffer *mb = mesh->getMeshBuffer(i);
// FIXME: take translation/rotation into account
if(mb->getVertexType()!=video::EVT_STANDARD) {
fprintf(stderr, "WARNING: Physics::convertTrack: Ignoring type '%d'!",
mb->getVertexType());
continue;
}
video::SMaterial &irrMaterial=mb->getMaterial();
video::ITexture* t=irrMaterial.getTexture(0);
const Material* material=0;
TriangleMesh *tmesh = m_track_mesh;
if(t) {
std::string image = std::string(t->getName().c_str());
material=material_manager->getMaterial(StringUtils::getBasename(image));
if(material->isZipper()) tmesh = m_non_collision_mesh;
}
u16 *mbIndices = mb->getIndices();
Vec3 vertices[3];
irr::video::S3DVertex* mbVertices=(video::S3DVertex*)mb->getVertices();
for(unsigned int j=0; j<mb->getIndexCount(); j+=3) {
for(unsigned int k=0; k<3; k++) {
int indx=mbIndices[j+k];
core::vector3df v = mbVertices[indx].Pos;
mat.transformVect(v);
vertices[k] = Vec3(v);
} // for k
if(tmesh) tmesh->addTriangle(vertices[0], vertices[1],
vertices[2], material );
} // for j
} // for i<getMeshBufferCount
} // convertTrackToBullet
// ----------------------------------------------------------------------------
/** Loads the main track model (i.e. all other objects contained in the
* scene might use raycast on this track model to determine the actual
* height of the terrain.
*/
bool Track::loadMainTrack(const XMLNode &root)
{
const XMLNode *track_node= root.getNode("track");
std::string model_name;
track_node->get("model", &model_name);
std::string full_path = m_root+"/"+model_name;
scene::IMesh *mesh = irr_driver->getAnimatedMesh(full_path);
if(!mesh)
{
fprintf(stderr, "Warning: Main track model '%s' in '%s' not found, aborting.\n",
track_node->getName().c_str(), model_name.c_str());
exit(-1);
}
m_all_meshes.push_back(mesh);
scene::ISceneNode *scene_node = irr_driver->addOctTree(mesh);
core::vector3df xyz(0,0,0);
track_node->getXYZ(&xyz);
core::vector3df hpr(0,0,0);
track_node->getHPR(&hpr);
scene_node->setPosition(xyz);
scene_node->setRotation(hpr);
handleAnimatedTextures(scene_node, *track_node);
m_all_nodes.push_back(scene_node);
MeshTools::minMax3D(mesh, &m_aabb_min, &m_aabb_max);
RaceManager::getWorld()->getPhysics()->init(m_aabb_min, m_aabb_max);
for(unsigned int i=0; i<track_node->getNumNodes(); i++)
{
const XMLNode *n=track_node->getNode(i);
// The have already been handled
if(n->getName()=="animated-texture") continue;
assert(n->getName()=="object");
model_name="";
n->get("model", &model_name);
full_path = m_root+"/"+model_name;
scene::IAnimatedMesh *a_mesh = irr_driver->getAnimatedMesh(full_path);
if(!a_mesh)
{
fprintf(stderr, "Warning: object model '%s' not found, ignored.\n",
full_path.c_str());
continue;
}
m_all_meshes.push_back(a_mesh);
scene::ISceneNode *scene_node = irr_driver->addAnimatedMesh(a_mesh);
core::vector3df xyz(0,0,0);
n->get("xyz", &xyz);
core::vector3df hpr(0,0,0);
n->get("hpr", &hpr);
scene_node->setPosition(xyz);
scene_node->setRotation(hpr);
handleAnimatedTextures(scene_node, *n);
m_all_nodes.push_back(scene_node);
} // for i
// This will (at this stage) only convert the main track model.
for(unsigned int i=0; i<m_all_meshes.size(); i++)
//for(unsigned int i=0; i<1; i++)
{
convertTrackToBullet(m_all_meshes[i], m_all_nodes[i]);
}
if (m_track_mesh == NULL)
{
fprintf(stderr, "ERROR: m_track_mesh == NULL, cannot loadMainTrack\n");
exit(-1);
}
m_track_mesh->createBody();
scene_node->setMaterialFlag(video::EMF_LIGHTING, true);
scene_node->setMaterialFlag(video::EMF_GOURAUD_SHADING, true);
return true;
} // loadMainTrack
// ----------------------------------------------------------------------------
/** Handles animated textures.
* \param node The scene node for which animated textures are handled.
* \param xml The node containing the data for the animated notion.
*/
void Track::handleAnimatedTextures(scene::ISceneNode *node, const XMLNode &xml)
{
for(unsigned int node_number = 0; node_number<xml.getNumNodes();
node_number++)
{
const XMLNode *texture_node = xml.getNode(node_number);
if(texture_node->getName()!="animated-texture") continue;
std::string name;
texture_node->get("name", &name);
if(name=="")
{
fprintf(stderr,
"Animated texture: no texture name specified for track '%s'\n",
m_ident.c_str());
continue;
}
for(unsigned int i=0; i<node->getMaterialCount(); i++)
{
video::SMaterial &irrMaterial=node->getMaterial(i);
for(unsigned int j=0; j<video::MATERIAL_MAX_TEXTURES; j++)
{
video::ITexture* t=irrMaterial.getTexture(j);
if(!t) continue;
const std::string texture_name =
StringUtils::getBasename(t->getName().c_str());
if(texture_name!=name) continue;
core::matrix4 *m = &irrMaterial.getTextureMatrix(j);
m_animated_textures.push_back(new MovingTexture(m, *texture_node));
} // for j<MATERIAL_MAX_TEXTURES
} // for i<getMaterialCount
} // for node_number < xml->getNumNodes
} // handleAnimatedTextures
// ----------------------------------------------------------------------------
/** Update, called once per frame.
* \param dt Timestep.
*/
void Track::update(float dt)
{
for(unsigned int i=0; i<m_animated_textures.size(); i++)
{
m_animated_textures[i]->update(dt);
}
for(unsigned int i=0; i<m_physical_objects.size(); i++)
{
m_physical_objects[i]->update(dt);
}
if(m_animation_manager)
m_animation_manager->update(dt);
if(m_check_manager)
m_check_manager->update(dt);
item_manager->update(dt);
} // update
// ----------------------------------------------------------------------------
/** Handles an explosion, i.e. it makes sure that all physical objects are
* affected accordingly.
* \param pos Position of the explosion.
* \param obj If the hit was a physical object, this object will be affected
* more. Otherwise this is NULL.
*/
void Track::handleExplosion(const Vec3 &pos, const PhysicalObject *obj) const
{
for(std::vector<PhysicalObject*>::const_iterator i=m_physical_objects.begin();
i!=m_physical_objects.end(); i++)
{
(*i)->handleExplosion(pos, obj==(*i));
}
} // handleExplosion
// ----------------------------------------------------------------------------
/** Creates a water node.
* \param node The XML node containing the specifications for the water node.
*/
void Track::createWater(const XMLNode &node)
{
std::string model_name;
node.get("model", &model_name);
std::string full_path = m_root+"/"+model_name;
//scene::IMesh *mesh = irr_driver->getMesh(full_path);
scene::IAnimatedMesh *mesh = irr_driver->getSceneManager()->getMesh(full_path.c_str());
//irr_driver->getSceneManager()->addWaterSurfaceSceneNode(mesh->getMesh(0));
//scene::IAnimatedMesh *mesh = irr_driver->getSceneManager()->addHillPlaneMesh("myHill",
// core::dimension2d<f32>(20,20),
// core::dimension2d<u32>(40,40), 0, 0,
// core::dimension2d<f32>(0,0),
// core::dimension2d<f32>(10,10));
//scene::SMeshBuffer b(*(scene::SMeshBuffer*)(mesh->getMesh(0)->getMeshBuffer(0)));
//scene::SMeshBuffer* buffer = new scene::SMeshBuffer(*(scene::SMeshBuffer*)(mesh->getMeshBuffer(0)));
float wave_height = 2.0f;
float wave_speed = 300.0f;
float wave_length = 10.0f;
node.get("height", &wave_height);
node.get("speed", &wave_speed);
node.get("length", &wave_length);
scene::ISceneNode* scene_node = irr_driver->addWaterNode(mesh,
wave_height,
wave_speed,
wave_length);
if(!mesh || !scene_node)
{
fprintf(stderr, "Warning: Water model '%s' in '%s' not found, ignored.\n",
node.getName().c_str(), model_name.c_str());
return;
}
m_all_meshes.push_back(mesh);
core::vector3df xyz(0,0,0);
node.getXYZ(&xyz);
core::vector3df hpr(0,0,0);
node.getHPR(&hpr);
scene_node->setPosition(xyz);
scene_node->setRotation(hpr);
m_all_nodes.push_back(scene_node);
} // createWater
// ----------------------------------------------------------------------------
/** This function load the actual scene, i.e. all parts of the track,
* animations, items, ... It is called from world during initialisation.
* Track is the first model to be loaded, so at this stage the root scene node
* is empty.
*/
void Track::loadTrackModel(unsigned int mode_id)
{
item_manager->setStyle();
// Load the graph only now: this function is called from world, after
// the race gui was created. The race gui is needed since it stores
// the information about the size of the texture to render the mini
// map to.
loadQuadGraph(mode_id);
// Add the track directory to the texture search path
file_manager->pushTextureSearchPath(m_root);
file_manager->pushModelSearchPath (m_root);
// First read the temporary materials.dat file if it exists
try
{
std::string materials_file = m_root+"/materials.xml";
material_manager->pushTempMaterial(materials_file);
}
catch (std::exception& e)
{
// no temporary materials.dat file, ignore
(void)e;
}
// Start building the scene graph
std::string path = m_root+"/"+m_all_modes[mode_id].m_scene;
XMLNode *root = file_manager->createXMLTree(path);
// Make sure that we have a track (which is used for raycasts to
// place other objects).
if(!root || root->getName()!="scene")
{
std::ostringstream msg;
msg<< "No track model defined in '"<<path
<<"', aborting.";
throw std::runtime_error(msg.str());
}
loadMainTrack(*root);
unsigned int main_track_count = m_all_meshes.size();
for(unsigned int i=0; i<root->getNumNodes(); i++)
{
const XMLNode *node = root->getNode(i);
const std::string name = node->getName();
// The track object was already converted before the loop
if(name=="track") continue;
if(name=="physical-object")
{
m_physical_objects.push_back(new PhysicalObject(node));
}
else if(name=="water")
{
createWater(*node);
}
else if(name=="model")
{
std::string model_name;
node->get("model", &model_name);
std::string full_path = m_root+"/"+model_name;
scene::IMesh *mesh = irr_driver->getAnimatedMesh(full_path);
if(!mesh)
{
fprintf(stderr, "Warning: Main track model '%s' in '%s' not found, aborting.\n",
node->getName().c_str(), model_name.c_str());
exit(-1);
}
m_all_meshes.push_back(mesh);
scene::ISceneNode *scene_node = irr_driver->addOctTree(mesh);
core::vector3df xyz(0,0,0);
node->getXYZ(&xyz);
core::vector3df hpr(0,0,0);
node->getHPR(&hpr);
scene_node->setPosition(xyz);
scene_node->setRotation(hpr);
handleAnimatedTextures(scene_node, *node);
m_all_nodes.push_back(scene_node);
scene_node->setMaterialFlag(video::EMF_LIGHTING, true);
}
else if(name=="banana" || name=="item" ||
name=="small-nitro" || name=="big-nitro")
{
Item::ItemType type;
if (name=="banana" ) type = Item::ITEM_BANANA;
else if(name=="item" ) type = Item::ITEM_BONUS_BOX;
else if(name=="small-nitro") type = Item::ITEM_SILVER_COIN;
else type = Item::ITEM_GOLD_COIN;
Vec3 xyz;
int bits = node->getXYZ(&xyz);
// Height is needed if bit 2 (for z) is not set
itemCommand(xyz, type, /* need_height */ !XMLNode::hasZ(bits) );
}
else if (name=="start")
{
Vec3 xyz(0,0,0);
node->getXYZ(&xyz);
m_start_positions.push_back(xyz);
float h=0;
node->get("h", &h);
m_start_heading.push_back(h);
}
else if(name=="animations")
{
m_animation_manager = new AnimationManager(*this, *node);
}
else if(name=="checks")
{
m_check_manager = new CheckManager(*node, this);
}
else if(name=="sun")
{
node->get("xyz", &m_sun_position );
node->get("ambient-color", &m_default_ambient_color);
//node->get("sun-color", &m_sun_ambient_color);
node->get("sun-specular", &m_sun_specular_color);
node->get("sun-diffuse", &m_sun_diffuse_color);
node->get("fog", &m_use_fog);
node->get("fog-color", &m_fog_color);
node->get("fog-density", &m_fog_density);
node->get("fog-start", &m_fog_start);
node->get("fog-end", &m_fog_end);
}
else if(name=="sky-dome" || name=="sky-box")
{
handleSky(*node, path);
}
else
{
fprintf(stderr, "Warning: element '%s' not found.\n",
node->getName().c_str());
}
}
delete root;
// Init all physical objects
for(std::vector<PhysicalObject*>::const_iterator i=m_physical_objects.begin();
i!=m_physical_objects.end(); i++)
{
(*i)->init();
}
// Sky dome and boxes support
// --------------------------
if(m_sky_type==SKY_DOME)
{
scene::ISceneNode *node = irr_driver->addSkyDome(m_sky_textures[0],
m_sky_hori_segments,
m_sky_vert_segments,
m_sky_texture_percent,
m_sky_sphere_percent);
for(unsigned int i=0; i<node->getMaterialCount(); i++)
{
video::SMaterial &irrMaterial=node->getMaterial(i);
for(unsigned int j=0; j<video::MATERIAL_MAX_TEXTURES; j++)
{
video::ITexture* t=irrMaterial.getTexture(j);
if(!t) continue;
core::matrix4 *m = &irrMaterial.getTextureMatrix(j);
m_animated_textures.push_back(new MovingTexture(m, 0.05f, 0.0f));
} // for j<MATERIAL_MAX_TEXTURES
} // for i<getMaterialCount
m_all_nodes.push_back(node);
}
else if(m_sky_type==SKY_BOX)
{
m_all_nodes.push_back(irr_driver->addSkyBox(m_sky_textures));
}
file_manager->popTextureSearchPath();
file_manager->popModelSearchPath ();
// ---- Set ambient color
m_ambient_color = m_default_ambient_color;
irr_driver->getSceneManager()->setAmbientLight(m_ambient_color);
// ---- Create sun (non-ambient directional light)
m_sun = irr_driver->getSceneManager()->addLightSceneNode(NULL, core::vector3df(0,0,0),
m_sun_diffuse_color);
m_sun->setLightType(video::ELT_DIRECTIONAL);
m_sun->setRotation( core::vector3df(180, 45, 45) ); // TODO: make sun orientation configurable (calculate from m_sun_position)
// We should NOT give the sun an ambient color, we already have a scene-wide ambient color.
// No need for two ambient colors.
//m_sun->getLightData().AmbientColor = m_sun_ambient_color;
//m_sun->getLightData().DiffuseColor = m_sun_diffuse_color;
m_sun->getLightData().SpecularColor = m_sun_specular_color;
/*
m_light = irr_driver->getSceneManager()->addLightSceneNode(0, m_sun_position);
video::SLight light;
// HACK & TEST: checking how ambient looks for some things, must be properly done once we reach an agreement
light.AmbientColor = irr::video::SColorf(0.666666f, 0.666666f, 0.666666f, 0.0f);
m_light->setLightData(light);
*/
// ---- Fog
if (m_use_fog)
{
irr_driver->getVideoDriver()->setFog(m_fog_color, video::EFT_FOG_LINEAR, m_fog_start, m_fog_end, m_fog_density);
}
// Note: the physics world for irrlicht is created in loadMainTrack
createPhysicsModel(main_track_count);
if (UserConfigParams::m_track_debug) m_quad_graph->createDebugMesh();
} // loadTrackModel
//-----------------------------------------------------------------------------
void Track::handleSky(const XMLNode &xml_node, const std::string &filename)
{
if(xml_node.getName()=="sky-dome")
{
m_sky_type = SKY_DOME;
m_sky_vert_segments = 16;
m_sky_hori_segments = 16;
m_sky_sphere_percent = 1.0f;
m_sky_texture_percent = 1.0f;
std::string s;
xml_node.get("texture", &s );
m_sky_textures.push_back(s);
xml_node.get("vertical", &m_sky_vert_segments );
xml_node.get("horizontal", &m_sky_hori_segments );
xml_node.get("sphere-percent", &m_sky_sphere_percent );
xml_node.get("texture-percent", &m_sky_texture_percent);
} // if sky-dome
else if(xml_node.getName()=="sky-box")
{
std::string s;
xml_node.get("texture", &s);
m_sky_textures = StringUtils::split(s, ' ');
if(m_sky_textures.size()!=6)
{
fprintf(stderr, "A skybox needs 6 textures, but %d are specified\n",
(int)m_sky_textures.size());
fprintf(stderr, "in '%s'.\n", filename.c_str());
}
else
{
m_sky_type = SKY_BOX;
}
} // if sky-box
} // handleSky
//-----------------------------------------------------------------------------
void Track::itemCommand(const Vec3 &xyz, Item::ItemType type,
int bNeedHeight)
{
// Some modes (e.g. time trial) don't have any bonus boxes
if(type==Item::ITEM_BONUS_BOX &&
!RaceManager::getWorld()->enableBonusBoxes())
return;
Vec3 loc(xyz);
// if only 2d coordinates are given, let the item fall from very high
if(bNeedHeight)
{
loc.setZ(1000);
loc.setZ(getTerrainHeight(loc));
}
// Don't tilt the items, since otherwise the rotation will look odd,
// i.e. the items will not rotate around the normal, but 'wobble'
// around.
Vec3 normal(0, 0, 0.0f);
item_manager->newItem(type, loc, normal);
} // itemCommand
// ----------------------------------------------------------------------------
void Track::getTerrainInfo(const Vec3 &pos, float *hot, Vec3 *normal,
const Material **material) const
{
btVector3 to_pos(pos);
to_pos.setZ(-100000.f);
class MaterialCollision : public btCollisionWorld::ClosestRayResultCallback
{
public:
const Material* m_material;
MaterialCollision(btVector3 p1, btVector3 p2) :
btCollisionWorld::ClosestRayResultCallback(p1,p2) {m_material=NULL;}
virtual btScalar AddSingleResult(btCollisionWorld::LocalRayResult& rayResult,
bool normalInWorldSpace) {
if(rayResult.m_localShapeInfo && rayResult.m_localShapeInfo->m_shapePart>=0 )
{
m_material = ((TriangleMesh*)rayResult.m_collisionObject->getUserPointer())->getMaterial(rayResult.m_localShapeInfo->m_triangleIndex);
}
else
{
// This can happen if the raycast hits a kart. This should
// actually be impossible (since the kart is removed from
// the collision group), but now and again the karts don't
// have the broadphase handle set (kart::update() for
// details), and it might still happen. So in this case
// just ignore this callback and don't add it.
return 1.0f;
}
return btCollisionWorld::ClosestRayResultCallback::AddSingleResult(rayResult,
normalInWorldSpace);
} // AddSingleResult
}; // myCollision
MaterialCollision rayCallback(pos, to_pos);
RaceManager::getWorld()->getPhysics()->getPhysicsWorld()->rayTest(pos, to_pos, rayCallback);
if(!rayCallback.HasHit())
{
*hot = NOHIT;
*material = NULL;
return;
}
*hot = rayCallback.m_hitPointWorld.getZ();
*normal = rayCallback.m_hitNormalWorld;
*material = rayCallback.m_material;
// Note: material might be NULL. This happens if the ray cast does not
// hit the track, but another rigid body (kart, moving_physics) - e.g.
// assume two karts falling down, one over the other. Bullet does not
// have any triangle/material information in this case!
} // getTerrainInfo
// ----------------------------------------------------------------------------
/** Simplified version to determine only the height of the terrain.
* \param pos Position at which to determine the height (x,y coordinates
* are only used).
* \return The height at the x,y coordinates.
*/
float Track::getTerrainHeight(const Vec3 &pos) const
{
float hot;
Vec3 normal;
const Material *m;
getTerrainInfo(pos, &hot, &normal, &m);
return hot;
} // getTerrainHeight