139f20b39d
Conflicts: CMakeLists.txt sources.cmake src/io/file_manager.cpp src/io/file_manager.hpp src/modes/world.hpp src/tracks/track.hpp src/tracks/track_object_presentation.cpp
766 lines
27 KiB
C++
766 lines
27 KiB
C++
/*
|
|
AngelCode Scripting Library
|
|
Copyright (c) 2003-2013 Andreas Jonsson
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any
|
|
damages arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any
|
|
purpose, including commercial applications, and to alter it and
|
|
redistribute it freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you
|
|
must not claim that you wrote the original software. If you use
|
|
this software in a product, an acknowledgment in the product
|
|
documentation would be appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and
|
|
must not be misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source
|
|
distribution.
|
|
|
|
The original version of this library can be located at:
|
|
http://www.angelcode.com/angelscript/
|
|
|
|
Andreas Jonsson
|
|
andreas@angelcode.com
|
|
*/
|
|
|
|
|
|
//
|
|
// as_callfunc_ppc_64.cpp
|
|
//
|
|
// These functions handle the actual calling of system functions
|
|
//
|
|
// This version is 64 bit PPC specific
|
|
//
|
|
|
|
#include "as_config.h"
|
|
|
|
#ifndef AS_MAX_PORTABILITY
|
|
#ifdef AS_PPC_64
|
|
|
|
#include "as_callfunc.h"
|
|
#include "as_scriptengine.h"
|
|
#include "as_texts.h"
|
|
#include "as_tokendef.h"
|
|
#include "as_context.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#ifdef __SNC__
|
|
#include "ppu_asm_intrinsics.h"
|
|
#endif
|
|
|
|
|
|
BEGIN_AS_NAMESPACE
|
|
|
|
// This part was written and tested by Jeff Slutter
|
|
// from Reactor Zero, Abril, 2007, for PlayStation 3, which
|
|
// is a PowerPC 64bit based architecture. Even though it is
|
|
// 64bit it seems the pointer size is still 32bit.
|
|
|
|
// It still remains to be seen how well this code works
|
|
// on other PPC platforms, such as XBox 360, GameCube.
|
|
|
|
#define AS_PPC_MAX_ARGS 32
|
|
|
|
// The array used to send values to the correct places.
|
|
// Contains a byte of argTypes to indicate the register type to load
|
|
// or zero if end of arguments
|
|
// The +1 is for when CallThis (object methods) is used
|
|
// Extra +1 when returning in memory
|
|
// Extra +1 in ppcArgsType to ensure zero end-of-args marker
|
|
|
|
// TODO: multithread: The global variables must be removed to make the code thread safe
|
|
|
|
extern "C"
|
|
{
|
|
enum argTypes { ppcENDARG = 0, ppcINTARG = 1, ppcFLOATARG = 2, ppcDOUBLEARG = 3, ppcLONGARG = 4 };
|
|
static asBYTE ppcArgsType[AS_PPC_MAX_ARGS + 1 + 1 + 1];
|
|
static asDWORD ppcArgs[2*AS_PPC_MAX_ARGS + 1 + 1];
|
|
}
|
|
|
|
// NOTE: these values are for PowerPC 64 bit. I'm sure things are different for PowerPC 32bit, but I don't have one.
|
|
// I'm pretty sure that PPC 32bit sets up a stack frame slightly different (only 24 bytes for linkage area for instance)
|
|
#define PPC_LINKAGE_SIZE (0x30) // how big the PPC linkage area is in a stack frame
|
|
#define PPC_NUM_REGSTORE (10) // how many registers of the PPC we need to store/restore for ppcFunc64()
|
|
#define PPC_REGSTORE_SIZE (8*PPC_NUM_REGSTORE) // how many bytes are required for register store/restore
|
|
#define EXTRA_STACK_SIZE (PPC_LINKAGE_SIZE + PPC_REGSTORE_SIZE) // memory required, not including parameters, for the stack frame
|
|
#define PPC_STACK_SIZE(numParams) ( -(( ( (((numParams)<8)?8:(numParams))<<3) + EXTRA_STACK_SIZE + 15 ) & ~15) ) // calculates the total stack size needed for ppcFunc64, must pad to 16bytes
|
|
|
|
// This is PowerPC 64 bit specific
|
|
// Loads all data into the correct places and calls the function.
|
|
// ppcArgsType is an array containing a byte type (enum argTypes) for each argument.
|
|
// StackArgSizeInBytes is the size in bytes of the stack frame (takes into account linkage area, etc. must be multiple of 16)
|
|
extern "C" asQWORD ppcFunc64(const asDWORD* argsPtr, int StackArgSizeInBytes, asDWORD func);
|
|
asm(""
|
|
".text\n"
|
|
".align 4\n"
|
|
".p2align 4,,15\n"
|
|
".globl .ppcFunc64\n"
|
|
".ppcFunc64:\n"
|
|
|
|
// function prolog
|
|
"std %r22, -0x08(%r1)\n" // we need a register other than r0, to store the old stack pointer
|
|
"mr %r22, %r1\n" // store the old stack pointer, for now (to make storing registers easier)
|
|
"stdux %r1, %r1, %r4\n" // atomically store and update the stack pointer for the new stack frame (in case of a signal/interrupt)
|
|
"mflr %r0\n" // get the caller's LR register
|
|
"std %r0, 0x10(%r22)\n" // store the caller's LR register
|
|
"std %r23, -0x10(%r22)\n" //
|
|
"std %r24, -0x18(%r22)\n" //
|
|
"std %r25, -0x20(%r22)\n" //
|
|
"std %r26, -0x28(%r22)\n" //
|
|
"std %r27, -0x30(%r22)\n" //
|
|
"std %r28, -0x38(%r22)\n" //
|
|
"std %r29, -0x40(%r22)\n" //
|
|
"std %r30, -0x48(%r22)\n" //
|
|
"std %r31, -0x50(%r22)\n" //
|
|
"std %r3, 0x30(%r22)\n" // save our parameters
|
|
"std %r4, 0x38(%r22)\n" //
|
|
"std %r5, 0x40(%r22)\n" //
|
|
"mr %r31, %r1\n" // functions tend to store the stack pointer here too
|
|
|
|
// initial registers for the function
|
|
"mr %r29, %r3\n" // (r29) args list
|
|
"lwz %r27, 0(%r5)\n" // load the function pointer to call. func actually holds the pointer to our function
|
|
"addi %r26, %r1, 0x30\n" // setup the pointer to the parameter area to the function we're going to call
|
|
"sub %r0,%r0,%r0\n" // zero out r0
|
|
"mr %r23,%r0\n" // zero out r23, which holds the number of used GPR registers
|
|
"mr %r22,%r0\n" // zero our r22, which holds the number of used float registers
|
|
|
|
// load the global ppcArgsType which holds the types of arguments for each argument
|
|
"lis %r25, ppcArgsType@ha\n" // load the upper 16 bits of the address to r25
|
|
"addi %r25, %r25, ppcArgsType@l\n" // load the lower 16 bits of the address to r25
|
|
"subi %r25, %r25, 1\n" // since we increment r25 on its use, we'll pre-decrement it
|
|
|
|
// loop through the arguments
|
|
"ppcNextArg:\n"
|
|
"addi %r25, %r25, 1\n" // increment r25, our arg type pointer
|
|
// switch based on the current argument type (0:end, 1:int, 2:float 3:double)
|
|
"lbz %r24, 0(%r25)\n" // load the current argument type (it's a byte)
|
|
"mulli %r24, %r24, 4\n" // our jump table has 4 bytes per case (1 instruction)
|
|
"lis %r30, ppcTypeSwitch@ha\n" // load the address of the jump table for the switch
|
|
"addi %r30, %r30, ppcTypeSwitch@l\n"
|
|
"add %r0, %r30, %r24\n" // offset by our argument type
|
|
"mtctr %r0\n" // load the jump address into CTR
|
|
"bctr\n" // jump into the jump table/switch
|
|
"nop\n"
|
|
// the jump table/switch based on the current argument type
|
|
"ppcTypeSwitch:\n"
|
|
"b ppcArgsEnd\n"
|
|
"b ppcArgIsInteger\n"
|
|
"b ppcArgIsFloat\n"
|
|
"b ppcArgIsDouble\n"
|
|
"b ppcArgIsLong\n"
|
|
|
|
// when we get here we have finished processing all the arguments
|
|
// everything is ready to go to call the function
|
|
"ppcArgsEnd:\n"
|
|
"mtctr %r27\n" // the function pointer is stored in r27, load that into CTR
|
|
"bctrl\n" // call the function. We have to do it this way so that the LR gets the proper
|
|
"nop\n" // return value (the next instruction below). So we have to branch from CTR instead of LR.
|
|
// when we get here, the function has returned, this is the function epilog
|
|
"ld %r11,0x00(%r1)\n" // load in the caller's stack pointer
|
|
"ld %r0,0x10(%r11)\n" // load in the caller's LR
|
|
"mtlr %r0\n" // restore the caller's LR
|
|
"ld %r22, -0x08(%r11)\n" // load registers
|
|
"ld %r23, -0x10(%r11)\n" //
|
|
"ld %r24, -0x18(%r11)\n" //
|
|
"ld %r25, -0x20(%r11)\n" //
|
|
"ld %r26, -0x28(%r11)\n" //
|
|
"ld %r27, -0x30(%r11)\n" //
|
|
"ld %r28, -0x38(%r11)\n" //
|
|
"ld %r29, -0x40(%r11)\n" //
|
|
"ld %r30, -0x48(%r11)\n" //
|
|
"ld %r31, -0x50(%r11)\n" //
|
|
"mr %r1, %r11\n" // restore the caller's SP
|
|
"blr\n" // return back to the caller
|
|
"nop\n"
|
|
// Integer argument (GPR register)
|
|
"ppcArgIsInteger:\n"
|
|
"lis %r30,ppcLoadIntReg@ha\n" // load the address to the jump table for integer registers
|
|
"addi %r30, %r30, ppcLoadIntReg@l\n"
|
|
"mulli %r0, %r23, 8\n" // each item in the jump table is 2 instructions (8 bytes)
|
|
"add %r0, %r0, %r30\n" // calculate ppcLoadIntReg[numUsedGPRRegs]
|
|
"lwz %r30,0(%r29)\n" // load the next argument from the argument list into r30
|
|
"cmpwi %r23, 8\n" // we can only load GPR3 through GPR10 (8 registers)
|
|
"bgt ppcLoadIntRegUpd\n" // if we're beyond 8 GPR registers, we're in the stack, go there
|
|
"mtctr %r0\n" // load the address of our ppcLoadIntReg jump table (we're below 8 GPR registers)
|
|
"bctr\n" // load the argument into a GPR register
|
|
"nop\n"
|
|
// jump table for GPR registers, for the first 8 GPR arguments
|
|
"ppcLoadIntReg:\n"
|
|
"mr %r3,%r30\n" // arg0 (to r3)
|
|
"b ppcLoadIntRegUpd\n"
|
|
"mr %r4,%r30\n" // arg1 (to r4)
|
|
"b ppcLoadIntRegUpd\n"
|
|
"mr %r5,%r30\n" // arg2 (to r5)
|
|
"b ppcLoadIntRegUpd\n"
|
|
"mr %r6,%r30\n" // arg3 (to r6)
|
|
"b ppcLoadIntRegUpd\n"
|
|
"mr %r7,%r30\n" // arg4 (to r7)
|
|
"b ppcLoadIntRegUpd\n"
|
|
"mr %r8,%r30\n" // arg5 (to r8)
|
|
"b ppcLoadIntRegUpd\n"
|
|
"mr %r9,%r30\n" // arg6 (to r9)
|
|
"b ppcLoadIntRegUpd\n"
|
|
"mr %r10,%r30\n" // arg7 (to r10)
|
|
"b ppcLoadIntRegUpd\n"
|
|
|
|
// all GPR arguments still go on the stack
|
|
"ppcLoadIntRegUpd:\n"
|
|
"std %r30,0(%r26)\n" // store the argument into the next slot on the stack's argument list
|
|
"addi %r23, %r23, 1\n" // count a used GPR register
|
|
"addi %r29, %r29, 4\n" // move to the next argument on the list
|
|
"addi %r26, %r26, 8\n" // adjust our argument stack pointer for the next
|
|
"b ppcNextArg\n" // next argument
|
|
|
|
// single Float argument
|
|
"ppcArgIsFloat:\n"
|
|
"lis %r30,ppcLoadFloatReg@ha\n" // get the base address of the float register jump table
|
|
"addi %r30, %r30, ppcLoadFloatReg@l\n"
|
|
"mulli %r0, %r22 ,8\n" // each jump table entry is 8 bytes
|
|
"add %r0, %r0, %r30\n" // calculate the offset to ppcLoadFloatReg[numUsedFloatReg]
|
|
"lfs 0, 0(%r29)\n" // load the next argument as a float into f0
|
|
"cmpwi %r22, 13\n" // can't load more than 13 float/double registers
|
|
"bgt ppcLoadFloatRegUpd\n" // if we're beyond 13 registers, just fall to inserting into the stack
|
|
"mtctr %r0\n" // jump into the float jump table
|
|
"bctr\n"
|
|
"nop\n"
|
|
// jump table for float registers, for the first 13 float arguments
|
|
"ppcLoadFloatReg:\n"
|
|
"fmr 1,0\n" // arg0 (f1)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 2,0\n" // arg1 (f2)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 3,0\n" // arg2 (f3)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 4,0\n" // arg3 (f4)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 5,0\n" // arg4 (f5)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 6,0\n" // arg5 (f6)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 7,0\n" // arg6 (f7)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 8,0\n" // arg7 (f8)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 9,0\n" // arg8 (f9)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 10,0\n" // arg9 (f10)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 11,0\n" // arg10 (f11)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 12,0\n" // arg11 (f12)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"fmr 13,0\n" // arg12 (f13)
|
|
"b ppcLoadFloatRegUpd\n"
|
|
"nop\n"
|
|
// all float arguments still go on the stack
|
|
"ppcLoadFloatRegUpd:\n"
|
|
"stfs 0, 0x04(%r26)\n" // store, as a single float, f0 (current argument) on to the stack argument list
|
|
"addi %r23, %r23, 1\n" // a float register eats up a GPR register
|
|
"addi %r22, %r22, 1\n" // ...and, of course, a float register
|
|
"addi %r29, %r29, 4\n" // move to the next argument in the list
|
|
"addi %r26, %r26, 8\n" // move to the next stack slot
|
|
"b ppcNextArg\n" // on to the next argument
|
|
"nop\n"
|
|
// double Float argument
|
|
"ppcArgIsDouble:\n"
|
|
"lis %r30, ppcLoadDoubleReg@ha\n" // load the base address of the jump table for double registers
|
|
"addi %r30, %r30, ppcLoadDoubleReg@l\n"
|
|
"mulli %r0, %r22, 8\n" // each slot of the jump table is 8 bytes
|
|
"add %r0, %r0, %r30\n" // calculate ppcLoadDoubleReg[numUsedFloatReg]
|
|
"lfd 0, 0(%r29)\n" // load the next argument, as a double float, into f0
|
|
"cmpwi %r22,13\n" // the first 13 floats must go into float registers also
|
|
"bgt ppcLoadDoubleRegUpd\n" // if we're beyond 13, then just put on to the stack
|
|
"mtctr %r0\n" // we're under 13, first load our register
|
|
"bctr\n" // jump into the jump table
|
|
"nop\n"
|
|
// jump table for float registers, for the first 13 float arguments
|
|
"ppcLoadDoubleReg:\n"
|
|
"fmr 1,0\n" // arg0 (f1)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 2,0\n" // arg1 (f2)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 3,0\n" // arg2 (f3)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 4,0\n" // arg3 (f4)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 5,0\n" // arg4 (f5)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 6,0\n" // arg5 (f6)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 7,0\n" // arg6 (f7)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 8,0\n" // arg7 (f8)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 9,0\n" // arg8 (f9)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 10,0\n" // arg9 (f10)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 11,0\n" // arg10 (f11)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 12,0\n" // arg11 (f12)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"fmr 13,0\n" // arg12 (f13)
|
|
"b ppcLoadDoubleRegUpd\n"
|
|
"nop\n"
|
|
// all float arguments still go on the stack
|
|
"ppcLoadDoubleRegUpd:\n"
|
|
"stfd 0,0(%r26)\n" // store f0, as a double, into the argument list on the stack
|
|
"addi %r23, %r23, 1\n" // a double float eats up one GPR
|
|
"addi %r22, %r22, 1\n" // ...and, of course, a float
|
|
"addi %r29, %r29, 8\n" // increment to our next argument we need to process (8 bytes for the 64bit float)
|
|
"addi %r26, %r26, 8\n" // increment to the next slot on the argument list on the stack (8 bytes)
|
|
"b ppcNextArg\n" // on to the next argument
|
|
"nop\n"
|
|
|
|
// Long (64 bit int) argument
|
|
"ppcArgIsLong:\n"
|
|
"lis %r30,ppcLoadLongReg@ha\n" // load the address to the jump table for integer64
|
|
"addi %r30, %r30, ppcLoadLongReg@l\n"
|
|
"mulli %r0, %r23, 8\n" // each item in the jump table is 2 instructions (8 bytes)
|
|
"add %r0, %r0, %r30\n" // calculate ppcLoadLongReg[numUsedGPRRegs]
|
|
"ld %r30,0(%r29)\n" // load the next argument from the argument list into r30
|
|
"cmpwi %r23, 8\n" // we can only load GPR3 through GPR10 (8 registers)
|
|
"bgt ppcLoadLongRegUpd\n" // if we're beyond 8 GPR registers, we're in the stack, go there
|
|
"mtctr %r0\n" // load the address of our ppcLoadLongReg jump table (we're below 8 GPR registers)
|
|
"bctr\n" // load the argument into a GPR register
|
|
"nop\n"
|
|
// jump table for GPR registers, for the first 8 GPR arguments
|
|
"ppcLoadLongReg:\n"
|
|
"mr %r3,%r30\n" // arg0 (to r3)
|
|
"b ppcLoadLongRegUpd\n"
|
|
"mr %r4,%r30\n" // arg1 (to r4)
|
|
"b ppcLoadLongRegUpd\n"
|
|
"mr %r5,%r30\n" // arg2 (to r5)
|
|
"b ppcLoadLongRegUpd\n"
|
|
"mr %r6,%r30\n" // arg3 (to r6)
|
|
"b ppcLoadLongRegUpd\n"
|
|
"mr %r7,%r30\n" // arg4 (to r7)
|
|
"b ppcLoadLongRegUpd\n"
|
|
"mr %r8,%r30\n" // arg5 (to r8)
|
|
"b ppcLoadLongRegUpd\n"
|
|
"mr %r9,%r30\n" // arg6 (to r9)
|
|
"b ppcLoadLongRegUpd\n"
|
|
"mr %r10,%r30\n" // arg7 (to r10)
|
|
"b ppcLoadLongRegUpd\n"
|
|
|
|
// all GPR arguments still go on the stack
|
|
"ppcLoadLongRegUpd:\n"
|
|
"std %r30,0(%r26)\n" // store the argument into the next slot on the stack's argument list
|
|
"addi %r23, %r23, 1\n" // count a used GPR register
|
|
"addi %r29, %r29, 8\n" // move to the next argument on the list
|
|
"addi %r26, %r26, 8\n" // adjust our argument stack pointer for the next
|
|
"b ppcNextArg\n" // next argument
|
|
);
|
|
|
|
static asDWORD GetReturnedFloat(void)
|
|
{
|
|
asDWORD f;
|
|
#ifdef __SNC__
|
|
__stfs( __freg(1), 0, (void*)&f);
|
|
#else
|
|
asm(" stfs 1, %0\n" : "=m"(f));
|
|
#endif
|
|
return f;
|
|
}
|
|
|
|
static asQWORD GetReturnedDouble(void)
|
|
{
|
|
asQWORD f;
|
|
#ifdef __SNC__
|
|
__stfd( __freg(1), 0, (void*)&f);
|
|
#else
|
|
asm(" stfd 1, %0\n" : "=m"(f));
|
|
#endif
|
|
return f;
|
|
}
|
|
|
|
// puts the arguments in the correct place in the stack array. See comments above.
|
|
static void stackArgs( const asDWORD *args, const asBYTE *argsType, int &numIntArgs, int &numFloatArgs, int &numDoubleArgs, int &numLongArgs )
|
|
{
|
|
// initialize our offset based on any already placed arguments
|
|
int i;
|
|
int argWordPos = numIntArgs + numFloatArgs + (numDoubleArgs*2) + (numLongArgs*2);
|
|
int typeOffset = numIntArgs + numFloatArgs + numDoubleArgs + numLongArgs;
|
|
|
|
int typeIndex;
|
|
for( i = 0, typeIndex = 0; ; i++, typeIndex++ )
|
|
{
|
|
// store the type
|
|
ppcArgsType[typeOffset++] = argsType[typeIndex];
|
|
if( argsType[typeIndex] == ppcENDARG )
|
|
break;
|
|
|
|
switch( argsType[typeIndex] )
|
|
{
|
|
case ppcFLOATARG:
|
|
{
|
|
// stow float
|
|
ppcArgs[argWordPos] = args[i]; // it's just a bit copy
|
|
numFloatArgs++;
|
|
argWordPos++; //add one word
|
|
}
|
|
break;
|
|
|
|
case ppcDOUBLEARG:
|
|
{
|
|
// stow double
|
|
memcpy( &ppcArgs[argWordPos], &args[i], sizeof(double) ); // we have to do this because of alignment
|
|
numDoubleArgs++;
|
|
argWordPos+=2; //add two words
|
|
i++;//doubles take up 2 argument slots
|
|
}
|
|
break;
|
|
|
|
case ppcINTARG:
|
|
{
|
|
// stow register
|
|
ppcArgs[argWordPos] = args[i];
|
|
numIntArgs++;
|
|
argWordPos++;
|
|
}
|
|
break;
|
|
|
|
case ppcLONGARG:
|
|
{
|
|
// stow long
|
|
memcpy( &ppcArgs[argWordPos], &args[i], 8 ); // for alignment purposes, we use memcpy
|
|
numLongArgs++;
|
|
argWordPos += 2; // add two words
|
|
i++; // longs take up 2 argument slots
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// close off the argument list (if we have max args we won't close it off until here)
|
|
ppcArgsType[typeOffset] = ppcENDARG;
|
|
}
|
|
|
|
static asQWORD CallCDeclFunction(const asDWORD* pArgs, const asBYTE *pArgsType, int argSize, asDWORD func, void *retInMemory)
|
|
{
|
|
int baseArgCount = 0;
|
|
if( retInMemory )
|
|
{
|
|
// the first argument is the 'return in memory' pointer
|
|
ppcArgs[0] = (asDWORD)retInMemory;
|
|
ppcArgsType[0] = ppcINTARG;
|
|
ppcArgsType[1] = ppcENDARG;
|
|
baseArgCount = 1;
|
|
}
|
|
|
|
// put the arguments in the correct places in the ppcArgs array
|
|
int numTotalArgs = baseArgCount;
|
|
if( argSize > 0 )
|
|
{
|
|
int intArgs = baseArgCount, floatArgs = 0, doubleArgs = 0, longArgs = 0;
|
|
stackArgs( pArgs, pArgsType, intArgs, floatArgs, doubleArgs, longArgs );
|
|
numTotalArgs = intArgs + floatArgs + doubleArgs + longArgs;
|
|
}
|
|
else
|
|
{
|
|
// no arguments, cap the type list
|
|
ppcArgsType[baseArgCount] = ppcENDARG;
|
|
}
|
|
|
|
// call the function with the arguments
|
|
return ppcFunc64( ppcArgs, PPC_STACK_SIZE(numTotalArgs), func );
|
|
}
|
|
|
|
// This function is identical to CallCDeclFunction, with the only difference that
|
|
// the value in the first parameter is the object (unless we are returning in memory)
|
|
static asQWORD CallThisCallFunction(const void *obj, const asDWORD* pArgs, const asBYTE *pArgsType, int argSize, asDWORD func, void *retInMemory )
|
|
{
|
|
int baseArgCount = 0;
|
|
if( retInMemory )
|
|
{
|
|
// the first argument is the 'return in memory' pointer
|
|
ppcArgs[0] = (asDWORD)retInMemory;
|
|
ppcArgsType[0] = ppcINTARG;
|
|
ppcArgsType[1] = ppcENDARG;
|
|
baseArgCount = 1;
|
|
}
|
|
|
|
// the first argument is the 'this' of the object
|
|
ppcArgs[baseArgCount] = (asDWORD)obj;
|
|
ppcArgsType[baseArgCount++] = ppcINTARG;
|
|
ppcArgsType[baseArgCount] = ppcENDARG;
|
|
|
|
// put the arguments in the correct places in the ppcArgs array
|
|
int numTotalArgs = baseArgCount;
|
|
if( argSize > 0 )
|
|
{
|
|
int intArgs = baseArgCount, floatArgs = 0, doubleArgs = 0, longArgs = 0;
|
|
stackArgs( pArgs, pArgsType, intArgs, floatArgs, doubleArgs, longArgs );
|
|
numTotalArgs = intArgs + floatArgs + doubleArgs + longArgs;
|
|
}
|
|
|
|
// call the function with the arguments
|
|
return ppcFunc64( ppcArgs, PPC_STACK_SIZE(numTotalArgs), func);
|
|
}
|
|
|
|
// This function is identical to CallCDeclFunction, with the only difference that
|
|
// the value in the last parameter is the object
|
|
// NOTE: on PPC the order for the args is reversed
|
|
static asQWORD CallThisCallFunction_objLast(const void *obj, const asDWORD* pArgs, const asBYTE *pArgsType, int argSize, asDWORD func, void *retInMemory)
|
|
{
|
|
UNUSED_VAR(argSize);
|
|
int baseArgCount = 0;
|
|
if( retInMemory )
|
|
{
|
|
// the first argument is the 'return in memory' pointer
|
|
ppcArgs[0] = (asDWORD)retInMemory;
|
|
ppcArgsType[0] = ppcINTARG;
|
|
ppcArgsType[1] = ppcENDARG;
|
|
baseArgCount = 1;
|
|
}
|
|
|
|
// stack any of the arguments
|
|
int intArgs = baseArgCount, floatArgs = 0, doubleArgs = 0, longArgs = 0;
|
|
stackArgs( pArgs, pArgsType, intArgs, floatArgs, doubleArgs, longArgs );
|
|
int numTotalArgs = intArgs + floatArgs + doubleArgs;
|
|
|
|
// can we fit the object in at the end?
|
|
if( numTotalArgs < AS_PPC_MAX_ARGS )
|
|
{
|
|
// put the object pointer at the end
|
|
int argPos = intArgs + floatArgs + (doubleArgs * 2) + (longArgs *2);
|
|
ppcArgs[argPos] = (asDWORD)obj;
|
|
ppcArgsType[numTotalArgs++] = ppcINTARG;
|
|
ppcArgsType[numTotalArgs] = ppcENDARG;
|
|
}
|
|
|
|
// call the function with the arguments
|
|
return ppcFunc64( ppcArgs, PPC_STACK_SIZE(numTotalArgs), func );
|
|
}
|
|
|
|
// returns true if the given parameter is a 'variable argument'
|
|
inline bool IsVariableArgument( asCDataType type )
|
|
{
|
|
return (type.GetTokenType() == ttQuestion) ? true : false;
|
|
}
|
|
|
|
asQWORD CallSystemFunctionNative(asCContext *context, asCScriptFunction *descr, void *obj, asDWORD *args, void *retPointer, asQWORD &/*retQW2*/)
|
|
{
|
|
// use a working array of types, we'll configure the final one in stackArgs
|
|
asBYTE argsType[AS_PPC_MAX_ARGS + 1 + 1 + 1];
|
|
memset( argsType, 0, sizeof(argsType));
|
|
|
|
asCScriptEngine *engine = context->m_engine;
|
|
asSSystemFunctionInterface *sysFunc = descr->sysFuncIntf;
|
|
|
|
int callConv = sysFunc->callConv;
|
|
|
|
asQWORD retQW = 0;
|
|
void *func = (void*)sysFunc->func;
|
|
int paramSize = sysFunc->paramSize;
|
|
asDWORD *vftable = NULL;
|
|
int a;
|
|
|
|
// convert the parameters that are < 4 bytes from little endian to big endian
|
|
int argDwordOffset = 0;
|
|
int totalArgumentCount = 0;
|
|
|
|
for( a = 0; a < (int)descr->parameterTypes.GetLength(); ++a )
|
|
{
|
|
// get the size for the parameter
|
|
int numBytes = descr->parameterTypes[a].GetSizeInMemoryBytes();
|
|
++totalArgumentCount;
|
|
|
|
// is this a variable argument?
|
|
// for variable arguments, the typeID will always follow...but we know it is 4 bytes
|
|
// so we can skip that parameter automatically.
|
|
bool isVarArg = IsVariableArgument( descr->parameterTypes[a] );
|
|
if( isVarArg )
|
|
{
|
|
++totalArgumentCount;
|
|
}
|
|
|
|
if( numBytes >= 4 || descr->parameterTypes[a].IsReference() || descr->parameterTypes[a].IsObjectHandle() )
|
|
{
|
|
// DWORD or larger parameter --- no flipping needed
|
|
argDwordOffset += descr->parameterTypes[a].GetSizeOnStackDWords();
|
|
}
|
|
else
|
|
{
|
|
// flip
|
|
asASSERT( numBytes == 1 || numBytes == 2 );
|
|
switch( numBytes )
|
|
{
|
|
case 1:
|
|
{
|
|
volatile asBYTE *bPtr = (asBYTE*)ARG_DW(args[argDwordOffset]);
|
|
asBYTE t = bPtr[0];
|
|
bPtr[0] = bPtr[3];
|
|
bPtr[3] = t;
|
|
t = bPtr[1];
|
|
bPtr[1] = bPtr[2];
|
|
bPtr[2] = t;
|
|
}
|
|
break;
|
|
case 2:
|
|
{
|
|
volatile asWORD *wPtr = (asWORD*)ARG_DW(args[argDwordOffset]);
|
|
asWORD t = wPtr[0];
|
|
wPtr[0] = wPtr[1];
|
|
wPtr[1] = t;
|
|
}
|
|
break;
|
|
}
|
|
++argDwordOffset;
|
|
}
|
|
|
|
if( isVarArg )
|
|
{
|
|
// skip the implicit typeID
|
|
++argDwordOffset;
|
|
}
|
|
}
|
|
|
|
asASSERT( totalArgumentCount <= AS_PPC_MAX_ARGS );
|
|
|
|
// mark all float/double/int arguments
|
|
int argIndex = 0;
|
|
for( a = 0; a < (int)descr->parameterTypes.GetLength(); ++a, ++argIndex )
|
|
{
|
|
// get the base type
|
|
argsType[argIndex] = ppcINTARG;
|
|
if( descr->parameterTypes[a].IsFloatType() && !descr->parameterTypes[a].IsReference() )
|
|
{
|
|
argsType[argIndex] = ppcFLOATARG;
|
|
}
|
|
if( descr->parameterTypes[a].IsDoubleType() && !descr->parameterTypes[a].IsReference() )
|
|
{
|
|
argsType[argIndex] = ppcDOUBLEARG;
|
|
}
|
|
if( descr->parameterTypes[a].GetSizeOnStackDWords() == 2 && !descr->parameterTypes[a].IsDoubleType() && !descr->parameterTypes[a].IsReference() )
|
|
{
|
|
argsType[argIndex] = ppcLONGARG;
|
|
}
|
|
|
|
// if it is a variable argument, account for the typeID
|
|
if( IsVariableArgument(descr->parameterTypes[a]) )
|
|
{
|
|
// implicitly add another parameter (AFTER the parameter above), for the TypeID
|
|
argsType[++argIndex] = ppcINTARG;
|
|
}
|
|
}
|
|
asASSERT( argIndex == totalArgumentCount );
|
|
|
|
asDWORD paramBuffer[64];
|
|
if( sysFunc->takesObjByVal )
|
|
{
|
|
paramSize = 0;
|
|
int spos = 0;
|
|
int dpos = 1;
|
|
|
|
for( asUINT n = 0; n < descr->parameterTypes.GetLength(); n++ )
|
|
{
|
|
if( descr->parameterTypes[n].IsObject() && !descr->parameterTypes[n].IsObjectHandle() && !descr->parameterTypes[n].IsReference() )
|
|
{
|
|
#ifdef COMPLEX_OBJS_PASSED_BY_REF
|
|
if( descr->parameterTypes[n].GetObjectType()->flags & COMPLEX_MASK )
|
|
{
|
|
paramBuffer[dpos++] = args[spos++];
|
|
++paramSize;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// NOTE: we may have to do endian flipping here
|
|
|
|
// Copy the object's memory to the buffer
|
|
memcpy( ¶mBuffer[dpos], *(void**)(args+spos), descr->parameterTypes[n].GetSizeInMemoryBytes() );
|
|
|
|
// Delete the original memory
|
|
engine->CallFree( *(char**)(args+spos) );
|
|
spos++;
|
|
dpos += descr->parameterTypes[n].GetSizeInMemoryDWords();
|
|
paramSize += descr->parameterTypes[n].GetSizeInMemoryDWords();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Copy the value directly
|
|
paramBuffer[dpos++] = args[spos++];
|
|
if( descr->parameterTypes[n].GetSizeOnStackDWords() > 1 )
|
|
{
|
|
paramBuffer[dpos++] = args[spos++];
|
|
}
|
|
paramSize += descr->parameterTypes[n].GetSizeOnStackDWords();
|
|
}
|
|
|
|
// if this was a variable argument parameter, then account for the implicit typeID
|
|
if( IsVariableArgument( descr->parameterTypes[n] ) )
|
|
{
|
|
// the TypeID is just a DWORD
|
|
paramBuffer[dpos++] = args[spos++];
|
|
++paramSize;
|
|
}
|
|
}
|
|
|
|
// Keep a free location at the beginning
|
|
args = ¶mBuffer[1];
|
|
}
|
|
|
|
// one last verification to make sure things are how we expect
|
|
switch( callConv )
|
|
{
|
|
case ICC_CDECL:
|
|
case ICC_CDECL_RETURNINMEM:
|
|
case ICC_STDCALL:
|
|
case ICC_STDCALL_RETURNINMEM:
|
|
retQW = CallCDeclFunction( args, argsType, paramSize, (asDWORD)func, retPointer );
|
|
break;
|
|
case ICC_THISCALL:
|
|
case ICC_THISCALL_RETURNINMEM:
|
|
retQW = CallThisCallFunction(obj, args, argsType, paramSize, (asDWORD)func, retPointer );
|
|
break;
|
|
case ICC_VIRTUAL_THISCALL:
|
|
case ICC_VIRTUAL_THISCALL_RETURNINMEM:
|
|
// Get virtual function table from the object pointer
|
|
vftable = *(asDWORD**)obj;
|
|
retQW = CallThisCallFunction( obj, args, argsType, paramSize, vftable[asDWORD(func)>>2], retPointer );
|
|
break;
|
|
case ICC_CDECL_OBJLAST:
|
|
case ICC_CDECL_OBJLAST_RETURNINMEM:
|
|
retQW = CallThisCallFunction_objLast( obj, args, argsType, paramSize, (asDWORD)func, retPointer );
|
|
break;
|
|
case ICC_CDECL_OBJFIRST:
|
|
case ICC_CDECL_OBJFIRST_RETURNINMEM:
|
|
retQW = CallThisCallFunction( obj, args, argsType, paramSize, (asDWORD)func, retPointer );
|
|
break;
|
|
default:
|
|
context->SetInternalException(TXT_INVALID_CALLING_CONVENTION);
|
|
}
|
|
|
|
if( sysFunc->hostReturnFloat )
|
|
{
|
|
// If the return is a float value we need to get the value from the FP register
|
|
if( sysFunc->hostReturnSize == 1 )
|
|
*(asDWORD*)&retQW = GetReturnedFloat();
|
|
else
|
|
retQW = GetReturnedDouble();
|
|
}
|
|
else if( sysFunc->hostReturnSize == 1 )
|
|
{
|
|
// Move the bits to the higher value to compensate for the adjustment that the caller does
|
|
retQW <<= 32;
|
|
}
|
|
|
|
return retQW;
|
|
}
|
|
|
|
END_AS_NAMESPACE
|
|
|
|
#endif // AS_PPC_64
|
|
#endif // AS_MAX_PORTABILITY
|
|
|