Merge remote-tracking branch 'origin/battleAI' into battleAI
This commit is contained in:
commit
f4b723de82
@ -24,7 +24,7 @@
|
||||
#include "karts/kart_properties.hpp"
|
||||
#include "karts/skidding_properties.hpp"
|
||||
#include "karts/controller/ai_properties.hpp"
|
||||
#include "modes/linear_world.hpp"
|
||||
#include "modes/world.hpp"
|
||||
#include "tracks/track.hpp"
|
||||
#include "utils/constants.hpp"
|
||||
|
||||
@ -32,59 +32,6 @@
|
||||
|
||||
bool AIBaseController::m_ai_debug = false;
|
||||
|
||||
/**
|
||||
This is the base class for all AIs. At this stage there are two similar
|
||||
AIs: one is the SkiddingAI, which is the AI used in lap based races
|
||||
(including follow-the-leader mode), the other one is the end controller,
|
||||
I.e. the controller that takes over from a player (or AI) when the race is
|
||||
finished.
|
||||
|
||||
This base class defines some basic operations:
|
||||
- It takes care on which part of the QuadGraph the AI currently is.
|
||||
- It determines which path the AI should take (in case of shortcuts
|
||||
or forks in the road).
|
||||
|
||||
At race start and every time a new lap is started, the AI will compute the
|
||||
path the kart is taking this lap (computePath). At this stage the decision
|
||||
which road in case of shortcut to take is purely random. It stores the
|
||||
information in two arrays:
|
||||
m_successor_index[i] stores which successor to take from node i.
|
||||
The successor is a number between 0 and number_of_successors - 1.
|
||||
m_next_node_index[i] stores the actual index of the graph node that
|
||||
follows after node i.
|
||||
Depending on operation one of the other data is more useful, so this
|
||||
class stores both information to avoid looking it up over and over.
|
||||
Once this is done (still in computePath), the array m_all_look_aheads is
|
||||
computed. This array stores for each quad a list of the next (atm) 10 quads.
|
||||
This is used when the AI is selecting where to drive next, and it will just
|
||||
pass the list of next quads to findRoadSector.
|
||||
|
||||
Note that the quad graph information is stored for every quad in the quad
|
||||
graph, even if the quad is not on the path chosen. This is necessary since
|
||||
it can happen that a kart ends up on a path not choses (e.g. perhaps it was
|
||||
pushed on that part, or couldn't get a sharp corner).
|
||||
|
||||
In update(), which gets called one per frame per AI, this object will
|
||||
determine the quad the kart is currently on (which is then used to determine
|
||||
where the kart will be driving to). This uses the m_all_look_aheads to
|
||||
speed up this process (since the kart is likely to be either on the same
|
||||
quad as it was before, or the next quad in the m_all_look_aheads list).
|
||||
|
||||
It will also check if the kart is stuck:
|
||||
this is done by maintaining a list of times when the kart hits the track. If
|
||||
(atm) more than 3 collisions happen in 1.5 seconds, the kart is considered
|
||||
stuck and will trigger a rescue (due to the pushback from the track it will
|
||||
take some time if a kart is really stuck before it will hit the track again).
|
||||
|
||||
This base class also contains some convenience functions which are useful
|
||||
in all AIs, e.g.:
|
||||
- steerToPoint: determine the steering angle to use depending on the
|
||||
current location and the point the kart is driving to.
|
||||
- normalizeAngle: To normalise the steering angle to be in [-PI,PI].
|
||||
- setSteering: Converts the steering angle into a steering fraction
|
||||
in [-1,1].
|
||||
|
||||
*/
|
||||
AIBaseController::AIBaseController(AbstractKart *kart,
|
||||
StateManager::ActivePlayer *player)
|
||||
: Controller(kart, player)
|
||||
@ -95,35 +42,20 @@ AIBaseController::AIBaseController(AbstractKart *kart,
|
||||
m_ai_properties =
|
||||
m_kart->getKartProperties()->getAIPropertiesForDifficulty();
|
||||
|
||||
if(race_manager->getMinorMode()!=RaceManager::MINOR_MODE_3_STRIKES &&
|
||||
race_manager->getMinorMode()!=RaceManager::MINOR_MODE_SOCCER)
|
||||
{
|
||||
m_world = dynamic_cast<LinearWorld*>(World::getWorld());
|
||||
m_track = m_world->getTrack();
|
||||
computePath();
|
||||
}
|
||||
else
|
||||
{
|
||||
// Those variables are not defined in a battle mode (m_world is
|
||||
// a linear world, since it assumes the existance of drivelines)
|
||||
m_world = NULL;
|
||||
m_track = NULL;
|
||||
m_next_node_index.clear();
|
||||
m_all_look_aheads.clear();
|
||||
m_successor_index.clear();
|
||||
} // if battle mode
|
||||
// Don't call our own setControllerName, since this will add a
|
||||
// billboard showing 'aibasecontroller' to the kar.
|
||||
Controller::setControllerName("AIBaseController");
|
||||
} // AIBaseController
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
void AIBaseController::reset()
|
||||
{
|
||||
m_stuck_trigger_rescue = false;
|
||||
m_collision_times.clear();
|
||||
m_stuck = false;
|
||||
m_collision_times.clear();
|
||||
} // reset
|
||||
|
||||
void AIBaseController::update(float dt)
|
||||
{
|
||||
m_stuck = false;
|
||||
}
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** In debug mode when the user specified --ai-debug on the command line set
|
||||
* the name of the controller as on-screen text, so that the different AI
|
||||
@ -139,210 +71,6 @@ void AIBaseController::setControllerName(const std::string &name)
|
||||
Controller::setControllerName(name);
|
||||
} // setControllerName
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Triggers a recomputation of the path to use, so that the AI does not
|
||||
* always use the same way.
|
||||
*/
|
||||
void AIBaseController::newLap(int lap)
|
||||
{
|
||||
if(lap>0)
|
||||
{
|
||||
computePath();
|
||||
}
|
||||
} // newLap
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Computes a path for the AI to follow. This function is called at race
|
||||
* start and every time a new lap is started. Recomputing the path every
|
||||
* time will mean that the kart will not always take the same path, but
|
||||
* (potentially) vary from lap to lap. At this stage the decision is done
|
||||
* randomly. The AI could be improved by collecting more information about
|
||||
* each branch of a track, and selecting the 'appropriate' one (e.g. if the
|
||||
* AI is far ahead, chose a longer/slower path).
|
||||
*/
|
||||
void AIBaseController::computePath()
|
||||
{
|
||||
m_next_node_index.resize(QuadGraph::get()->getNumNodes());
|
||||
m_successor_index.resize(QuadGraph::get()->getNumNodes());
|
||||
std::vector<unsigned int> next;
|
||||
for(unsigned int i=0; i<QuadGraph::get()->getNumNodes(); i++)
|
||||
{
|
||||
next.clear();
|
||||
// Get all successors the AI is allowed to take.
|
||||
QuadGraph::get()->getSuccessors(i, next, /*for_ai*/true);
|
||||
// In case of short cuts hidden for the AI it can be that a node
|
||||
// might not have a successor (since the first and last edge of
|
||||
// a hidden shortcut is ignored). Since in the case that the AI
|
||||
// ends up on a short cut (e.g. by accident) and doesn't have an
|
||||
// allowed way to drive, it should still be able to drive, so add
|
||||
// the non-AI successors of that node in this case.
|
||||
if(next.size()==0)
|
||||
QuadGraph::get()->getSuccessors(i, next, /*for_ai*/false);
|
||||
// For now pick one part on random, which is not adjusted during the
|
||||
// race. Long term statistics might be gathered to determine the
|
||||
// best way, potentially depending on race position etc.
|
||||
int r = rand();
|
||||
int indx = (int)( r / ((float)(RAND_MAX)+1.0f) * next.size() );
|
||||
// In case of rounding errors0
|
||||
if(indx>=(int)next.size()) indx--;
|
||||
m_successor_index[i] = indx;
|
||||
assert(indx <(int)next.size() && indx>=0);
|
||||
m_next_node_index[i] = next[indx];
|
||||
}
|
||||
|
||||
const unsigned int look_ahead=10;
|
||||
// Now compute for each node in the graph the list of the next 'look_ahead'
|
||||
// graph nodes. This is the list of node that is tested in checkCrashes.
|
||||
// If the look_ahead is too big, the AI can skip loops (see
|
||||
// QuadGraph::findRoadSector for details), if it's too short the AI won't
|
||||
// find too good a driveline. Note that in general this list should
|
||||
// be computed recursively, but since the AI for now is using only
|
||||
// (randomly picked) path this is fine
|
||||
m_all_look_aheads.resize(QuadGraph::get()->getNumNodes());
|
||||
for(unsigned int i=0; i<QuadGraph::get()->getNumNodes(); i++)
|
||||
{
|
||||
std::vector<int> l;
|
||||
int current = i;
|
||||
for(unsigned int j=0; j<look_ahead; j++)
|
||||
{
|
||||
assert(current < (int)m_next_node_index.size());
|
||||
l.push_back(m_next_node_index[current]);
|
||||
current = m_next_node_index[current];
|
||||
} // for j<look_ahead
|
||||
m_all_look_aheads[i] = l;
|
||||
}
|
||||
} // computePath
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Updates the ai base controller each time step. Note that any calls to
|
||||
* isStuck() must be done before update is called, since update will reset
|
||||
* the isStuck flag!
|
||||
* \param dt Time step size.
|
||||
*/
|
||||
void AIBaseController::update(float dt)
|
||||
{
|
||||
m_stuck_trigger_rescue = false;
|
||||
|
||||
if(QuadGraph::get())
|
||||
{
|
||||
// Update the current node:
|
||||
int old_node = m_track_node;
|
||||
if(m_track_node!=QuadGraph::UNKNOWN_SECTOR)
|
||||
{
|
||||
QuadGraph::get()->findRoadSector(m_kart->getXYZ(), &m_track_node,
|
||||
&m_all_look_aheads[m_track_node]);
|
||||
}
|
||||
// If we can't find a proper place on the track, to a broader search
|
||||
// on off-track locations.
|
||||
if(m_track_node==QuadGraph::UNKNOWN_SECTOR)
|
||||
{
|
||||
m_track_node = QuadGraph::get()->findOutOfRoadSector(m_kart->getXYZ());
|
||||
}
|
||||
// IF the AI is off track (or on a branch of the track it did not
|
||||
// select to be on), keep the old position.
|
||||
if(m_track_node==QuadGraph::UNKNOWN_SECTOR ||
|
||||
m_next_node_index[m_track_node]==-1)
|
||||
m_track_node = old_node;
|
||||
}
|
||||
} // update
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** This is called when the kart crashed with the terrain. This subroutine
|
||||
* tries to detect if the AI is stuck by determining if a certain number
|
||||
* of collisions happened in a certain amount of time, and if so rescues
|
||||
* the kart.
|
||||
* \paran m Pointer to the material that was hit (NULL if no specific
|
||||
* material was used for the part of the track that was hit).
|
||||
*/
|
||||
void AIBaseController::crashed(const Material *m)
|
||||
{
|
||||
// Defines how many collision in what time will trigger a rescue.
|
||||
// Note that typically it takes ~0.5 seconds for the AI to hit
|
||||
// the track again if it is stuck (i.e. time for the push back plus
|
||||
// time for the AI to accelerate and hit the terrain again).
|
||||
const unsigned int NUM_COLLISION = 3;
|
||||
const float COLLISION_TIME = 1.5f;
|
||||
|
||||
float time = World::getWorld()->getTime();
|
||||
if(m_collision_times.size()==0)
|
||||
{
|
||||
m_collision_times.push_back(time);
|
||||
return;
|
||||
}
|
||||
|
||||
// Filter out multiple collisions report caused by single collision
|
||||
// (bullet can report a collision more than once per frame, and
|
||||
// resolving it can take a few frames as well, causing more reported
|
||||
// collisions to happen). The time of 0.2 seconds was experimentally
|
||||
// found, typically it takes 0.5 seconds for a kart to be pushed back
|
||||
// from the terrain and accelerate to hit the same terrain again.
|
||||
if(time - m_collision_times.back() < 0.2f)
|
||||
return;
|
||||
|
||||
|
||||
// Remove all outdated entries, i.e. entries that are older than the
|
||||
// collision time plus 1 second. Older entries must be deleted,
|
||||
// otherwise a collision that happened (say) 10 seconds ago could
|
||||
// contribute to a stuck condition.
|
||||
while(m_collision_times.size()>0 &&
|
||||
time - m_collision_times[0] > 1.0f+COLLISION_TIME)
|
||||
m_collision_times.erase(m_collision_times.begin());
|
||||
|
||||
m_collision_times.push_back(time);
|
||||
|
||||
// Now detect if there are enough collision records in the
|
||||
// specified time interval.
|
||||
if(time - m_collision_times.front() > COLLISION_TIME
|
||||
&& m_collision_times.size()>=NUM_COLLISION)
|
||||
{
|
||||
// We can't call m_kart->forceRescue here, since crased() is
|
||||
// called during physics processing, and forceRescue() removes the
|
||||
// chassis from the physics world, which would then cause
|
||||
// inconsistencies and potentially a crash during the physics
|
||||
// processing. So only set a flag, which is tested during update.
|
||||
m_stuck_trigger_rescue = true;
|
||||
}
|
||||
|
||||
} // crashed(Material)
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Returns the next sector of the given sector index. This is used
|
||||
* for branches in the quad graph to select which way the AI kart should
|
||||
* go. This is a very simple implementation that always returns the first
|
||||
* successor, but it can be overridden to allow a better selection.
|
||||
* \param index Index of the graph node for which the successor is searched.
|
||||
* \return Returns the successor of this graph node.
|
||||
*/
|
||||
unsigned int AIBaseController::getNextSector(unsigned int index)
|
||||
{
|
||||
std::vector<unsigned int> successors;
|
||||
QuadGraph::get()->getSuccessors(index, successors);
|
||||
return successors[0];
|
||||
} // getNextSector
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** This function steers towards a given angle. It also takes a plunger
|
||||
** attached to this kart into account by modifying the actual steer angle
|
||||
* somewhat to simulate driving without seeing.
|
||||
*/
|
||||
float AIBaseController::steerToAngle(const unsigned int sector,
|
||||
const float add_angle)
|
||||
{
|
||||
float angle = QuadGraph::get()->getAngleToNext(sector,
|
||||
getNextSector(sector));
|
||||
|
||||
//Desired angle minus current angle equals how many angles to turn
|
||||
float steer_angle = angle - m_kart->getHeading();
|
||||
|
||||
if(m_kart->getBlockedByPlungerTime()>0)
|
||||
steer_angle += add_angle*0.2f;
|
||||
else
|
||||
steer_angle += add_angle;
|
||||
steer_angle = normalizeAngle( steer_angle );
|
||||
|
||||
return steer_angle;
|
||||
} // steerToAngle
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Computes the steering angle to reach a certain point. The function will
|
||||
* request steering by setting the steering angle to maximum steer angle
|
||||
@ -493,6 +221,17 @@ void AIBaseController::setSteering(float angle, float dt)
|
||||
* AIBaseController.
|
||||
* \return True if the kart should skid.
|
||||
*/
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
/** Certain AI levels will not receive a slipstream bonus in order to
|
||||
* be not as hard.
|
||||
*/
|
||||
bool AIBaseController::disableSlipstreamBonus() const
|
||||
{
|
||||
return m_ai_properties->disableSlipstreamUsage();
|
||||
} // disableSlipstreamBonus
|
||||
|
||||
|
||||
bool AIBaseController::doSkid(float steer_fraction)
|
||||
{
|
||||
// Disable skidding when a plunger is in the face
|
||||
@ -502,18 +241,70 @@ bool AIBaseController::doSkid(float steer_fraction)
|
||||
// code is activated, since the AI can not handle this
|
||||
// properly.
|
||||
if(m_kart->getKartProperties()->getSkiddingProperties()
|
||||
->getSkidVisualTime()>0)
|
||||
->getSkidVisualTime()>0)
|
||||
return false;
|
||||
|
||||
|
||||
// Otherwise return if we need a sharp turn (which is
|
||||
// for the old skidding implementation).
|
||||
return fabsf(steer_fraction)>=m_ai_properties->m_skidding_threshold;
|
||||
} // doSkid
|
||||
// ------------------------------------------------------------------------
|
||||
/** Certain AI levels will not receive a slipstream bonus in order to
|
||||
* be not as hard.
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** This is called when the kart crashed with the terrain. This subroutine
|
||||
* tries to detect if the AI is stuck by determining if a certain number
|
||||
* of collisions happened in a certain amount of time, and if so rescues
|
||||
* the kart.
|
||||
* \paran m Pointer to the material that was hit (NULL if no specific
|
||||
* material was used for the part of the track that was hit).
|
||||
*/
|
||||
bool AIBaseController::disableSlipstreamBonus() const
|
||||
void AIBaseController::crashed(const Material *m)
|
||||
{
|
||||
return m_ai_properties->disableSlipstreamUsage();
|
||||
} // disableSlipstreamBonus
|
||||
// Defines how many collision in what time will trigger a rescue.
|
||||
// Note that typically it takes ~0.5 seconds for the AI to hit
|
||||
// the track again if it is stuck (i.e. time for the push back plus
|
||||
// time for the AI to accelerate and hit the terrain again).
|
||||
const unsigned int NUM_COLLISION = 3;
|
||||
const float COLLISION_TIME = 1.5f;
|
||||
|
||||
float time = World::getWorld()->getTime();
|
||||
if(m_collision_times.size()==0)
|
||||
{
|
||||
m_collision_times.push_back(time);
|
||||
return;
|
||||
}
|
||||
|
||||
// Filter out multiple collisions report caused by single collision
|
||||
// (bullet can report a collision more than once per frame, and
|
||||
// resolving it can take a few frames as well, causing more reported
|
||||
// collisions to happen). The time of 0.2 seconds was experimentally
|
||||
// found, typically it takes 0.5 seconds for a kart to be pushed back
|
||||
// from the terrain and accelerate to hit the same terrain again.
|
||||
if(time - m_collision_times.back() < 0.2f)
|
||||
return;
|
||||
|
||||
|
||||
// Remove all outdated entries, i.e. entries that are older than the
|
||||
// collision time plus 1 second. Older entries must be deleted,
|
||||
// otherwise a collision that happened (say) 10 seconds ago could
|
||||
// contribute to a stuck condition.
|
||||
while(m_collision_times.size()>0 &&
|
||||
time - m_collision_times[0] > 1.0f+COLLISION_TIME)
|
||||
m_collision_times.erase(m_collision_times.begin());
|
||||
|
||||
m_collision_times.push_back(time);
|
||||
|
||||
// Now detect if there are enough collision records in the
|
||||
// specified time interval.
|
||||
if(time - m_collision_times.front() > COLLISION_TIME
|
||||
&& m_collision_times.size()>=NUM_COLLISION)
|
||||
{
|
||||
// We can't call m_kart->forceRescue here, since crased() is
|
||||
// called during physics processing, and forceRescue() removes the
|
||||
// chassis from the physics world, which would then cause
|
||||
// inconsistencies and potentially a crash during the physics
|
||||
// processing. So only set a flag, which is tested during update.
|
||||
m_stuck = true;
|
||||
}
|
||||
|
||||
} // crashed(Material)
|
||||
|
@ -22,18 +22,18 @@
|
||||
#include "karts/controller/controller.hpp"
|
||||
#include "states_screens/state_manager.hpp"
|
||||
|
||||
|
||||
class AIProperties;
|
||||
class LinearWorld;
|
||||
class ThreeStrikesBattle;
|
||||
class QuadGraph;
|
||||
class BattleGraph;
|
||||
class Track;
|
||||
class Vec3;
|
||||
|
||||
/** A base class for all AI karts. This class basically provides some
|
||||
* common low level functions.
|
||||
* \ingroup controller
|
||||
*/
|
||||
class AIBaseController : public Controller
|
||||
{
|
||||
|
||||
private:
|
||||
/** Stores the last N times when a collision happened. This is used
|
||||
* to detect when the AI is stuck, i.e. N collisions happened in
|
||||
@ -42,24 +42,26 @@ private:
|
||||
|
||||
/** A flag that is set during the physics processing to indicate that
|
||||
* this kart is stuck and needs to be rescued. */
|
||||
bool m_stuck_trigger_rescue;
|
||||
bool m_stuck;
|
||||
|
||||
|
||||
protected:
|
||||
/** Length of the kart, storing it here saves many function calls. */
|
||||
/** Length of the kart, storing it here saves many function calls. */
|
||||
float m_kart_length;
|
||||
|
||||
/** Cache width of kart. */
|
||||
float m_kart_width;
|
||||
|
||||
|
||||
/** Keep a pointer to the track to reduce calls */
|
||||
Track *m_track;
|
||||
|
||||
/** Keep a pointer to world. */
|
||||
LinearWorld *m_world;
|
||||
|
||||
|
||||
|
||||
/** A pointer to the AI properties for this kart. */
|
||||
const AIProperties *m_ai_properties;
|
||||
|
||||
<<<<<<< HEAD
|
||||
/** The current node the kart is on. This can be different from the value
|
||||
* in LinearWorld, since it takes the chosen path of the AI into account
|
||||
* (e.g. the closest point in LinearWorld might be on a branch not
|
||||
@ -77,46 +79,35 @@ protected:
|
||||
/** For each graph node this list contains a list of the next X
|
||||
* graph nodes. */
|
||||
std::vector<std::vector<int> > m_all_look_aheads;
|
||||
=======
|
||||
>>>>>>> origin/battleAI
|
||||
|
||||
static bool m_ai_debug;
|
||||
|
||||
virtual void update (float delta) ;
|
||||
virtual unsigned int getNextSector(unsigned int index);
|
||||
virtual void newLap (int lap);
|
||||
virtual void setControllerName(const std::string &name);
|
||||
virtual void setSteering (float angle, float dt);
|
||||
float steerToAngle (const unsigned int sector, const float angle);
|
||||
float steerToPoint (const Vec3 &point);
|
||||
void setControllerName(const std::string &name);
|
||||
float steerToPoint(const Vec3 &point);
|
||||
float normalizeAngle(float angle);
|
||||
void computePath();
|
||||
virtual bool doSkid(float steer_fraction);
|
||||
// ------------------------------------------------------------------------
|
||||
/** Nothing special to do when the race is finished. */
|
||||
virtual void raceFinished() {};
|
||||
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
/** This can be called to detect if the kart is stuck (i.e. repeatedly
|
||||
* hitting part of the track). */
|
||||
bool isStuck() const { return m_stuck_trigger_rescue; }
|
||||
bool isStuck() const { return m_stuck; }
|
||||
|
||||
static bool m_ai_debug;
|
||||
public:
|
||||
AIBaseController(AbstractKart *kart,
|
||||
|
||||
AIBaseController(AbstractKart *kart,
|
||||
StateManager::ActivePlayer *player=NULL);
|
||||
virtual ~AIBaseController() {};
|
||||
virtual void reset();
|
||||
static void enableDebug() {m_ai_debug = true; }
|
||||
virtual void crashed(const AbstractKart *k) {};
|
||||
virtual void crashed(const Material *m);
|
||||
virtual void handleZipper(bool play_sound) {};
|
||||
virtual void finishedRace(float time) {};
|
||||
virtual void collectedItem(const Item &item, int add_info=-1,
|
||||
float previous_energy=0) {};
|
||||
virtual void setPosition(int p) {};
|
||||
virtual bool isNetworkController() const { return false; }
|
||||
virtual bool isPlayerController() const { return false; }
|
||||
virtual void action(PlayerAction action, int value) {};
|
||||
virtual void skidBonusTriggered() {};
|
||||
virtual bool disableSlipstreamBonus() const;
|
||||
}; // AIBaseController
|
||||
|
||||
virtual void crashed(const Material *m);
|
||||
|
||||
#endif
|
||||
|
||||
/* EOF */
|
||||
};
|
||||
#endif
|
266
src/karts/controller/ai_base_lap_controller.cpp
Normal file
266
src/karts/controller/ai_base_lap_controller.cpp
Normal file
@ -0,0 +1,266 @@
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2006-2009 Eduardo Hernandez Munoz
|
||||
// Copyright (C) 2009, 2010 Joerg Henrichs
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
|
||||
#include "karts/controller/ai_base_lap_controller.hpp"
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "karts/abstract_kart.hpp"
|
||||
#include "karts/kart_properties.hpp"
|
||||
#include "karts/skidding_properties.hpp"
|
||||
#include "karts/controller/ai_properties.hpp"
|
||||
#include "modes/linear_world.hpp"
|
||||
#include "tracks/track.hpp"
|
||||
#include "utils/constants.hpp"
|
||||
|
||||
|
||||
/**
|
||||
This is the base class for all AIs. At this stage there are two similar
|
||||
AIs: one is the SkiddingAI, which is the AI used in lap based races
|
||||
(including follow-the-leader mode), the other one is the end controller,
|
||||
I.e. the controller that takes over from a player (or AI) when the race is
|
||||
finished.
|
||||
|
||||
This base class defines some basic operations:
|
||||
- It takes care on which part of the QuadGraph the AI currently is.
|
||||
- It determines which path the AI should take (in case of shortcuts
|
||||
or forks in the road).
|
||||
|
||||
At race start and every time a new lap is started, the AI will compute the
|
||||
path the kart is taking this lap (computePath). At this stage the decision
|
||||
which road in case of shortcut to take is purely random. It stores the
|
||||
information in two arrays:
|
||||
m_successor_index[i] stores which successor to take from node i.
|
||||
The successor is a number between 0 and number_of_successors - 1.
|
||||
m_next_node_index[i] stores the actual index of the graph node that
|
||||
follows after node i.
|
||||
Depending on operation one of the other data is more useful, so this
|
||||
class stores both information to avoid looking it up over and over.
|
||||
Once this is done (still in computePath), the array m_all_look_aheads is
|
||||
computed. This array stores for each quad a list of the next (atm) 10 quads.
|
||||
This is used when the AI is selecting where to drive next, and it will just
|
||||
pass the list of next quads to findRoadSector.
|
||||
|
||||
Note that the quad graph information is stored for every quad in the quad
|
||||
graph, even if the quad is not on the path chosen. This is necessary since
|
||||
it can happen that a kart ends up on a path not choses (e.g. perhaps it was
|
||||
pushed on that part, or couldn't get a sharp corner).
|
||||
|
||||
In update(), which gets called one per frame per AI, this object will
|
||||
determine the quad the kart is currently on (which is then used to determine
|
||||
where the kart will be driving to). This uses the m_all_look_aheads to
|
||||
speed up this process (since the kart is likely to be either on the same
|
||||
quad as it was before, or the next quad in the m_all_look_aheads list).
|
||||
|
||||
It will also check if the kart is stuck:
|
||||
this is done by maintaining a list of times when the kart hits the track. If
|
||||
(atm) more than 3 collisions happen in 1.5 seconds, the kart is considered
|
||||
stuck and will trigger a rescue (due to the pushback from the track it will
|
||||
take some time if a kart is really stuck before it will hit the track again).
|
||||
|
||||
This base class also contains some convenience functions which are useful
|
||||
in all AIs, e.g.:
|
||||
- steerToPoint: determine the steering angle to use depending on the
|
||||
current location and the point the kart is driving to.
|
||||
- normalizeAngle: To normalise the steering angle to be in [-PI,PI].
|
||||
- setSteering: Converts the steering angle into a steering fraction
|
||||
in [-1,1].
|
||||
|
||||
*/
|
||||
AIBaseLapController::AIBaseLapController(AbstractKart *kart,
|
||||
StateManager::ActivePlayer *player)
|
||||
: AIBaseController(kart, player)
|
||||
{
|
||||
|
||||
if(race_manager->getMinorMode()!=RaceManager::MINOR_MODE_3_STRIKES &&
|
||||
race_manager->getMinorMode()!=RaceManager::MINOR_MODE_SOCCER)
|
||||
{
|
||||
m_world = dynamic_cast<LinearWorld*>(World::getWorld());
|
||||
m_track = m_world->getTrack();
|
||||
computePath();
|
||||
}
|
||||
else
|
||||
{
|
||||
// Those variables are not defined in a battle mode (m_world is
|
||||
// a linear world, since it assumes the existance of drivelines)
|
||||
m_world = NULL;
|
||||
m_track = NULL;
|
||||
m_next_node_index.clear();
|
||||
m_all_look_aheads.clear();
|
||||
m_successor_index.clear();
|
||||
} // if battle mode
|
||||
// Don't call our own setControllerName, since this will add a
|
||||
// billboard showing 'AIBaseLapController' to the kar.
|
||||
Controller::setControllerName("AIBaseLapController");
|
||||
} // AIBaseLapController
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
void AIBaseLapController::reset()
|
||||
{
|
||||
AIBaseController::reset();
|
||||
} // reset
|
||||
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Triggers a recomputation of the path to use, so that the AI does not
|
||||
* always use the same way.
|
||||
*/
|
||||
void AIBaseLapController::newLap(int lap)
|
||||
{
|
||||
if(lap>0)
|
||||
{
|
||||
computePath();
|
||||
}
|
||||
} // newLap
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Computes a path for the AI to follow. This function is called at race
|
||||
* start and every time a new lap is started. Recomputing the path every
|
||||
* time will mean that the kart will not always take the same path, but
|
||||
* (potentially) vary from lap to lap. At this stage the decision is done
|
||||
* randomly. The AI could be improved by collecting more information about
|
||||
* each branch of a track, and selecting the 'appropriate' one (e.g. if the
|
||||
* AI is far ahead, chose a longer/slower path).
|
||||
*/
|
||||
void AIBaseLapController::computePath()
|
||||
{
|
||||
m_next_node_index.resize(QuadGraph::get()->getNumNodes());
|
||||
m_successor_index.resize(QuadGraph::get()->getNumNodes());
|
||||
std::vector<unsigned int> next;
|
||||
for(unsigned int i=0; i<QuadGraph::get()->getNumNodes(); i++)
|
||||
{
|
||||
next.clear();
|
||||
// Get all successors the AI is allowed to take.
|
||||
QuadGraph::get()->getSuccessors(i, next, /*for_ai*/true);
|
||||
// In case of short cuts hidden for the AI it can be that a node
|
||||
// might not have a successor (since the first and last edge of
|
||||
// a hidden shortcut is ignored). Since in the case that the AI
|
||||
// ends up on a short cut (e.g. by accident) and doesn't have an
|
||||
// allowed way to drive, it should still be able to drive, so add
|
||||
// the non-AI successors of that node in this case.
|
||||
if(next.size()==0)
|
||||
QuadGraph::get()->getSuccessors(i, next, /*for_ai*/false);
|
||||
// For now pick one part on random, which is not adjusted during the
|
||||
// race. Long term statistics might be gathered to determine the
|
||||
// best way, potentially depending on race position etc.
|
||||
int r = rand();
|
||||
int indx = (int)( r / ((float)(RAND_MAX)+1.0f) * next.size() );
|
||||
// In case of rounding errors0
|
||||
if(indx>=(int)next.size()) indx--;
|
||||
m_successor_index[i] = indx;
|
||||
assert(indx <(int)next.size() && indx>=0);
|
||||
m_next_node_index[i] = next[indx];
|
||||
}
|
||||
|
||||
const unsigned int look_ahead=10;
|
||||
// Now compute for each node in the graph the list of the next 'look_ahead'
|
||||
// graph nodes. This is the list of node that is tested in checkCrashes.
|
||||
// If the look_ahead is too big, the AI can skip loops (see
|
||||
// QuadGraph::findRoadSector for details), if it's too short the AI won't
|
||||
// find too good a driveline. Note that in general this list should
|
||||
// be computed recursively, but since the AI for now is using only
|
||||
// (randomly picked) path this is fine
|
||||
m_all_look_aheads.resize(QuadGraph::get()->getNumNodes());
|
||||
for(unsigned int i=0; i<QuadGraph::get()->getNumNodes(); i++)
|
||||
{
|
||||
std::vector<int> l;
|
||||
int current = i;
|
||||
for(unsigned int j=0; j<look_ahead; j++)
|
||||
{
|
||||
assert(current < (int)m_next_node_index.size());
|
||||
l.push_back(m_next_node_index[current]);
|
||||
current = m_next_node_index[current];
|
||||
} // for j<look_ahead
|
||||
m_all_look_aheads[i] = l;
|
||||
}
|
||||
} // computePath
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Updates the ai base controller each time step. Note that any calls to
|
||||
* isStuck() must be done before update is called, since update will call
|
||||
* AIBaseController::update() which will reset the isStuck flag!
|
||||
* \param dt Time step size.
|
||||
*/
|
||||
void AIBaseLapController::update(float dt)
|
||||
{
|
||||
AIBaseController::update(dt);
|
||||
if(QuadGraph::get())
|
||||
{
|
||||
// Update the current node:
|
||||
int old_node = m_track_node;
|
||||
if(m_track_node!=QuadGraph::UNKNOWN_SECTOR)
|
||||
{
|
||||
QuadGraph::get()->findRoadSector(m_kart->getXYZ(), &m_track_node,
|
||||
&m_all_look_aheads[m_track_node]);
|
||||
}
|
||||
// If we can't find a proper place on the track, to a broader search
|
||||
// on off-track locations.
|
||||
if(m_track_node==QuadGraph::UNKNOWN_SECTOR)
|
||||
{
|
||||
m_track_node = QuadGraph::get()->findOutOfRoadSector(m_kart->getXYZ());
|
||||
}
|
||||
// IF the AI is off track (or on a branch of the track it did not
|
||||
// select to be on), keep the old position.
|
||||
if(m_track_node==QuadGraph::UNKNOWN_SECTOR ||
|
||||
m_next_node_index[m_track_node]==-1)
|
||||
m_track_node = old_node;
|
||||
}
|
||||
} // update
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Returns the next sector of the given sector index. This is used
|
||||
* for branches in the quad graph to select which way the AI kart should
|
||||
* go. This is a very simple implementation that always returns the first
|
||||
* successor, but it can be overridden to allow a better selection.
|
||||
* \param index Index of the graph node for which the successor is searched.
|
||||
* \return Returns the successor of this graph node.
|
||||
*/
|
||||
unsigned int AIBaseLapController::getNextSector(unsigned int index)
|
||||
{
|
||||
std::vector<unsigned int> successors;
|
||||
QuadGraph::get()->getSuccessors(index, successors);
|
||||
return successors[0];
|
||||
} // getNextSector
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** This function steers towards a given angle. It also takes a plunger
|
||||
** attached to this kart into account by modifying the actual steer angle
|
||||
* somewhat to simulate driving without seeing.
|
||||
*/
|
||||
float AIBaseLapController::steerToAngle(const unsigned int sector,
|
||||
const float add_angle)
|
||||
{
|
||||
float angle = QuadGraph::get()->getAngleToNext(sector,
|
||||
getNextSector(sector));
|
||||
|
||||
//Desired angle minus current angle equals how many angles to turn
|
||||
float steer_angle = angle - m_kart->getHeading();
|
||||
|
||||
if(m_kart->getBlockedByPlungerTime()>0)
|
||||
steer_angle += add_angle*0.2f;
|
||||
else
|
||||
steer_angle += add_angle;
|
||||
steer_angle = normalizeAngle( steer_angle );
|
||||
|
||||
return steer_angle;
|
||||
} // steerToAngle
|
||||
|
||||
|
96
src/karts/controller/ai_base_lap_controller.hpp
Normal file
96
src/karts/controller/ai_base_lap_controller.hpp
Normal file
@ -0,0 +1,96 @@
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2010 Joerg Henrichs
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
|
||||
#ifndef HEADER_AI_BASE_LAP_CONTROLLER_HPP
|
||||
#define HEADER_AI_BASE_LAP_CONTROLLER_HPP
|
||||
|
||||
#include "karts/controller/ai_base_controller.hpp"
|
||||
#include "states_screens/state_manager.hpp"
|
||||
|
||||
class AIProperties;
|
||||
class LinearWorld;
|
||||
class QuadGraph;
|
||||
class Track;
|
||||
class Vec3;
|
||||
|
||||
/** A base class for all AI karts. This class basically provides some
|
||||
* common low level functions.
|
||||
* \ingroup controller
|
||||
*/
|
||||
class AIBaseLapController : public AIBaseController
|
||||
{
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
/** The current node the kart is on. This can be different from the value
|
||||
* in LinearWorld, since it takes the chosen path of the AI into account
|
||||
* (e.g. the closest point in LinearWorld might be on a branch not
|
||||
* chosen by the AI). */
|
||||
int m_track_node;
|
||||
|
||||
/** Keep a pointer to world. */
|
||||
LinearWorld *m_world;
|
||||
|
||||
/** Which of the successors of a node was selected by the AI. */
|
||||
std::vector<int> m_successor_index;
|
||||
/** For each node in the graph this list contains the chosen next node.
|
||||
* For normal lap track without branches we always have
|
||||
* m_next_node_index[i] = (i+1) % size;
|
||||
* but if a branch is possible, the AI will select one option here.
|
||||
* If the node is not used, m_next_node_index will be -1. */
|
||||
std::vector<int> m_next_node_index;
|
||||
/** For each graph node this list contains a list of the next X
|
||||
* graph nodes. */
|
||||
std::vector<std::vector<int> > m_all_look_aheads;
|
||||
|
||||
virtual void update (float delta) ;
|
||||
virtual unsigned int getNextSector(unsigned int index);
|
||||
virtual void newLap (int lap);
|
||||
//virtual void setControllerName(const std::string &name);
|
||||
|
||||
float steerToAngle (const unsigned int sector, const float angle);
|
||||
|
||||
|
||||
void computePath();
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
/** Nothing special to do when the race is finished. */
|
||||
virtual void raceFinished() {};
|
||||
|
||||
|
||||
public:
|
||||
AIBaseLapController(AbstractKart *kart,
|
||||
StateManager::ActivePlayer *player=NULL);
|
||||
virtual ~AIBaseLapController() {};
|
||||
virtual void reset();
|
||||
virtual void crashed(const AbstractKart *k) {};
|
||||
virtual void handleZipper(bool play_sound) {};
|
||||
virtual void finishedRace(float time) {};
|
||||
virtual void collectedItem(const Item &item, int add_info=-1,
|
||||
float previous_energy=0) {};
|
||||
virtual void setPosition(int p) {};
|
||||
virtual bool isNetworkController() const { return false; }
|
||||
virtual bool isPlayerController() const { return false; }
|
||||
virtual void action(PlayerAction action, int value) {};
|
||||
virtual void skidBonusTriggered() {};
|
||||
|
||||
}; // AIBaseLapController
|
||||
|
||||
#endif
|
||||
|
||||
/* EOF */
|
@ -43,6 +43,7 @@ public:
|
||||
protected:
|
||||
// Give them access to the members
|
||||
friend class AIBaseController;
|
||||
friend class AIBaseLapController;
|
||||
friend class SkiddingAI;
|
||||
|
||||
/** Used to check that all values are defined in the xml file. */
|
||||
|
587
src/karts/controller/battle_ai.cpp
Normal file
587
src/karts/controller/battle_ai.cpp
Normal file
@ -0,0 +1,587 @@
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2004-2005 Steve Baker <sjbaker1@airmail.net>
|
||||
// Copyright (C) 2006-2007 Eduardo Hernandez Munoz
|
||||
// Copyright (C) 2008-2012 Joerg Henrichs
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
|
||||
#define AI_DEBUG
|
||||
|
||||
#include "karts/controller/battle_ai.hpp"
|
||||
|
||||
#ifdef AI_DEBUG
|
||||
# include "graphics/irr_driver.hpp"
|
||||
#endif
|
||||
|
||||
#include "items/item_manager.hpp"
|
||||
#include "items/powerup.hpp"
|
||||
#include "karts/abstract_kart.hpp"
|
||||
#include "karts/controller/kart_control.hpp"
|
||||
#include "karts/controller/player_controller.hpp"
|
||||
#include "karts/controller/ai_properties.hpp"
|
||||
#include "karts/kart_properties.hpp"
|
||||
#include "karts/max_speed.hpp"
|
||||
#include "karts/rescue_animation.hpp"
|
||||
#include "karts/skidding.hpp"
|
||||
#include "karts/skidding_properties.hpp"
|
||||
#include "modes/three_strikes_battle.hpp"
|
||||
#include "tracks/nav_poly.hpp"
|
||||
#include "tracks/navmesh.hpp"
|
||||
|
||||
#ifdef AI_DEBUG
|
||||
# include "irrlicht.h"
|
||||
using namespace irr;
|
||||
#endif
|
||||
|
||||
#if defined(WIN32) && !defined(__CYGWIN__) && !defined(__MINGW32__)
|
||||
# define isnan _isnan
|
||||
#else
|
||||
# include <math.h>
|
||||
#endif
|
||||
|
||||
#include <iostream>
|
||||
|
||||
BattleAI::BattleAI(AbstractKart *kart,
|
||||
StateManager::ActivePlayer *player)
|
||||
: AIBaseController(kart, player)
|
||||
{
|
||||
|
||||
reset();
|
||||
|
||||
#ifdef AI_DEBUG
|
||||
|
||||
video::SColor col_debug(128, 128,0,0);
|
||||
m_debug_sphere = irr_driver->addSphere(1.0f, col_debug);
|
||||
m_debug_sphere->setVisible(true);
|
||||
//m_item_sphere = irr_driver->addSphere(1.0f);
|
||||
#endif
|
||||
|
||||
if(race_manager->getMinorMode()==RaceManager::MINOR_MODE_3_STRIKES)
|
||||
{
|
||||
m_world = dynamic_cast<ThreeStrikesBattle*>(World::getWorld());
|
||||
m_track = m_world->getTrack();
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
// Those variables are not defined in a battle mode (m_world is
|
||||
// a linear world, since it assumes the existance of drivelines)
|
||||
m_world = NULL;
|
||||
m_track = NULL;
|
||||
}
|
||||
|
||||
// Don't call our own setControllerName, since this will add a
|
||||
// billboard showing 'AIBaseController' to the kar.
|
||||
Controller::setControllerName("BattleAI");
|
||||
|
||||
} // BattleAI
|
||||
|
||||
BattleAI::~BattleAI()
|
||||
{
|
||||
#ifdef AI_DEBUG
|
||||
irr_driver->removeNode(m_debug_sphere);
|
||||
#endif
|
||||
} // ~BattleAI
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Resets the AI when a race is restarted.
|
||||
*/
|
||||
void BattleAI::reset()
|
||||
{
|
||||
m_current_node = BattleGraph::UNKNOWN_POLY;
|
||||
m_next_node = BattleGraph::UNKNOWN_POLY;
|
||||
m_target_node = BattleGraph::UNKNOWN_POLY;
|
||||
m_target_point = Vec3(0,0,0);
|
||||
m_target_angle = 0.0f;
|
||||
m_time_since_stuck = 0.0f;
|
||||
m_currently_reversing = false;
|
||||
AIBaseController::reset();
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** This is the main entry point for the AI.
|
||||
* It is called once per frame for each AI and determines the behaviour of
|
||||
* the AI, e.g. steering, accelerating/braking, firing.
|
||||
*/
|
||||
void BattleAI::update(float dt)
|
||||
{
|
||||
handleAcceleration(dt);
|
||||
handleSteering(dt);
|
||||
handleItems(dt);
|
||||
handleBraking();
|
||||
handleGetUnstuck(dt);
|
||||
AIBaseController::update(dt);
|
||||
} //update
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Handles acceleration. It also takes the plunger into account.
|
||||
* \param dt Time step size.
|
||||
*/
|
||||
void BattleAI::handleAcceleration( const float dt)
|
||||
{
|
||||
//Do not accelerate until we have delayed the start enough
|
||||
/* if( m_start_delay > 0.0f )
|
||||
{
|
||||
m_start_delay -= dt;
|
||||
m_controls->m_accel = 0.0f;
|
||||
return;
|
||||
}
|
||||
*/
|
||||
|
||||
if( m_controls->m_brake )
|
||||
{
|
||||
m_controls->m_accel = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
if(m_kart->getBlockedByPlungerTime()>0)
|
||||
{
|
||||
if(m_kart->getSpeed() < m_kart->getCurrentMaxSpeed() / 2)
|
||||
m_controls->m_accel = 0.05f;
|
||||
else
|
||||
m_controls->m_accel = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
m_controls->m_accel = stk_config->m_ai_acceleration;
|
||||
|
||||
} // handleAcceleration
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** This function sets the steering.
|
||||
* NOTE: The Battle AI is in development and currently this function is a
|
||||
* sandbox for testing out the AI. It may actually be doing a lot more than
|
||||
* just steering to a point, which means this function could be messy.
|
||||
*/
|
||||
void BattleAI::handleSteering(const float dt)
|
||||
{
|
||||
const AbstractKart* kart = m_world->getPlayerKart(0);
|
||||
PlayerController* pcontroller = (PlayerController*)kart->getController();
|
||||
|
||||
int player_node = pcontroller->getCurrentNode();
|
||||
std::cout<<"PLayer node " << player_node<<" This cpu kart node" << m_current_node<<std::endl;
|
||||
|
||||
if(player_node == BattleGraph::UNKNOWN_POLY || m_current_node == BattleGraph::UNKNOWN_POLY) return;
|
||||
m_target_node = player_node;
|
||||
m_target_point = kart->getXYZ();
|
||||
|
||||
//handleItemCollection(&m_target_point, &m_target_node);
|
||||
m_debug_sphere->setPosition(m_target_point.toIrrVector());
|
||||
if(m_target_node == m_current_node)
|
||||
{
|
||||
m_target_point=kart->getXYZ();
|
||||
// std::cout<<"Aiming at sire nixt\n";
|
||||
}
|
||||
else
|
||||
{
|
||||
m_next_node = BattleGraph::get()->getNextShortestPathPoly(m_current_node, m_target_node);
|
||||
|
||||
// std::cout<<"Aiming at "<<next_node<<"\n";
|
||||
if(m_next_node == -1) return;
|
||||
//target_point = NavMesh::get()->getCenterOfPoly(m_next_node);
|
||||
|
||||
findPortals(m_current_node, m_target_node);
|
||||
stringPull(m_kart->getXYZ(),m_target_point);
|
||||
if(m_path_corners.size()>0)
|
||||
{
|
||||
m_debug_sphere->setPosition(m_path_corners[0].toIrrVector());
|
||||
m_target_point = m_path_corners.front();
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout<<" ZERO CORNERS \n";
|
||||
}
|
||||
// target_point = m_path_corners[0];
|
||||
}
|
||||
|
||||
m_target_angle = steerToPoint(m_target_point);
|
||||
// std::cout<<"Target nalge: "<<m_target_angle << " normalized:"<<normalizeAngle(m_target_angle)<<std::endl;
|
||||
setSteering(m_target_angle,dt);
|
||||
|
||||
#ifdef AI_DEBUG
|
||||
// m_debug_sphere->setPosition(target_point.toIrrVector());
|
||||
Log::debug("skidding_ai","-Outside of road: steer to center point.\n");
|
||||
#endif
|
||||
|
||||
} // handleSteering
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** This function finds the polyon edges(portals) that the AI will cross before
|
||||
* reaching its destination. We start from the current polygon and call
|
||||
* BattleGraph::getNextShortestPathPoly() to find the next polygon on the shortest
|
||||
* path to the destination. Then find the common edge between the current
|
||||
* poly and the next poly, store it and step through the channel.
|
||||
*
|
||||
* 1----2----3 In this case, the portals are:
|
||||
* |strt| | (2,5) (4,5) (10,7) (10,9) (11,12)
|
||||
* 6----5----4
|
||||
* | |
|
||||
* 7----10----11----14
|
||||
* | | | end |
|
||||
* 8----9-----12----13
|
||||
*
|
||||
* \param start The start node(polygon) of the channel.
|
||||
* \param end The end node(polygon) of the channel.
|
||||
*/
|
||||
void BattleAI::findPortals(int start, int end)
|
||||
{
|
||||
int this_node = start;
|
||||
|
||||
// We can't use NULL because NULL==0 which is a valid node, so we initialize
|
||||
// with a value that is always invalid.
|
||||
int next_node = -999;
|
||||
|
||||
m_portals.clear();
|
||||
|
||||
while(next_node != end && this_node != -1 && next_node != -1 && this_node != end)
|
||||
{
|
||||
next_node = BattleGraph::get()->getNextShortestPathPoly(this_node, end);
|
||||
|
||||
std::vector<int> this_node_verts =
|
||||
NavMesh::get()->getNavPoly(this_node).getVerticesIndex();
|
||||
std::vector<int> next_node_verts=
|
||||
NavMesh::get()->getNavPoly(next_node).getVerticesIndex();
|
||||
|
||||
// this_node_verts and next_node_verts hold vertices of polygons in CCW order
|
||||
// We reverse next_node_verts so it becomes easy to compare edges in the next step
|
||||
std::reverse(next_node_verts.begin(),next_node_verts.end());
|
||||
|
||||
Vec3 portalLeft, portalRight;
|
||||
//bool flag = 0;
|
||||
for(unsigned int n_i=0; n_i<next_node_verts.size(); n_i++)
|
||||
{
|
||||
for(unsigned int t_i=0; t_i< this_node_verts.size(); t_i++)
|
||||
{
|
||||
if((next_node_verts[n_i] == this_node_verts[t_i])&&
|
||||
(next_node_verts[(n_i+1)%next_node_verts.size()]==
|
||||
this_node_verts[(t_i+1)%this_node_verts.size()]))
|
||||
{
|
||||
portalLeft = NavMesh::get()->
|
||||
getVertex(this_node_verts[(t_i+1)%this_node_verts.size()]);
|
||||
|
||||
portalRight = NavMesh::get()->getVertex(this_node_verts[t_i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
m_portals.push_back(std::make_pair(portalLeft,portalRight));
|
||||
// for debugging:
|
||||
//m_debug_sphere->setPosition((portalLeft).toIrrVector());
|
||||
this_node=next_node;
|
||||
}
|
||||
} // findPortals
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** This function implements the funnel algorithm for finding shortest paths
|
||||
* through a polygon channel. This means that we should move from corner to
|
||||
* corner to move on the most straight and shortest path to the destination.
|
||||
* This can be visualized as pulling a string from the end point to the start.
|
||||
* The string will bend at the corners, and this algorithm will find those
|
||||
* corners using portals from findPortals(). The AI will aim at the first
|
||||
* corner and the rest can be used for estimating the curve (braking).
|
||||
*
|
||||
* 1----2----3 In this case, the corners are:
|
||||
* |strt| | <5,10,end>
|
||||
* 6----5----4
|
||||
* | |
|
||||
* 7----10----11----14
|
||||
* | | | end |
|
||||
* 8----9-----12----13
|
||||
*
|
||||
* \param start_pos The start position (usually the AI's current position).
|
||||
* \param end_pos The end position (m_target_point).
|
||||
*/
|
||||
void BattleAI::stringPull(const Vec3& start_pos, const Vec3& end_pos)
|
||||
{
|
||||
Vec3 funnel_apex = start_pos;
|
||||
Vec3 funnel_left = m_portals[0].first;
|
||||
Vec3 funnel_right = m_portals[0].second;
|
||||
unsigned int apex_index=0, fun_left_index=0, fun_right_index=0;
|
||||
m_portals.push_back(std::make_pair(end_pos,end_pos));
|
||||
m_path_corners.clear();
|
||||
const float eps=0.0001f;
|
||||
|
||||
for(unsigned int i=0; i<m_portals.size(); i++)
|
||||
{
|
||||
Vec3 portal_left = m_portals[i].first;
|
||||
Vec3 portal_right = m_portals[i].second;
|
||||
|
||||
|
||||
//Compute for left edge
|
||||
if((funnel_left==funnel_apex) || portal_left.sideOfLine2D(funnel_apex,funnel_left)<=-eps)
|
||||
{
|
||||
funnel_left = 0.98f*portal_left + 0.02f*portal_right;
|
||||
//funnel_left = portal_left;
|
||||
fun_left_index = i;
|
||||
|
||||
|
||||
if( portal_left.sideOfLine2D(funnel_apex,funnel_right)<-eps)
|
||||
{
|
||||
funnel_apex = funnel_right;
|
||||
apex_index = fun_right_index;
|
||||
m_path_corners.push_back(funnel_apex);
|
||||
|
||||
funnel_left = funnel_apex;
|
||||
funnel_right = funnel_apex;
|
||||
i = apex_index;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
//Compute for right edge
|
||||
if( (funnel_right==funnel_apex) ||portal_right.sideOfLine2D(funnel_apex,funnel_right)>=eps)
|
||||
{
|
||||
|
||||
funnel_right = 0.98f*portal_right + 0.02f*portal_left;
|
||||
//funnel_right = portal_right;
|
||||
fun_right_index = i;
|
||||
if( portal_right.sideOfLine2D(funnel_apex,funnel_left)>eps)
|
||||
{
|
||||
|
||||
funnel_apex = funnel_left;
|
||||
apex_index = fun_left_index;
|
||||
m_path_corners.push_back(funnel_apex);
|
||||
|
||||
funnel_left = funnel_apex;
|
||||
funnel_right = funnel_apex;
|
||||
i=apex_index;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//Push end_pos to m_path_corners so if no corners, we aim at target
|
||||
m_path_corners.push_back(end_pos);
|
||||
} // stringPull
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Calls AIBaseController::isStuck() to determine if the AI is stuck.
|
||||
* If the AI is stuck then it will override the controls and start reverse
|
||||
* the kart while turning.
|
||||
*/
|
||||
void BattleAI::handleGetUnstuck(const float dt)
|
||||
{
|
||||
if(isStuck() == true)
|
||||
{
|
||||
m_time_since_stuck = 0.0f;
|
||||
m_currently_reversing = true;
|
||||
m_controls->reset();
|
||||
}
|
||||
if(m_currently_reversing == true)
|
||||
{
|
||||
setSteering(-1.0f*m_target_angle,dt);
|
||||
setSteering(-2.0f*m_target_angle,dt);
|
||||
setSteering(-2.0f*m_target_angle,dt);
|
||||
m_controls->m_accel = -0.35f;
|
||||
/*
|
||||
if(m_target_angle > 0)
|
||||
setSteering(M_PI,dt);
|
||||
else setSteering(-M_PI,dt);
|
||||
*/
|
||||
m_time_since_stuck += dt;
|
||||
|
||||
|
||||
if(m_time_since_stuck >= 0.6f)
|
||||
{
|
||||
m_currently_reversing = false;
|
||||
m_time_since_stuck = 0.0f;
|
||||
}
|
||||
}
|
||||
} // handleGetUnstuck
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** This function handles braking. It calls determineTurnRadius() to find out
|
||||
* the curve radius. Depending on the turn radius, it finds out the maximum
|
||||
* speed. If the current speed is greater than the max speed and a set minimum
|
||||
* speed, brakes are applied.
|
||||
*/
|
||||
void BattleAI::handleBraking()
|
||||
{
|
||||
m_controls->m_brake = false;
|
||||
|
||||
|
||||
// A kart will not brake when the speed is already slower than this
|
||||
// value. This prevents a kart from going too slow (or even backwards)
|
||||
// in tight curves.
|
||||
const float MIN_SPEED = 5.0f;
|
||||
|
||||
std::vector<Vec3> points;
|
||||
|
||||
if(m_current_node == -1 || m_next_node == -1 || m_target_node == -1)
|
||||
return;
|
||||
|
||||
points.push_back(m_kart->getXYZ());
|
||||
points.push_back(m_path_corners[0]);
|
||||
points.push_back((m_path_corners.size()>=2)?m_path_corners[1]:m_path_corners[0]);
|
||||
|
||||
float current_curve_radius = BattleAI::determineTurnRadius(points);
|
||||
|
||||
Vec3 d1 = m_kart->getXYZ() - m_target_point; Vec3 d2 = m_kart->getXYZ() - m_path_corners[0];
|
||||
if (d1.length2_2d() < d2.length2_2d())
|
||||
current_curve_radius = d1.length_2d();
|
||||
|
||||
//std::cout<<"\n Radius: " << current_curve_radius;
|
||||
float max_turn_speed =
|
||||
m_kart->getKartProperties()
|
||||
->getSpeedForTurnRadius(current_curve_radius);
|
||||
|
||||
if(m_kart->getSpeed() > max_turn_speed &&
|
||||
m_kart->getSpeed()>MIN_SPEED )// &&
|
||||
//fabsf(m_controls->m_steer) > 0.95f )
|
||||
{
|
||||
m_controls->m_brake = true;
|
||||
std::cout<<"Braking"<<std::endl;
|
||||
#ifdef DEBUG
|
||||
if(m_ai_debug)
|
||||
Log::debug("SkiddingAI",
|
||||
"speed %f too tight curve: radius %f ",
|
||||
m_kart->getSpeed(),
|
||||
m_kart->getIdent().c_str(),
|
||||
current_curve_radius);
|
||||
#endif
|
||||
}
|
||||
return;
|
||||
|
||||
} // handleBraking
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** The turn radius is determined by fitting a parabola to 3 points: current
|
||||
* location of AI, first corner and the second corner. Once the constants are
|
||||
* computed, a formula is used to find the radius of curvature at the kart's
|
||||
* current location.
|
||||
* NOTE: This method does not apply enough braking, should think of something
|
||||
* else.
|
||||
*/
|
||||
float BattleAI::determineTurnRadius( std::vector<Vec3>& points )
|
||||
{
|
||||
// Declaring variables
|
||||
float a,b,c;
|
||||
irr::core::CMatrix4<float> A;
|
||||
irr::core::CMatrix4<float> X;
|
||||
irr::core::CMatrix4<float> B;
|
||||
|
||||
//Populating matrices
|
||||
for(unsigned int i=0; i<3; i++)
|
||||
{
|
||||
A(i,0)= points[i].x()*points[i].x();
|
||||
A(i,1)= points[i].x();
|
||||
// std::cout<<"X"<<points[i].x();
|
||||
A(i,2)= 1.0f;
|
||||
A(i,3)= 0.0f;
|
||||
}
|
||||
A(3,0)=A(3,1)=A(3,2) = 0.0f;
|
||||
A(3,3) = 1.0f;
|
||||
|
||||
for(unsigned int i=0; i<3; i++)
|
||||
{
|
||||
B(i,0)= points[i].z();
|
||||
//std::cout<<"Z"<<points[i].z()<<"\n";
|
||||
B(i,1)= 0.0f;
|
||||
B(i,2)= 0.0f;
|
||||
B(i,3)= 0.0f;
|
||||
}
|
||||
B(3,0)=B(3,1)=B(3,2)=B(3,3) = 0.0f;
|
||||
|
||||
//Computing inverse : X = inv(A)*B
|
||||
irr::core::CMatrix4<float> invA;
|
||||
if(!A.getInverse(invA))
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
X = invA*B;
|
||||
a = X(0,0);
|
||||
b = X(0,1);
|
||||
c = X(0,2);
|
||||
|
||||
float x = points.front().x();
|
||||
float z = a*pow(x,2) + b*x + c;
|
||||
float dx_by_dz = 2*a*x + b;
|
||||
float d2x_by_dz = 2*a;
|
||||
|
||||
float radius = pow(abs(1 + pow(dx_by_dz,2)),1.5f)/ abs(d2x_by_dz);
|
||||
|
||||
return radius;
|
||||
|
||||
}
|
||||
|
||||
// Alternative implementation of isStuck()
|
||||
/*
|
||||
float BattleAI::isStuck(const float dt)
|
||||
{
|
||||
// check if kart is stuck
|
||||
if(m_kart->getSpeed()<2.0f && !m_kart->getKartAnimation() &&
|
||||
!m_world->isStartPhase())
|
||||
{
|
||||
m_time_since_stuck += dt;
|
||||
if(m_time_since_stuck > 2.0f)
|
||||
{
|
||||
return true;
|
||||
m_time_since_stuck=0.0f;
|
||||
} // m_time_since_stuck > 2.0f
|
||||
}
|
||||
else
|
||||
{
|
||||
m_time_since_stuck = 0.0f;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
void BattleAI::handleItems(const float dt)
|
||||
{
|
||||
m_controls->m_fire = true;
|
||||
}
|
||||
|
||||
|
||||
void BattleAI::handleItemCollection(Vec3 *aim_point, int* target_node)
|
||||
{
|
||||
if (m_kart->getPowerup()->getType() == PowerupManager::POWERUP_BOWLING) return;
|
||||
Vec3 old_aim_point = *aim_point;
|
||||
|
||||
float distance = 5.0f;
|
||||
bool found_suitable_item = false;
|
||||
const std::vector< std::pair<Item*, int> >& item_list =
|
||||
BattleGraph::get()->getItemList();
|
||||
int items_count = item_list.size();
|
||||
|
||||
|
||||
for (unsigned int j = 0; j < 50; j++)
|
||||
{
|
||||
for (unsigned int i = 0; i < items_count; ++i)
|
||||
{
|
||||
Item* item = item_list[i].first;
|
||||
Vec3 d = item->getXYZ() - m_kart->getXYZ();
|
||||
if (d.length_2d() <= distance)
|
||||
{
|
||||
if (item->getType() == Item::ITEM_BONUS_BOX && !item->wasCollected())
|
||||
{
|
||||
m_item_to_collect = item;
|
||||
found_suitable_item = true;
|
||||
*aim_point = item->getXYZ();
|
||||
*target_node = item_list[i].second;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
distance = 2.0f * distance;
|
||||
}
|
||||
|
||||
|
||||
}
|
126
src/karts/controller/battle_ai.hpp
Normal file
126
src/karts/controller/battle_ai.hpp
Normal file
@ -0,0 +1,126 @@
|
||||
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2004-2005 Steve Baker <sjbaker1@airmail.net>
|
||||
// Copyright (C) 2006-2007 Eduardo Hernandez Munoz
|
||||
// Copyright (C) 2010 Joerg Henrichs
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
|
||||
#ifndef HEADER_BATTLE_AI_HPP
|
||||
#define HEADER_BATTLE_AI__HPP
|
||||
|
||||
#include "karts/controller/ai_base_controller.hpp"
|
||||
#include "race/race_manager.hpp"
|
||||
#include "tracks/battle_graph.hpp"
|
||||
#include "utils/random_generator.hpp"
|
||||
|
||||
class AIProperties;
|
||||
class ThreeStrikesBattle;
|
||||
class BattleGraph;
|
||||
class Track;
|
||||
class Vec3;
|
||||
class Item;
|
||||
|
||||
namespace irr
|
||||
{
|
||||
namespace scene { class ISceneNode; }
|
||||
namespace video { class ITexture; }
|
||||
}
|
||||
|
||||
class BattleAI : public AIBaseController
|
||||
{
|
||||
|
||||
private:
|
||||
|
||||
/** Holds the current position of the AI on the battle graph. Sets to
|
||||
* BattleGraph::UNKNOWN_POLY if the location is unknown. This variable is
|
||||
* updated in ThreeStrikesBattle::updateKartNodes() */
|
||||
int m_current_node;
|
||||
|
||||
/** Holds the next node the kart is expected to drive to. Currently unused. */
|
||||
int m_next_node;
|
||||
|
||||
/** The node(poly) at which the target point lies in. */
|
||||
int m_target_node;
|
||||
|
||||
/** The target point. */
|
||||
Vec3 m_target_point;
|
||||
|
||||
/** The steering angle required to reach the target point. */
|
||||
float m_target_angle;
|
||||
|
||||
/** Holds the set of portals that the kart will cross when moving through
|
||||
* polygon channel. See findPortals() */
|
||||
std::vector<std::pair<Vec3,Vec3> > m_portals;
|
||||
|
||||
/** Holds the corner points computed using the funnel algorithm that the AI
|
||||
* will eventaully move through. See stringPull() */
|
||||
std::vector<Vec3> m_path_corners;
|
||||
|
||||
/** This is a timer that counts down when the kart is reversing to get unstuck */
|
||||
float m_time_since_stuck;
|
||||
|
||||
/** Indicates that the kart is currently reversing, and m_time_since_stuck is
|
||||
* counting down. */
|
||||
bool m_currently_reversing;
|
||||
|
||||
const Item *m_item_to_collect;
|
||||
|
||||
float determineTurnRadius(std::vector<Vec3>& points);
|
||||
void findPortals(int start, int end);
|
||||
void stringPull(const Vec3&, const Vec3&);
|
||||
void handleAcceleration(const float dt) ;
|
||||
void handleSteering(const float dt);
|
||||
void handleBraking();
|
||||
void handleGetUnstuck(const float dt);
|
||||
void handleItems(const float dt);
|
||||
void handleItemCollection(Vec3*, int*);
|
||||
|
||||
protected:
|
||||
|
||||
/** Keep a pointer to world. */
|
||||
ThreeStrikesBattle *m_world;
|
||||
|
||||
#ifdef AI_DEBUG
|
||||
/** For debugging purpose: a sphere indicating where the AI
|
||||
* is targeting at. */
|
||||
irr::scene::ISceneNode *m_debug_sphere;
|
||||
#endif
|
||||
|
||||
public:
|
||||
BattleAI(AbstractKart *kart,
|
||||
StateManager::ActivePlayer *player=NULL);
|
||||
~BattleAI();
|
||||
unsigned int getCurrentNode() const { return m_current_node; }
|
||||
void setCurrentNode(int i) { m_current_node = i; }
|
||||
virtual void update (float delta);
|
||||
virtual void reset ();
|
||||
|
||||
virtual void crashed(const AbstractKart *k) {};
|
||||
virtual void handleZipper(bool play_sound) {};
|
||||
virtual void finishedRace(float time) {};
|
||||
virtual void collectedItem(const Item &item, int add_info=-1,
|
||||
float previous_energy=0) {};
|
||||
virtual void setPosition(int p) {};
|
||||
virtual bool isNetworkController() const { return false; }
|
||||
virtual bool isPlayerController() const { return false; }
|
||||
virtual void action(PlayerAction action, int value) {};
|
||||
virtual void skidBonusTriggered() {};
|
||||
virtual bool disableSlipstreamBonus() const {return 0;}
|
||||
virtual void newLap(int lap) {};
|
||||
};
|
||||
|
||||
#endif
|
@ -52,13 +52,13 @@
|
||||
|
||||
EndController::EndController(AbstractKart *kart, StateManager::ActivePlayer *player,
|
||||
Controller *prev_controller)
|
||||
: AIBaseController(kart, player)
|
||||
: AIBaseLapController(kart, player)
|
||||
{
|
||||
m_previous_controller = prev_controller;
|
||||
if(race_manager->getMinorMode()!=RaceManager::MINOR_MODE_3_STRIKES &&
|
||||
race_manager->getMinorMode()!=RaceManager::MINOR_MODE_SOCCER)
|
||||
{
|
||||
// Overwrite the random selected default path from AIBaseController
|
||||
// Overwrite the random selected default path from AIBaseLapController
|
||||
// with a path that always picks the first branch (i.e. it follows
|
||||
// the main driveline).
|
||||
std::vector<unsigned int> next;
|
||||
@ -124,7 +124,7 @@ EndController::~EndController()
|
||||
//-----------------------------------------------------------------------------
|
||||
void EndController::reset()
|
||||
{
|
||||
AIBaseController::reset();
|
||||
AIBaseLapController::reset();
|
||||
|
||||
m_crash_time = 0.0f;
|
||||
m_time_since_stuck = 0.0f;
|
||||
@ -179,7 +179,7 @@ void EndController::update(float dt)
|
||||
m_controls->m_brake = false;
|
||||
m_controls->m_accel = 1.0f;
|
||||
|
||||
AIBaseController::update(dt);
|
||||
AIBaseLapController::update(dt);
|
||||
|
||||
// In case of battle mode: don't do anything
|
||||
if(race_manager->getMinorMode()==RaceManager::MINOR_MODE_3_STRIKES ||
|
||||
|
@ -21,7 +21,7 @@
|
||||
#ifndef HEADER_END_CONTROLLER_HPP
|
||||
#define HEADER_END_CONTROLLER_HPP
|
||||
|
||||
#include "karts/controller/ai_base_controller.hpp"
|
||||
#include "karts/controller/ai_base_lap_controller.hpp"
|
||||
|
||||
class Camera;
|
||||
class LinearWorld;
|
||||
@ -40,7 +40,7 @@ namespace irr
|
||||
/**
|
||||
* \ingroup controller
|
||||
*/
|
||||
class EndController : public AIBaseController
|
||||
class EndController : public AIBaseLapController
|
||||
{
|
||||
private:
|
||||
/** Stores the type of the previous controller. This is necessary so that
|
||||
|
@ -37,6 +37,7 @@
|
||||
#include "network/network_world.hpp"
|
||||
#include "race/history.hpp"
|
||||
#include "states_screens/race_gui_base.hpp"
|
||||
#include "tracks/battle_graph.hpp"
|
||||
#include "utils/constants.hpp"
|
||||
#include "utils/log.hpp"
|
||||
#include "utils/translation.hpp"
|
||||
@ -94,6 +95,7 @@ void PlayerController::reset()
|
||||
m_prev_nitro = false;
|
||||
m_sound_schedule = false;
|
||||
m_penalty_time = 0;
|
||||
m_current_node = BattleGraph::UNKNOWN_POLY;
|
||||
} // reset
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
@ -44,6 +44,9 @@ private:
|
||||
|
||||
float m_penalty_time;
|
||||
|
||||
/** This variable is required for battle mode **/
|
||||
int m_current_node;
|
||||
|
||||
/** The camera attached to the kart for this controller. The camera
|
||||
* object is managed in the Camera class, so no need to free it. */
|
||||
Camera *m_camera;
|
||||
@ -65,6 +68,8 @@ public:
|
||||
void handleZipper (bool play_sound);
|
||||
void collectedItem (const Item &item, int add_info=-1,
|
||||
float previous_energy=0);
|
||||
unsigned int getCurrentNode() const { return m_current_node; }
|
||||
void setCurrentNode(int i) { m_current_node = i; }
|
||||
virtual void skidBonusTriggered();
|
||||
virtual void setPosition (int p);
|
||||
virtual bool isPlayerController() const {return true;}
|
||||
|
@ -43,7 +43,7 @@
|
||||
#endif
|
||||
|
||||
|
||||
#include "karts/controller/ai_base_controller.hpp"
|
||||
#include "karts/controller/ai_base_lap_controller.hpp"
|
||||
#include "race/race_manager.hpp"
|
||||
#include "tracks/graph_node.hpp"
|
||||
#include "utils/random_generator.hpp"
|
||||
@ -111,7 +111,7 @@ the AI does the following steps:
|
||||
|
||||
\ingroup controller
|
||||
*/
|
||||
class SkiddingAI : public AIBaseController
|
||||
class SkiddingAI : public AIBaseLapController
|
||||
{
|
||||
private:
|
||||
|
||||
|
@ -169,7 +169,7 @@
|
||||
#include "items/attachment_manager.hpp"
|
||||
#include "items/item_manager.hpp"
|
||||
#include "items/projectile_manager.hpp"
|
||||
#include "karts/controller/ai_base_controller.hpp"
|
||||
#include "karts/controller/ai_base_lap_controller.hpp"
|
||||
#include "karts/kart_properties.hpp"
|
||||
#include "karts/kart_properties_manager.hpp"
|
||||
#include "modes/demo_world.hpp"
|
||||
|
@ -25,6 +25,8 @@
|
||||
#include "graphics/irr_driver.hpp"
|
||||
#include "io/file_manager.hpp"
|
||||
#include "karts/abstract_kart.hpp"
|
||||
#include "karts/controller/battle_ai.hpp"
|
||||
#include "karts/controller/player_controller.hpp"
|
||||
#include "karts/kart_model.hpp"
|
||||
#include "karts/kart_properties.hpp"
|
||||
#include "physics/physics.hpp"
|
||||
@ -57,10 +59,12 @@ void ThreeStrikesBattle::init()
|
||||
m_display_rank = false;
|
||||
|
||||
// check for possible problems if AI karts were incorrectly added
|
||||
if(getNumKarts() > race_manager->getNumPlayers())
|
||||
// FIXME : remove this bit of code in future since ai will be added
|
||||
/* if(getNumKarts() > race_manager->getNumPlayers())
|
||||
{
|
||||
Log::fatal("[Three Strikes Battle]", "No AI exists for this game mode");
|
||||
}
|
||||
*/
|
||||
m_kart_info.resize(m_karts.size());
|
||||
} // ThreeStrikesBattle
|
||||
|
||||
@ -296,7 +300,8 @@ void ThreeStrikesBattle::update(float dt)
|
||||
WorldWithRank::update(dt);
|
||||
WorldWithRank::updateTrack(dt);
|
||||
|
||||
// insert blown away tire(s) now if was requested
|
||||
PhysicalObject::BodyTypes body_shape;
|
||||
updateKartNodes(); // insert blown away tire(s) now if was requested
|
||||
while (m_insert_tire > 0)
|
||||
{
|
||||
std::string tire;
|
||||
@ -429,6 +434,127 @@ bool ThreeStrikesBattle::isRaceOver()
|
||||
return getCurrentNumKarts()==1 || getCurrentNumPlayers()==0;
|
||||
} // isRaceOver
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Updates the m_current_node value of each kart controller to localize it
|
||||
* on the navigation mesh.
|
||||
*/
|
||||
void ThreeStrikesBattle::updateKartNodes()
|
||||
{
|
||||
const unsigned int n = getNumKarts();
|
||||
for(unsigned int i=0; i<n; i++)
|
||||
{
|
||||
if(m_karts[i]->isEliminated()) continue;
|
||||
|
||||
const AbstractKart* kart = m_karts[i];
|
||||
|
||||
if(!kart->getController()->isPlayerController())
|
||||
{
|
||||
BattleAI* controller = (BattleAI*)(kart->getController());
|
||||
|
||||
int saved_current_node = controller->getCurrentNode();
|
||||
|
||||
if(controller->getCurrentNode()!= BattleGraph::UNKNOWN_POLY)
|
||||
{
|
||||
//check if the kart is still on the same node
|
||||
const NavPoly& p = BattleGraph::get()->getPolyOfNode(controller->getCurrentNode());
|
||||
if(p.pointInPoly(kart->getXYZ())) continue;
|
||||
|
||||
//if not then check all adjacent polys
|
||||
const std::vector<int>& adjacents =
|
||||
NavMesh::get()->getAdjacentPolys(controller->getCurrentNode());
|
||||
|
||||
// Set m_current_node to unknown so that if no adjacent poly checks true
|
||||
// we look everywhere the next time updateCurrentNode is called. This is
|
||||
// useful in cases when you are "teleported" to some other poly, ex. rescue
|
||||
controller->setCurrentNode(BattleGraph::UNKNOWN_POLY);
|
||||
|
||||
|
||||
for(unsigned int i=0; i<adjacents.size(); i++)
|
||||
{
|
||||
const NavPoly& p_temp =
|
||||
BattleGraph::get()->getPolyOfNode(adjacents[i]);
|
||||
if(p_temp.pointInPoly(kart->getXYZ()))
|
||||
controller->setCurrentNode(adjacents[i]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//Current node is still unkown
|
||||
if(controller->getCurrentNode() == BattleGraph::UNKNOWN_POLY)
|
||||
{
|
||||
bool flag = 0;
|
||||
unsigned int max_count = BattleGraph::get()->getNumNodes();
|
||||
//float min_dist = 9999.99f;
|
||||
for(unsigned int i =0; i<max_count; i++)
|
||||
{
|
||||
const NavPoly& p = BattleGraph::get()->getPolyOfNode(i);
|
||||
if((p.pointInPoly(kart->getXYZ())))
|
||||
{
|
||||
controller->setCurrentNode(i);
|
||||
flag = 1;
|
||||
//min_dist = (p.getCenter() - m_kart->getXYZ()).length_2d();
|
||||
}
|
||||
}
|
||||
|
||||
if(flag == 0) controller->setCurrentNode(saved_current_node);
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
PlayerController* controller = (PlayerController*)(kart->getController());
|
||||
|
||||
int saved_current_node = controller->getCurrentNode();
|
||||
|
||||
if(controller->getCurrentNode()!= BattleGraph::UNKNOWN_POLY)
|
||||
{
|
||||
//check if the kart is still on the same node
|
||||
const NavPoly& p = BattleGraph::get()->getPolyOfNode(controller->getCurrentNode());
|
||||
if(p.pointInPoly(kart->getXYZ())) continue;
|
||||
|
||||
//if not then check all adjacent polys
|
||||
const std::vector<int>& adjacents =
|
||||
NavMesh::get()->getAdjacentPolys(controller->getCurrentNode());
|
||||
|
||||
// Set m_current_node to unknown so that if no adjacent poly checks true
|
||||
// we look everywhere the next time updateCurrentNode is called. This is
|
||||
// useful in cases when you are "teleported" to some other poly, ex. rescue
|
||||
controller->setCurrentNode(BattleGraph::UNKNOWN_POLY);
|
||||
|
||||
|
||||
for(unsigned int i=0; i<adjacents.size(); i++)
|
||||
{
|
||||
const NavPoly& p_temp =
|
||||
BattleGraph::get()->getPolyOfNode(adjacents[i]);
|
||||
if(p_temp.pointInPoly(kart->getXYZ()))
|
||||
controller->setCurrentNode(adjacents[i]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if(controller->getCurrentNode() == BattleGraph::UNKNOWN_POLY)
|
||||
{
|
||||
bool flag = 0;
|
||||
unsigned int max_count = BattleGraph::get()->getNumNodes();
|
||||
//float min_dist = 9999.99f;
|
||||
for(unsigned int i =0; i<max_count; i++)
|
||||
{
|
||||
const NavPoly& p = BattleGraph::get()->getPolyOfNode(i);
|
||||
if((p.pointInPoly(kart->getXYZ())))
|
||||
{
|
||||
controller->setCurrentNode(i);
|
||||
flag = 1;
|
||||
//min_dist = (p.getCenter() - m_kart->getXYZ()).length_2d();
|
||||
}
|
||||
}
|
||||
|
||||
if(flag == 0) controller->setCurrentNode(saved_current_node);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Called when the race finishes, i.e. after playing (if necessary) an
|
||||
* end of race animation. It updates the time for all karts still racing,
|
||||
|
@ -70,6 +70,9 @@ private:
|
||||
|
||||
PtrVector<TrackObject, REF> m_tires;
|
||||
|
||||
/** Function to udpate the locations of all karts on the polygon map */
|
||||
void updateKartNodes();
|
||||
|
||||
public:
|
||||
|
||||
/** Used to show a nice graph when battle is over */
|
||||
|
@ -31,6 +31,7 @@
|
||||
#include "input/device_manager.hpp"
|
||||
#include "input/keyboard_device.hpp"
|
||||
#include "items/projectile_manager.hpp"
|
||||
#include "karts/controller/battle_ai.hpp"
|
||||
#include "karts/controller/player_controller.hpp"
|
||||
#include "karts/controller/end_controller.hpp"
|
||||
#include "karts/controller/skidding_ai.hpp"
|
||||
@ -351,13 +352,19 @@ Controller* World::loadAIController(AbstractKart *kart)
|
||||
{
|
||||
Controller *controller;
|
||||
int turn=0;
|
||||
// If different AIs should be used, adjust turn (or switch randomly
|
||||
|
||||
if(race_manager->getMinorMode()==RaceManager::MINOR_MODE_3_STRIKES)
|
||||
turn=1;
|
||||
// If different AIs 8should be used, adjust turn (or switch randomly
|
||||
// or dependent on difficulty)
|
||||
switch(turn)
|
||||
{
|
||||
case 0:
|
||||
controller = new SkiddingAI(kart);
|
||||
break;
|
||||
case 1:
|
||||
controller = new BattleAI(kart);
|
||||
break;
|
||||
default:
|
||||
Log::warn("[World]", "Unknown AI, using default.");
|
||||
controller = new SkiddingAI(kart);
|
||||
|
@ -233,7 +233,7 @@ void RaceSetupScreen::init()
|
||||
}
|
||||
|
||||
#ifdef ENABLE_SOCCER_MODE
|
||||
if (race_manager->getNumLocalPlayers() > 1 || UserConfigParams::m_artist_debug_mode)
|
||||
if (race_manager->getNumLocalPlayers() > 1 || UserConfigParams::m_artist_debug_mode)
|
||||
{
|
||||
irr::core::stringw name5 = irr::core::stringw(
|
||||
RaceManager::getNameOf(RaceManager::MINOR_MODE_SOCCER)) + L"\n";
|
||||
@ -244,7 +244,6 @@ void RaceSetupScreen::init()
|
||||
|
||||
#define ENABLE_EASTER_EGG_MODE
|
||||
#ifdef ENABLE_EASTER_EGG_MODE
|
||||
if(race_manager->getNumLocalPlayers() == 1)
|
||||
{
|
||||
irr::core::stringw name1 = irr::core::stringw(
|
||||
RaceManager::getNameOf(RaceManager::MINOR_MODE_EASTER_EGG)) + L"\n";
|
||||
|
278
src/tracks/battle_graph.cpp
Normal file
278
src/tracks/battle_graph.cpp
Normal file
@ -0,0 +1,278 @@
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2009 Joerg Henrichs
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, B
|
||||
|
||||
#include "tracks/battle_graph.hpp"
|
||||
|
||||
#include <IMesh.h>
|
||||
#include <ICameraSceneNode.h>
|
||||
#include <IMeshSceneNode.h>
|
||||
|
||||
#include "config/user_config.hpp"
|
||||
#include "graphics/irr_driver.hpp"
|
||||
#include "items/item_manager.hpp"
|
||||
#include "tracks/navmesh.hpp"
|
||||
#include "utils/vec3.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
const int BattleGraph::UNKNOWN_POLY = -1;
|
||||
BattleGraph * BattleGraph::m_battle_graph = NULL;
|
||||
|
||||
/** Constructor, Creates a navmesh, builds a graph from the navmesh and
|
||||
* then runs shortest path algorithm to find and store paths to be used
|
||||
* by the AI. */
|
||||
BattleGraph::BattleGraph(const std::string &navmesh_file_name)
|
||||
{
|
||||
NavMesh::create(navmesh_file_name);
|
||||
m_navmesh_file = navmesh_file_name;
|
||||
buildGraph(NavMesh::get());
|
||||
computeFloydWarshall();
|
||||
findItemsOnGraphNodes(ItemManager::get());
|
||||
|
||||
} // BattleGraph
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/** Builds a graph from an existing NavMesh. The graph is stored as an adjacency
|
||||
* matrix. */
|
||||
void BattleGraph::buildGraph(NavMesh* navmesh)
|
||||
{
|
||||
unsigned int n_polys = navmesh->getNumberOfPolys();
|
||||
|
||||
m_distance_matrix = std::vector< std::vector<float> > (n_polys, std::vector<float>(n_polys, 9999.9f));
|
||||
for(unsigned int i=0; i<n_polys; i++)
|
||||
{
|
||||
NavPoly currentPoly = navmesh->getNavPoly(i);
|
||||
std::vector<int> adjacents = navmesh->getAdjacentPolys(i);
|
||||
for(unsigned int j=0; j<adjacents.size(); j++)
|
||||
{
|
||||
Vec3 adjacentPolyCenter = navmesh->getCenterOfPoly(adjacents[j]);
|
||||
float distance = Vec3(adjacentPolyCenter - currentPoly.getCenter()).length_2d();
|
||||
|
||||
m_distance_matrix[i][adjacents[j]] = distance;
|
||||
//m_distance_matrix[adjacents[j]][i] = distance;
|
||||
|
||||
}
|
||||
m_distance_matrix[i][i] = 0.0f;
|
||||
}
|
||||
|
||||
} // buildGraph
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/** computeFloydWarshall() computes the shortest distance between any two nodes.
|
||||
* At the end of the computation, m_distance_matrix[i][j] stores the shortest path
|
||||
* distance from i to j and m_parent_poly[i][j] stores the last vertex visited on the
|
||||
* shortest path from i to j before visiting j. Suppose the shortest path from i to j is
|
||||
* i->......->k->j then m_parent_poly[i][j] = k
|
||||
*/
|
||||
void BattleGraph::computeFloydWarshall()
|
||||
{
|
||||
int n = getNumNodes();
|
||||
|
||||
// initialize m_parent_poly with unknown_poly so that if no path is found b/w i and j
|
||||
// then m_parent_poly[i][j] = -1 (UNKNOWN_POLY)
|
||||
// AI must check this
|
||||
m_parent_poly = std::vector< std::vector<int> > (n, std::vector<int>(n,BattleGraph::UNKNOWN_POLY));
|
||||
for(unsigned int i=0; i<n; i++)
|
||||
for(unsigned int j=0; j<n; j++)
|
||||
{
|
||||
if(i == j || m_distance_matrix[i][j]>=9899.9f) m_parent_poly[i][j]=-1;
|
||||
else m_parent_poly[i][j] = i;
|
||||
}
|
||||
|
||||
for(unsigned int k=0; k<n; k++)
|
||||
{
|
||||
for(unsigned int i=0; i<n; i++)
|
||||
{
|
||||
for(unsigned int j=0; j<n; j++)
|
||||
{
|
||||
if( (m_distance_matrix[i][k] + m_distance_matrix[k][j]) < m_distance_matrix[i][j])
|
||||
{
|
||||
m_distance_matrix[i][j] = m_distance_matrix[i][k] + m_distance_matrix[k][j];
|
||||
m_parent_poly[i][j] = m_parent_poly[k][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // computeFloydWarshall
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/** Destructor, destroys NavMesh and the debug mesh if it exists */
|
||||
BattleGraph::~BattleGraph(void)
|
||||
{
|
||||
NavMesh::destroy();
|
||||
|
||||
if(UserConfigParams::m_track_debug)
|
||||
cleanupDebugMesh();
|
||||
} // ~BattleGraph
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/** Creates the actual mesh that is used by createDebugMesh() */
|
||||
void BattleGraph::createMesh(bool enable_transparency,
|
||||
const video::SColor *track_color)
|
||||
{
|
||||
// The debug track will not be lighted or culled.
|
||||
video::SMaterial m;
|
||||
m.BackfaceCulling = false;
|
||||
m.Lighting = false;
|
||||
if(enable_transparency)
|
||||
m.MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL;
|
||||
m_mesh = irr_driver->createQuadMesh(&m);
|
||||
m_mesh_buffer = m_mesh->getMeshBuffer(0);
|
||||
assert(m_mesh_buffer->getVertexType()==video::EVT_STANDARD);
|
||||
|
||||
|
||||
// Eps is used to raise the track debug quads a little bit higher than
|
||||
// the ground, so that they are actually visible.
|
||||
core::vector3df eps(0, 0.4f, 0);
|
||||
video::SColor defaultColor(255, 255, 0, 0), c;
|
||||
|
||||
// Declare vector to hold new converted vertices, vertices are copied over
|
||||
// for each polygon, although it results in redundant vertex copies in the
|
||||
// final vector, this is the only way I know to make each poly have different color.
|
||||
std::vector<video::S3DVertex> new_v;
|
||||
|
||||
// Declare vector to hold indices
|
||||
std::vector<irr::u16> ind;
|
||||
|
||||
// Now add all polygons
|
||||
int i=0;
|
||||
for(unsigned int count=0; count<getNumNodes(); count++)
|
||||
{
|
||||
///compute colors
|
||||
if(!track_color)
|
||||
{
|
||||
c.setAlpha(178);
|
||||
//c.setRed ((i%2) ? 255 : 0);
|
||||
//c.setBlue((i%3) ? 0 : 255);
|
||||
c.setRed(7*i%256);
|
||||
c.setBlue((2*i)%256);
|
||||
c.setGreen((3*i)%256);
|
||||
}
|
||||
|
||||
NavPoly poly = NavMesh::get()->getNavPoly(count);
|
||||
|
||||
//std::vector<int> vInd = poly.getVerticesIndex();
|
||||
const std::vector<Vec3>& v = poly.getVertices();
|
||||
|
||||
// Number of triangles in the triangle fan
|
||||
unsigned int numberOfTriangles = v.size() -2 ;
|
||||
|
||||
// Set up the indices for the triangles
|
||||
|
||||
for( unsigned int count = 1; count<=numberOfTriangles; count++)
|
||||
{
|
||||
video::S3DVertex v1,v2,v3;
|
||||
v1.Pos=v[0].toIrrVector() + eps;
|
||||
v2.Pos=v[count].toIrrVector() + eps;
|
||||
v3.Pos=v[count+1].toIrrVector() + eps;
|
||||
|
||||
v1.Color = c;
|
||||
v2.Color = c;
|
||||
v3.Color = c;
|
||||
|
||||
core::triangle3df tri(v1.Pos, v2.Pos, v3.Pos);
|
||||
core::vector3df normal = tri.getNormal();
|
||||
normal.normalize();
|
||||
v1.Normal = normal;
|
||||
v2.Normal = normal;
|
||||
v3.Normal = normal;
|
||||
|
||||
new_v.push_back(v1);
|
||||
new_v.push_back(v2);
|
||||
new_v.push_back(v3);
|
||||
|
||||
ind.push_back(i++);
|
||||
ind.push_back(i++);
|
||||
ind.push_back(i++);
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
m_mesh_buffer->append(new_v.data(), new_v.size(), ind.data(), ind.size());
|
||||
|
||||
// Instead of setting the bounding boxes, we could just disable culling,
|
||||
// since the debug track should always be drawn.
|
||||
//m_node->setAutomaticCulling(scene::EAC_OFF);
|
||||
m_mesh_buffer->recalculateBoundingBox();
|
||||
m_mesh->setBoundingBox(m_mesh_buffer->getBoundingBox());
|
||||
|
||||
} // createMesh
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/** Creates the debug mesh to display the quad graph on top of the track
|
||||
* model. */
|
||||
void BattleGraph::createDebugMesh()
|
||||
{
|
||||
if(getNumNodes()<=0) return; // no debug output if not graph
|
||||
|
||||
createMesh(/*enable_transparency*/true);
|
||||
m_node = irr_driver->addMesh(m_mesh);
|
||||
#ifdef DEBUG
|
||||
m_node->setName("track-debug-mesh");
|
||||
#endif
|
||||
|
||||
} // createDebugMesh
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
/** Cleans up the debug mesh */
|
||||
void BattleGraph::cleanupDebugMesh()
|
||||
{
|
||||
if(m_node != NULL)
|
||||
irr_driver->removeNode(m_node);
|
||||
|
||||
m_node = NULL;
|
||||
// No need to call irr_driber->removeMeshFromCache, since the mesh
|
||||
// was manually made and so never added to the mesh cache.
|
||||
m_mesh->drop();
|
||||
m_mesh = NULL;
|
||||
}
|
||||
|
||||
|
||||
void BattleGraph::findItemsOnGraphNodes(ItemManager * item_manager)
|
||||
{
|
||||
unsigned int item_count = item_manager->getNumberOfItems();
|
||||
|
||||
for (unsigned int i = 0; i < item_count; ++i)
|
||||
{
|
||||
Item* item = item_manager->getItem(i);
|
||||
Vec3 xyz = item->getXYZ();
|
||||
int polygon = BattleGraph::UNKNOWN_POLY;
|
||||
float min_dist = 999999.9f;
|
||||
|
||||
for (unsigned int j = 0; j < this->getNumNodes(); ++j)
|
||||
{
|
||||
if (NavMesh::get()->getNavPoly(j).pointInPoly(xyz))
|
||||
{
|
||||
float dist = xyz.getY() - NavMesh::get()->getCenterOfPoly(j).getY();
|
||||
if (dist < min_dist && dist>-1.0f)
|
||||
{
|
||||
polygon = j;
|
||||
min_dist = dist;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
m_items_on_graph.push_back(std::make_pair(item, polygon));
|
||||
|
||||
}
|
||||
|
||||
}
|
132
src/tracks/battle_graph.hpp
Normal file
132
src/tracks/battle_graph.hpp
Normal file
@ -0,0 +1,132 @@
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2009 Joerg Henrichs
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, B
|
||||
|
||||
#ifndef HEADER_BATTLE_GRAPH_HPP
|
||||
#define HEADER_BATTLE_GRAPH_HPP
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <set>
|
||||
|
||||
#include "tracks/navmesh.hpp"
|
||||
|
||||
|
||||
class Navmesh;
|
||||
class Item;
|
||||
class ItemManager;
|
||||
|
||||
namespace irr
|
||||
{
|
||||
namespace scene { class ISceneNode; class IMesh; class IMeshBuffer; }
|
||||
namespace video { class ITexture; }
|
||||
}
|
||||
using namespace irr;
|
||||
|
||||
/**
|
||||
* \ingroup tracks
|
||||
*
|
||||
* \brief This class stores a graph constructed from the navigatoin mesh.
|
||||
* It uses a 'simplified singleton' design pattern: it has a static create
|
||||
* function to create exactly one instance, a destroy function, and a get
|
||||
* function (that does not have the side effect of the 'normal singleton'
|
||||
* design pattern to create an instance).
|
||||
\ingroup tracks
|
||||
*/
|
||||
class BattleGraph
|
||||
{
|
||||
|
||||
private:
|
||||
|
||||
static BattleGraph *m_battle_graph;
|
||||
|
||||
/** The actual graph data structure, it is an adjacency matrix */
|
||||
std::vector< std::vector< float > > m_distance_matrix;
|
||||
/** The matrix that is used to store computed shortest paths */
|
||||
std::vector< std::vector< int > > m_parent_poly;
|
||||
/** For debug mode only: the node of the debug mesh. */
|
||||
scene::ISceneNode *m_node;
|
||||
/** For debug only: the mesh of the debug mesh. */
|
||||
scene::IMesh *m_mesh;
|
||||
/** For debug only: the actual mesh buffer storing the quads. */
|
||||
scene::IMeshBuffer *m_mesh_buffer;
|
||||
|
||||
/** Stores the name of the file containing the NavMesh data */
|
||||
std::string m_navmesh_file;
|
||||
|
||||
std::vector< std::pair<Item*, int> > m_items_on_graph;
|
||||
|
||||
void buildGraph(NavMesh*);
|
||||
void computeFloydWarshall();
|
||||
void createMesh(bool enable_transparency=false,
|
||||
const video::SColor *track_color=NULL);
|
||||
void findItemsOnGraphNodes(ItemManager*);
|
||||
|
||||
BattleGraph(const std::string &navmesh_file_name);
|
||||
~BattleGraph(void);
|
||||
|
||||
public:
|
||||
|
||||
static const int UNKNOWN_POLY;
|
||||
|
||||
/** Returns the one instance of this object. */
|
||||
static BattleGraph *get() { return m_battle_graph; }
|
||||
// ----------------------------------------------------------------------
|
||||
/** Asserts that no BattleGraph instance exists. Then
|
||||
* creates a BattleGraph instance. */
|
||||
static void create(const std::string &navmesh_file_name)
|
||||
{
|
||||
assert(m_battle_graph==NULL);
|
||||
m_battle_graph = new BattleGraph(navmesh_file_name);
|
||||
|
||||
} // create
|
||||
// ----------------------------------------------------------------------
|
||||
/** Cleans up the BattleGraph instance if it exists */
|
||||
static void destroy()
|
||||
{
|
||||
if(m_battle_graph)
|
||||
{
|
||||
delete m_battle_graph;
|
||||
m_battle_graph = NULL;
|
||||
}
|
||||
} // destroy
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
/** Returns the number of nodes in the BattleGraph (equal to the number of
|
||||
* polygons in the NavMesh */
|
||||
unsigned int getNumNodes() const { return m_distance_matrix.size(); }
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
/** Returns the NavPoly corresponding to the i-th node of the BattleGraph */
|
||||
const NavPoly& getPolyOfNode(int i) const
|
||||
{ return NavMesh::get()->getNavPoly(i); }
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
/** Returns the next polygon on the shortest path from i to j.
|
||||
* Note: m_parent_poly[j][i] contains the parent of i on path from j to i,
|
||||
* which is the next node on the path from i to j (undirected graph) */
|
||||
const int & getNextShortestPathPoly(int i, int j) const
|
||||
{ return m_parent_poly[j][i]; }
|
||||
|
||||
const std::vector< std::pair<Item*, int> >& getItemList()
|
||||
{ return m_items_on_graph; }
|
||||
|
||||
void createDebugMesh();
|
||||
void cleanupDebugMesh();
|
||||
}; //BattleGraph
|
||||
|
||||
#endif
|
82
src/tracks/nav_poly.cpp
Normal file
82
src/tracks/nav_poly.cpp
Normal file
@ -0,0 +1,82 @@
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2009 Joerg Henrichs
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
|
||||
|
||||
|
||||
#include "tracks/nav_poly.hpp"
|
||||
#include "tracks/navmesh.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
/** Constructor that takes a vector of points and a vector of adjacnet polygons */
|
||||
NavPoly::NavPoly(const std::vector<int> &polygonVertIndices,
|
||||
const std::vector<int> &adjacentPolygonIndices)
|
||||
{
|
||||
m_vertices = polygonVertIndices;
|
||||
|
||||
m_adjacents = adjacentPolygonIndices;
|
||||
|
||||
std::vector<Vec3> xyz_points = getVertices();
|
||||
|
||||
Vec3 temp(0.0f,0.0f,0.0f);
|
||||
for(unsigned int i=0; i<xyz_points.size(); i++)
|
||||
temp = temp + xyz_points[i];
|
||||
|
||||
m_center = (temp)*( 1.0f / xyz_points.size());
|
||||
|
||||
}
|
||||
|
||||
|
||||
const std::vector<Vec3> NavPoly::getVertices()
|
||||
{
|
||||
std::vector<Vec3> points;
|
||||
for(unsigned int i=0; i<m_vertices.size(); i++)
|
||||
points.push_back(NavMesh::get()->getVertex(m_vertices[i]));
|
||||
return points;
|
||||
}
|
||||
|
||||
bool NavPoly::pointInPoly(const Vec3& p) const
|
||||
{
|
||||
std::vector<Vec3> points;
|
||||
for(unsigned int i=0; i<m_vertices.size(); i++)
|
||||
points.push_back(NavMesh::get()->getVertex(m_vertices[i]));
|
||||
|
||||
// The point is on which side of the first edge
|
||||
float side = p.sideOfLine2D(points[0],points[1]);
|
||||
|
||||
|
||||
// The point is inside the polygon if it is on the same side for all edges
|
||||
for(unsigned int i=1; i<points.size(); i++)
|
||||
{
|
||||
// If it is on different side then product is < 0 , return false
|
||||
if(p.sideOfLine2D(points[i % points.size()],
|
||||
points[(i+1)% points.size()]) * side < 0)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
const Vec3& NavPoly::operator[](int i) const
|
||||
{
|
||||
return NavMesh::get()->getVertex(m_vertices[i]);
|
||||
}
|
||||
|
72
src/tracks/nav_poly.hpp
Normal file
72
src/tracks/nav_poly.hpp
Normal file
@ -0,0 +1,72 @@
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2009 Joerg Henrichs
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
|
||||
#ifndef HEADER_NAV_POLY_HPP
|
||||
#define HEADER_NAV_POLY_HPP
|
||||
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <SColor.h>
|
||||
#include "utils/vec3.hpp"
|
||||
|
||||
/**
|
||||
* \ingroup tracks
|
||||
*/
|
||||
class NavPoly
|
||||
{
|
||||
private:
|
||||
|
||||
/** Holds the index of vertices for a polygon **/
|
||||
std::vector<int> m_vertices;
|
||||
|
||||
/** Center of this polygon. **/
|
||||
Vec3 m_center;
|
||||
|
||||
/** Holds the index of adjacent polyogns **/
|
||||
std::vector<int> m_adjacents;
|
||||
|
||||
public:
|
||||
NavPoly(const std::vector<int> &polygonVertIndices,
|
||||
const std::vector<int> &adjacentPolygonIndices);
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
/** Returns the center point of a polygon. */
|
||||
const Vec3& getCenter() const {return m_center;}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
/** Returns the adjacent polygons of a polygon. */
|
||||
const std::vector<int>& getAdjacents() const {return m_adjacents;}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
/** Returns the vertices(Vec3) of this polygon. */
|
||||
const std::vector<Vec3> getVertices();
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
/** Returns the indices of the vertices of this polygon */
|
||||
const std::vector<int> getVerticesIndex() const {return m_vertices;}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
/** Returns true if a given point lies in this polygon. */
|
||||
bool pointInPoly(const Vec3& p) const;
|
||||
|
||||
const Vec3& operator[](int i) const ;
|
||||
|
||||
}; // class NavPoly
|
||||
|
||||
#endif
|
133
src/tracks/navmesh.cpp
Normal file
133
src/tracks/navmesh.cpp
Normal file
@ -0,0 +1,133 @@
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2009 Joerg Henrichs
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
|
||||
#include "tracks/navmesh.hpp"
|
||||
#include "tracks/nav_poly.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <S3DVertex.h>
|
||||
#include <triangle3d.h>
|
||||
|
||||
|
||||
#include "LinearMath/btTransform.h"
|
||||
#include "io/file_manager.hpp"
|
||||
#include "io/xml_node.hpp"
|
||||
#include "utils/string_utils.hpp"
|
||||
|
||||
NavMesh *NavMesh::m_nav_mesh = NULL;
|
||||
|
||||
|
||||
/** Constructor, loads the mesh information from a given set of polygons
|
||||
* from a navmesh.xml file.
|
||||
* \param filename Name of the file containing all polygons
|
||||
*/
|
||||
NavMesh::NavMesh(const std::string &filename)
|
||||
{
|
||||
|
||||
m_n_verts=0;
|
||||
m_n_polys=0;
|
||||
|
||||
XMLNode *xml = file_manager->createXMLTree(filename);
|
||||
if(!xml || xml->getName()!="navmesh")
|
||||
{
|
||||
Log::error("NavMesh", "NavMesh '%s' not found. \n", filename.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
// Assigning m_nav_mesh here because constructing NavPoly requires m_nav_mesh to be defined
|
||||
m_nav_mesh = this;
|
||||
|
||||
for(unsigned int i=0; i<xml->getNumNodes(); i++)
|
||||
{
|
||||
const XMLNode *xml_node = xml->getNode(i);
|
||||
if(xml_node->getName()=="vertices")
|
||||
{
|
||||
for(unsigned int i=0; i<xml_node->getNumNodes(); i++)
|
||||
{
|
||||
const XMLNode *xml_node_node = xml_node->getNode(i);
|
||||
if(!(xml_node_node->getName()=="vertex"))
|
||||
{
|
||||
Log::error("NavMesh", "Unsupported type '%s' found in '%s' - ignored. \n",
|
||||
xml_node_node->getName().c_str(),filename.c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
//Reading vertices
|
||||
Vec3 p;
|
||||
readVertex(xml_node_node, &p);
|
||||
m_n_verts++;
|
||||
m_verts.push_back(p);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if(xml_node->getName()=="faces")
|
||||
{
|
||||
for(unsigned int i=0; i<xml_node->getNumNodes(); i++)
|
||||
{
|
||||
const XMLNode *xml_node_node = xml_node->getNode(i);
|
||||
if(xml_node_node->getName()!="face")
|
||||
{
|
||||
Log::error("NavMesh", "Unsupported type '%s' found in '%s' - ignored. \n",
|
||||
xml_node_node->getName().c_str(),filename.c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
//Reading faces/polys
|
||||
std::vector<int> polygonVertIndices;
|
||||
std::vector<int> adjacentPolygonIndices;
|
||||
xml_node_node->get("indices", &polygonVertIndices);
|
||||
xml_node_node->get("adjacents", &adjacentPolygonIndices);
|
||||
NavPoly *np = new NavPoly(polygonVertIndices, adjacentPolygonIndices);
|
||||
m_polys.push_back(*np);
|
||||
m_n_polys++;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if(xml_node->getName()=="MaxVertsPerPoly")
|
||||
{
|
||||
xml_node->get("nvp", &m_nvp);
|
||||
}
|
||||
|
||||
//delete xml_node;
|
||||
}
|
||||
|
||||
delete xml;
|
||||
|
||||
} // NavMesh
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
NavMesh::~NavMesh()
|
||||
{
|
||||
} // ~NavMesh
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
/** Reads the vertex information from an XMLNode */
|
||||
void NavMesh::readVertex(const XMLNode *xml, Vec3* result) const
|
||||
{
|
||||
float x, y, z;
|
||||
xml->get("x", &x);
|
||||
xml->get("y", &y);
|
||||
xml->get("z", &z);
|
||||
Vec3 temp(x, y, z);
|
||||
*result = temp;
|
||||
} // readVertex
|
||||
|
150
src/tracks/navmesh.hpp
Normal file
150
src/tracks/navmesh.hpp
Normal file
@ -0,0 +1,150 @@
|
||||
//
|
||||
// SuperTuxKart - a fun racing game with go-kart
|
||||
// Copyright (C) 2009 Joerg Henrichs
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License
|
||||
// as published by the Free Software Foundation; either version 3
|
||||
// of the License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place - Suite 330, B
|
||||
|
||||
#ifndef HEADER_NAVMESH_HPP
|
||||
#define HEADER_NAVMESH_HPP
|
||||
|
||||
#include "tracks/nav_poly.hpp"
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <set>
|
||||
|
||||
#include "utils/vec3.hpp"
|
||||
|
||||
|
||||
namespace irr
|
||||
{
|
||||
namespace video { struct S3DVertex; }
|
||||
}
|
||||
using namespace irr;
|
||||
|
||||
|
||||
class btTransform;
|
||||
class XMLNode;
|
||||
|
||||
/**
|
||||
* \ingroup tracks
|
||||
*
|
||||
* \brief This class stores a set of navigatoin polygons. It uses a
|
||||
* 'simplified singleton' design pattern: it has a static create function
|
||||
* to create exactly one instance, a destroy function, and a get function
|
||||
* (that does not have the side effect of the 'normal singleton' design
|
||||
* pattern to create an instance). Besides saving on the if statement in get(),
|
||||
* this is necessary since certain race modes might not have a navigaton
|
||||
* mesh at all (e.g. race mode). So get() returns NULL in this case, and
|
||||
* this is tested where necessary.
|
||||
\ingroup tracks
|
||||
*/
|
||||
class NavMesh
|
||||
{
|
||||
|
||||
private:
|
||||
|
||||
static NavMesh *m_nav_mesh;
|
||||
|
||||
/** The actual set of nav polys that constitute the nav mesh */
|
||||
std::vector<NavPoly> m_polys;
|
||||
|
||||
/** The set of vertices that are part of this nav mesh*/
|
||||
std::vector< Vec3 > m_verts;
|
||||
|
||||
/** Number of vertices */
|
||||
unsigned int m_n_verts;
|
||||
/** Number of polygons */
|
||||
unsigned int m_n_polys;
|
||||
/** Maximum vertices per polygon */
|
||||
unsigned int m_nvp;
|
||||
|
||||
void readVertex(const XMLNode *xml, Vec3* result) const;
|
||||
//void readFace(const XMLNode *xml, Vec3* result) const;
|
||||
NavMesh(const std::string &filename);
|
||||
~NavMesh();
|
||||
|
||||
public:
|
||||
|
||||
/** Creates a NavMesh instance. */
|
||||
static void create(const std::string &filename)
|
||||
{
|
||||
assert(m_nav_mesh==NULL);
|
||||
|
||||
// m_nav_mesh assigned in the constructor because it needs to defined
|
||||
// for NavPoly which is constructed in NavMesh()
|
||||
new NavMesh(filename);
|
||||
}
|
||||
|
||||
/** Cleans up the nav mesh. It is possible that this function is called
|
||||
* even if no instance exists (e.g. in race). So it is not an
|
||||
* error if there is no instance. */
|
||||
static void destroy()
|
||||
{
|
||||
if(m_nav_mesh)
|
||||
{
|
||||
delete m_nav_mesh;
|
||||
m_nav_mesh = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/** Returns the one instance of this object. It is possible that there
|
||||
* is no instance created (e.g. in normal race, since it doesn't have
|
||||
* a nav mesh), so we don't assert that an instance exist, and we
|
||||
* also don't create one if it doesn't exists. */
|
||||
static NavMesh *get() { return m_nav_mesh; }
|
||||
|
||||
/** Returns a const reference to a NavPoly */
|
||||
const NavPoly& getNavPoly(int n) const
|
||||
{ return m_polys[n]; }
|
||||
|
||||
/** Returns a const reference to a vertex(Vec3) */
|
||||
const Vec3& getVertex(int n) const
|
||||
{ return m_verts[n]; }
|
||||
|
||||
/** Returns a const reference to a vector containing all vertices */
|
||||
const std::vector<Vec3>& getAllVertices() const
|
||||
{ return m_verts; }
|
||||
|
||||
/** Returns the total number of polys */
|
||||
unsigned int getNumberOfPolys() const
|
||||
{ return m_n_polys; }
|
||||
|
||||
/** Returns the total number of vertices */
|
||||
unsigned int getNumberOfVerts() const
|
||||
{ return m_n_verts; }
|
||||
|
||||
/** Returns maximum vertices per polygon */
|
||||
unsigned int getMaxVertsPerPoly() const
|
||||
{ return m_nvp; }
|
||||
|
||||
/** Returns the center of a polygon */
|
||||
const Vec3& getCenterOfPoly(int n) const
|
||||
{return m_polys[n].getCenter();}
|
||||
|
||||
/** Returns a const referece to a vector containing the indices
|
||||
* of polygons adjacent to a given polygon */
|
||||
const std::vector<int>& getAdjacentPolys(int n) const
|
||||
{return m_polys[n].getAdjacents();}
|
||||
|
||||
/** Returns a const reference to a vector containing the vertices
|
||||
* of a given polygon. */
|
||||
const std::vector<Vec3> getVertsOfPoly(int n)
|
||||
{return m_polys[n].getVertices();}
|
||||
|
||||
};
|
||||
|
||||
|
||||
#endif
|
@ -54,6 +54,7 @@
|
||||
#include "physics/triangle_mesh.hpp"
|
||||
#include "race/race_manager.hpp"
|
||||
#include "tracks/bezier_curve.hpp"
|
||||
#include "tracks/battle_graph.hpp"
|
||||
#include "tracks/check_manager.hpp"
|
||||
#include "tracks/model_definition_loader.hpp"
|
||||
#include "tracks/track_manager.hpp"
|
||||
@ -274,6 +275,7 @@ void Track::reset()
|
||||
void Track::cleanup()
|
||||
{
|
||||
QuadGraph::destroy();
|
||||
BattleGraph::destroy();
|
||||
ItemManager::destroy();
|
||||
VAOManager::kill();
|
||||
|
||||
@ -706,8 +708,14 @@ void Track::loadQuadGraph(unsigned int mode_id, const bool reverse)
|
||||
}
|
||||
}
|
||||
} // loadQuadGraph
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Loads the polygon graph for battle, i.e. the definition of all polys, and the way
|
||||
* they are connected to each other. Input file name is hardcoded for now
|
||||
*/
|
||||
void Track::loadBattleGraph()
|
||||
{
|
||||
BattleGraph::create(m_root+"navmesh.xml");
|
||||
}// -----------------------------------------------------------------------------
|
||||
void Track::mapPoint2MiniMap(const Vec3 &xyz, Vec3 *draw_at) const
|
||||
{
|
||||
QuadGraph::get()->mapPoint2MiniMap(xyz, draw_at);
|
||||
@ -1587,9 +1595,10 @@ void Track::loadTrackModel(bool reverse_track, unsigned int mode_id)
|
||||
// the information about the size of the texture to render the mini
|
||||
// map to.
|
||||
if (!m_is_arena && !m_is_soccer && !m_is_cutscene) loadQuadGraph(mode_id, reverse_track);
|
||||
|
||||
|
||||
ItemManager::create();
|
||||
|
||||
|
||||
// Set the default start positions. Node that later the default
|
||||
// positions can still be overwritten.
|
||||
float forwards_distance = 1.5f;
|
||||
@ -1811,6 +1820,16 @@ void Track::loadTrackModel(bool reverse_track, unsigned int mode_id)
|
||||
|
||||
delete root;
|
||||
|
||||
// ItemManager assumes the existence of a QuadGraph, that is why the
|
||||
// quad graph is loaded before ItemManager::create(). This is undesirable
|
||||
// but requires signifcant code overhaul to fix. The new battle graph
|
||||
// performs its own computatoins separate from ItemManager. But
|
||||
// Battle Graph needs ItemManager to be created, and all items to be
|
||||
// added to ItemManager. Loading battle graph here is therefore a workaround
|
||||
// to the main problem.
|
||||
if (m_is_arena && !m_is_soccer && !m_is_cutscene) loadBattleGraph();
|
||||
|
||||
|
||||
if (UserConfigParams::m_track_debug &&
|
||||
race_manager->getMinorMode()!=RaceManager::MINOR_MODE_3_STRIKES &&
|
||||
!m_is_cutscene)
|
||||
@ -1818,6 +1837,12 @@ void Track::loadTrackModel(bool reverse_track, unsigned int mode_id)
|
||||
QuadGraph::get()->createDebugMesh();
|
||||
}
|
||||
|
||||
if (UserConfigParams::m_track_debug &&
|
||||
race_manager->getMinorMode()==RaceManager::MINOR_MODE_3_STRIKES &&
|
||||
!m_is_cutscene)
|
||||
BattleGraph::get()->createDebugMesh();
|
||||
|
||||
|
||||
// Only print warning if not in battle mode, since battle tracks don't have
|
||||
// any quads or check lines.
|
||||
if (CheckManager::get()->getCheckStructureCount()==0 &&
|
||||
@ -1851,6 +1876,8 @@ void Track::loadTrackModel(bool reverse_track, unsigned int mode_id)
|
||||
}
|
||||
|
||||
irr_driver->unsetTextureErrorMessage();
|
||||
|
||||
|
||||
} // loadTrackModel
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
@ -43,6 +43,7 @@ class ModelDefinitionLoader;
|
||||
#include "items/item.hpp"
|
||||
#include "scriptengine/script_engine.hpp"
|
||||
#include "tracks/quad_graph.hpp"
|
||||
#include "tracks/battle_graph.hpp"
|
||||
#include "utils/aligned_array.hpp"
|
||||
#include "utils/translation.hpp"
|
||||
#include "utils/vec3.hpp"
|
||||
@ -376,6 +377,7 @@ private:
|
||||
|
||||
void loadTrackInfo();
|
||||
void loadQuadGraph(unsigned int mode_id, const bool reverse);
|
||||
void loadBattleGraph();
|
||||
void convertTrackToBullet(scene::ISceneNode *node);
|
||||
bool loadMainTrack(const XMLNode &node);
|
||||
void createWater(const XMLNode &node);
|
||||
|
Loading…
Reference in New Issue
Block a user