Started to refactor the camera into different classes. Normal

camera is working atm. but not much more.
This commit is contained in:
hiker 2016-04-18 23:29:10 +10:00
parent caca4b06b2
commit d65dd6c199
21 changed files with 1618 additions and 965 deletions

View File

@ -23,6 +23,10 @@
#include "audio/sfx_manager.hpp" #include "audio/sfx_manager.hpp"
#include "config/user_config.hpp" #include "config/user_config.hpp"
#include "graphics/camera_debug.hpp"
#include "graphics/camera_end.hpp"
#include "graphics/camera_fps.hpp"
#include "graphics/camera_normal.hpp"
#include "graphics/irr_driver.hpp" #include "graphics/irr_driver.hpp"
#include "io/xml_node.hpp" #include "io/xml_node.hpp"
#include "karts/abstract_kart.hpp" #include "karts/abstract_kart.hpp"
@ -38,20 +42,68 @@
#include "utils/constants.hpp" #include "utils/constants.hpp"
#include "utils/vs.hpp" #include "utils/vs.hpp"
#include "ICameraSceneNode.h"
#include "ISceneManager.h" #include "ISceneManager.h"
AlignedArray<Camera::EndCameraInformation> Camera::m_end_cameras; std::vector<Camera*> Camera::m_all_cameras;
std::vector<Camera*> Camera::m_all_cameras; Camera* Camera::s_active_camera = NULL;
Camera::CameraType Camera::m_default_type = Camera::CM_TYPE_NORMAL;
Camera* Camera::s_active_camera = NULL; // ------------------------------------------------------------------------
Camera::DebugMode Camera::m_debug_mode = Camera::CM_DEBUG_NONE; /** Creates a new camera and adds it to the list of all cameras. Also the
* camera index (which determines which viewport to use in split screen)
* is set.
*/
Camera* Camera::createCamera(AbstractKart* kart)
{
Camera *camera = createCamera(m_all_cameras.size(), m_default_type, kart);
m_all_cameras.push_back(camera);
return camera;
} // createCamera(kart)
// ============================================================================ // ----------------------------------------------------------------------------
/** Creates a camera of the specified type, but does not add it to the list
* of all cameras. This is a helper function for other static functions.
* \paran index Index this camera has in the list of all cameras.
* \param type The camera type of the camera to create.
* \param kart To which kart the camera is attached (NULL if a free camera).
*/
Camera* Camera::createCamera(unsigned int index, CameraType type,
AbstractKart* kart)
{
Camera *camera = NULL;
switch (type)
{
case CM_TYPE_NORMAL: camera = new CameraNormal(index, kart); break;
case CM_TYPE_DEBUG: camera = new CameraDebug (index, kart); break;
case CM_TYPE_FPS: camera = new CameraFPS (index, kart); break;
case CM_TYPE_END: camera = new CameraEnd (index, kart); break;
} // switch type
return camera;
} // createCamera
// ----------------------------------------------------------------------------
void Camera::changeCamera(unsigned int camera_index, CameraType type)
{
assert(camera_index<m_all_cameras.size());
Camera *old_camera = m_all_cameras[camera_index];
// Nothing to do if this is already the right type.
if(old_camera->getType()==type) return;
Camera *new_camera = createCamera(old_camera->getIndex(), type,
old_camera->m_kart );
// Replace the previous camera
m_all_cameras[camera_index] = new_camera;
if(s_active_camera == old_camera)
s_active_camera == new_camera;
delete old_camera;
} // changeCamera
// ----------------------------------------------------------------------------
Camera::Camera(int camera_index, AbstractKart* kart) : m_kart(NULL) Camera::Camera(int camera_index, AbstractKart* kart) : m_kart(NULL)
{ {
m_smooth = false;
m_attached = false;
m_mode = CM_NORMAL; m_mode = CM_NORMAL;
m_index = camera_index; m_index = camera_index;
m_original_kart = kart; m_original_kart = kart;
@ -60,31 +112,8 @@ Camera::Camera(int camera_index, AbstractKart* kart) : m_kart(NULL)
setupCamera(); setupCamera();
setKart(kart); setKart(kart);
m_distance = kart ? kart->getKartProperties()->getCameraDistance() : 1000.0f;
m_ambient_light = World::getWorld()->getTrack()->getDefaultAmbientColor(); m_ambient_light = World::getWorld()->getTrack()->getDefaultAmbientColor();
// TODO: Put these values into a config file
// Global or per split screen zone?
// Either global or per user (for instance, some users may not like
// the extra camera rotation so they could set m_rotation_range to
// zero to disable it for themselves).
m_position_speed = 8.0f;
m_target_speed = 10.0f;
m_rotation_range = 0.4f;
m_rotation_range = 0.0f;
m_lin_velocity = core::vector3df(0, 0, 0);
m_target_velocity = core::vector3df(0, 0, 0);
m_target_direction = core::vector3df(0, 0, 1);
m_target_up_vector = core::vector3df(0, 1, 0);
m_direction_velocity = core::vector3df(0, 0, 0);
m_local_position = core::vector3df(0, 0, 0);
m_local_direction = core::vector3df(0, 0, 1);
m_local_up = core::vector3df(0, 1, 0);
m_angular_velocity = 0;
m_target_angular_velocity = 0;
m_max_velocity = 15;
reset(); reset();
} // Camera } // Camera
@ -99,53 +128,6 @@ Camera::~Camera()
s_active_camera = NULL; s_active_camera = NULL;
} // ~Camera } // ~Camera
//-----------------------------------------------------------------------------
/** Applies mouse movement to the first person camera.
* \param x The horizontal difference of the mouse position.
* \param y The vertical difference of the mouse position.
*/
void Camera::applyMouseMovement (float x, float y)
{
vector3df direction(m_target_direction);
vector3df up(m_camera->getUpVector());
// Set local values if the camera is attached to the kart
if (m_attached)
up = m_local_up;
direction.normalize();
up.normalize();
vector3df side(direction.crossProduct(up));
side.normalize();
core::quaternion quat;
quat.fromAngleAxis(y, side);
core::quaternion quat_x;
quat_x.fromAngleAxis(x, up);
quat *= quat_x;
direction = quat * direction;
// Try to prevent toppling over
// If the camera would topple over with the next movement, the vertical
// movement gets reset close to the up vector
if ((direction - up).getLengthSQ() + (m_target_direction - up).getLengthSQ()
<= (direction - m_target_direction).getLengthSQ())
direction = quat_x * ((m_target_direction - up).setLength(0.02f) + up);
// Prevent toppling under
else if ((direction + up).getLengthSQ() + (m_target_direction + up).getLengthSQ()
<= (direction - m_target_direction).getLengthSQ())
direction = quat_x * ((m_target_direction + up).setLength(0.02f) - up);
m_target_direction = direction;
// Don't do that because it looks ugly and is bad to handle ;)
/*side = direction.crossProduct(up);
// Compute new up vector
up = side.crossProduct(direction);
up.normalize();
cam->setUpVector(up);*/
}
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
/** Changes the owner of this camera to the new kart. /** Changes the owner of this camera to the new kart.
* \param new_kart The new kart to use this camera. * \param new_kart The new kart to use this camera.
@ -161,46 +143,14 @@ void Camera::setKart(AbstractKart *new_kart)
} // setKart } // setKart
//-----------------------------------------------------------------------------
/** This function clears all end camera data structure. This is necessary
* since all end cameras are shared between all camera instances (i.e. are
* static), otherwise (if no end camera is defined for a track) the old
* end camera structure would be used.
*/
void Camera::clearEndCameras()
{
m_end_cameras.clear();
} // clearEndCameras
//-----------------------------------------------------------------------------
/** Reads the information about the end camera. This information is shared
* between all cameras, so this is a static function.
* \param node The XML node containing all end camera informations
*/
void Camera::readEndCamera(const XMLNode &root)
{
m_end_cameras.clear();
for(unsigned int i=0; i<root.getNumNodes(); i++)
{
unsigned int index = i;
// In reverse mode, reverse the order in which the
// end cameras are read.
if(QuadGraph::get()->isReverse())
index = root.getNumNodes() - 1 - i;
const XMLNode *node = root.getNode(index);
EndCameraInformation eci;
if(!eci.readXML(*node)) continue;
m_end_cameras.push_back(eci);
} // for i<getNumNodes()
} // readEndCamera
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
/** Sets up the viewport, aspect ratio, field of view, and scaling for this /** Sets up the viewport, aspect ratio, field of view, and scaling for this
* camera. * camera.
*/ */
void Camera::setupCamera() void Camera::setupCamera()
{ {
m_aspect = (float)(irr_driver->getActualScreenSize().Width)/irr_driver->getActualScreenSize().Height; m_aspect = (float)(irr_driver->getActualScreenSize().Width)
/ irr_driver->getActualScreenSize().Height;
switch(race_manager->getNumLocalPlayers()) switch(race_manager->getNumLocalPlayers())
{ {
case 1: m_viewport = core::recti(0, 0, case 1: m_viewport = core::recti(0, 0,
@ -277,21 +227,18 @@ void Camera::setMode(Mode mode)
{ {
// If we switch from reverse view, move the camera immediately to the // If we switch from reverse view, move the camera immediately to the
// correct position. // correct position.
if((m_mode==CM_REVERSE && mode==CM_NORMAL) || (m_mode==CM_FALLING && mode==CM_NORMAL)) if( (m_mode==CM_REVERSE && mode==CM_NORMAL) ||
(m_mode==CM_FALLING && mode==CM_NORMAL) )
{ {
Vec3 start_offset(0, 1.6f, -3); Vec3 start_offset(0, 1.6f, -3);
Vec3 current_position = m_kart->getTrans()(start_offset); Vec3 current_position = m_kart->getTrans()(start_offset);
m_camera->setPosition( current_position.toIrrVector()); m_camera->setPosition(current_position.toIrrVector());
m_camera->setTarget(m_camera->getPosition()); m_camera->setTarget(m_camera->getPosition());
} }
if(mode==CM_FINAL)
if(mode==CM_TYPE_END)
{ {
if(m_end_cameras.size()>0) printf("");
m_camera->setPosition(m_end_cameras[0].m_position.toIrrVector());
m_next_end_camera = m_end_cameras.size()>1 ? 1 : 0;
m_current_end_camera = 0;
m_camera->setFOV(m_fov);
handleEndCamera(0);
} // mode==CM_FINAL } // mode==CM_FINAL
m_mode = mode; m_mode = mode;
@ -303,7 +250,7 @@ void Camera::setMode(Mode mode)
Camera::Mode Camera::getMode() Camera::Mode Camera::getMode()
{ {
return m_mode; return m_mode;
} } // getMode
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
/** Reset is called when a new race starts. Make sure that the camera /** Reset is called when a new race starts. Make sure that the camera
@ -327,6 +274,9 @@ void Camera::setInitialTransform()
if (m_kart == NULL) return; if (m_kart == NULL) return;
Vec3 start_offset(0, 1.6f, -3); Vec3 start_offset(0, 1.6f, -3);
Vec3 current_position = m_kart->getTrans()(start_offset); Vec3 current_position = m_kart->getTrans()(start_offset);
assert(!std::isnan(current_position.getX()));
assert(!std::isnan(current_position.getY()));
assert(!std::isnan(current_position.getZ()));
m_camera->setPosition( current_position.toIrrVector()); m_camera->setPosition( current_position.toIrrVector());
// Reset the target from the previous target (in case of a restart // Reset the target from the previous target (in case of a restart
// of a race) - otherwise the camera will initially point in the wrong // of a race) - otherwise the camera will initially point in the wrong
@ -337,179 +287,15 @@ void Camera::setInitialTransform()
m_camera->setRotation(core::vector3df(0, 0, 0)); m_camera->setRotation(core::vector3df(0, 0, 0));
m_camera->setRotation( core::vector3df( 0.0f, 0.0f, 0.0f ) ); m_camera->setRotation( core::vector3df( 0.0f, 0.0f, 0.0f ) );
m_camera->setFOV(m_fov); m_camera->setFOV(m_fov);
assert(!std::isnan(m_camera->getPosition().X));
assert(!std::isnan(m_camera->getPosition().Y));
assert(!std::isnan(m_camera->getPosition().Z));
} // setInitialTransform } // setInitialTransform
//-----------------------------------------------------------------------------
/** Moves the camera smoothly from the current camera position (and target)
* to the new position and target.
* \param wanted_position The position the camera wanted to reach.
* \param wanted_target The point the camera wants to point to.
*/
void Camera::smoothMoveCamera(float dt)
{
Kart *kart = dynamic_cast<Kart*>(m_kart);
if (kart->isFlying())
{
Vec3 vec3 = m_kart->getXYZ() + Vec3(sin(m_kart->getHeading()) * -4.0f, 0.5f, cos(m_kart->getHeading()) * -4.0f);
m_camera->setTarget(m_kart->getXYZ().toIrrVector());
m_camera->setPosition(vec3.toIrrVector());
return;
}
core::vector3df current_position = m_camera->getPosition();
// Smoothly interpolate towards the position and target
const KartProperties *kp = m_kart->getKartProperties();
float max_increase_with_zipper = kp->getZipperMaxSpeedIncrease();
float max_speed_without_zipper = kp->getEngineMaxSpeed();
float current_speed = m_kart->getSpeed();
const Skidding *ks = m_kart->getSkidding();
float skid_factor = ks->getVisualSkidRotation();
float skid_angle = asin(skid_factor);
float ratio = (current_speed - max_speed_without_zipper) / max_increase_with_zipper;
ratio = ratio > -0.12f ? ratio : -0.12f;
float camera_distance = -3 * (0.5f + ratio);// distance of camera from kart in x and z plane
if (camera_distance > -2.0f) camera_distance = -2.0f;
Vec3 camera_offset(camera_distance * sin(skid_angle / 2),
1.1f * (1 + ratio / 2),
camera_distance * cos(skid_angle / 2));// defines how far camera should be from player kart.
Vec3 m_kart_camera_position_with_offset = m_kart->getTrans()(camera_offset);
core::vector3df current_target = m_kart->getXYZ().toIrrVector();// next target
current_target.Y += 0.5f;
core::vector3df wanted_position = m_kart_camera_position_with_offset.toIrrVector();// new required position of camera
if ((m_kart->getSpeed() > 5 ) || (m_kart->getSpeed() < 0 ))
{
current_position += ((wanted_position - current_position) * dt
* (m_kart->getSpeed()>0 ? m_kart->getSpeed()/3 + 1.0f
: -1.5f * m_kart->getSpeed() + 2.0f));
}
else
{
current_position += (wanted_position - current_position) * dt * 5;
}
// Avoid camera crash: if the speed is negative, the current_position
// can oscillate between plus and minus, getting bigger and bigger. If
// this happens often enough, floating point overflow happens (large
// negative speeds can happen when the kart is tumbling/falling)
// To avoid this, we just move the camera to the wanted position if
// the distance becomes too large (see #1356).
if( (current_position - wanted_position).getLengthSQ() > 100)
{
Log::debug("camera", "Resetting camera position to avoid crash");
current_position = wanted_position;
}
if(m_mode!=CM_FALLING)
m_camera->setPosition(current_position);
m_camera->setTarget(current_target);//set new target
assert(!std::isnan(m_camera->getPosition().X));
assert(!std::isnan(m_camera->getPosition().Y));
assert(!std::isnan(m_camera->getPosition().Z));
} // smoothMoveCamera
//-----------------------------------------------------------------------------
/** Determine the camera settings for the current frame.
* \param above_kart How far above the camera should aim at.
* \param cam_angle Angle above the kart plane for the camera.
* \param sideway Sideway movement of the camera.
* \param distance Distance from kart.
*/
void Camera::getCameraSettings(float *above_kart, float *cam_angle,
float *sideway, float *distance,
bool *smoothing)
{
const KartProperties *kp = m_kart->getKartProperties();
switch(m_mode)
{
case CM_NORMAL:
case CM_FALLING:
{
if(m_debug_mode==CM_DEBUG_GROUND)
{
*above_kart = 0;
*cam_angle = 0;
*distance = -m_kart->getKartModel()->getLength()-1.0f;
}
else if(m_debug_mode==CM_DEBUG_BEHIND_KART)
{
*above_kart = 0;
*cam_angle = 0;
*distance = -0.5f*m_kart->getKartModel()->getLength()-1.0f;
*smoothing = false;
}
else
{
*above_kart = 0.75f;
*cam_angle = kp->getCameraForwardUpAngle() * DEGREE_TO_RAD;
*distance = -m_distance;
}
float steering = m_kart->getSteerPercent()
* (1.0f + (m_kart->getSkidding()->getSkidFactor()
- 1.0f)/2.3f );
// quadratically to dampen small variations (but keep sign)
float dampened_steer = fabsf(steering) * steering;
*sideway = -m_rotation_range*dampened_steer*0.5f;
*smoothing = true;
break;
} // CM_FALLING
case CM_REVERSE: // Same as CM_NORMAL except it looks backwards
{
*above_kart = 0.75f;
*cam_angle = kp->getCameraBackwardUpAngle() * DEGREE_TO_RAD;
*sideway = 0;
*distance = 2.0f*m_distance;
*smoothing = false;
break;
}
case CM_CLOSEUP: // Lower to the ground and closer to the kart
{
*above_kart = 0.75f;
*cam_angle = 20.0f*DEGREE_TO_RAD;
*sideway = m_rotation_range
* m_kart->getSteerPercent()
* m_kart->getSkidding()->getSkidFactor();
*distance = -0.5f*m_distance;
*smoothing = false;
break;
}
case CM_LEADER_MODE:
{
*above_kart = 0.0f;
*cam_angle = 40*DEGREE_TO_RAD;
*sideway = 0;
*distance = 2.0f*m_distance;
*smoothing = true;
break;
}
case CM_FINAL:
case CM_SIMPLE_REPLAY:
// TODO: Implement
break;
}
} // getCameraSettings
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
/** Called once per time frame to move the camera to the right position. /** Called once per time frame to move the camera to the right position.
* \param dt Time step. * \param dt Time step.
*/ */
void Camera::update(float dt) void Camera::update(float dt)
{ {
if (m_kart == NULL) if (!m_kart)
{ {
if (race_manager->getNumLocalPlayers() < 2) if (race_manager->getNumLocalPlayers() < 2)
{ {
@ -526,320 +312,11 @@ void Camera::update(float dt)
{ {
Vec3 heading(sin(m_kart->getHeading()), 0.0f, cos(m_kart->getHeading())); Vec3 heading(sin(m_kart->getHeading()), 0.0f, cos(m_kart->getHeading()));
SFXManager::get()->positionListener(m_kart->getXYZ(), SFXManager::get()->positionListener(m_kart->getXYZ(),
heading, heading,
Vec3(0, 1, 0)); Vec3(0, 1, 0));
}
float above_kart, cam_angle, side_way, distance;
bool smoothing;
// To view inside tunnels in top mode, increase near value
m_camera->setNearValue(m_debug_mode==CM_DEBUG_TOP_OF_KART ? 27.0f : 1.0f);
// The following settings give a debug camera which shows the track from
// high above the kart straight down.
if (m_debug_mode==CM_DEBUG_TOP_OF_KART)
{
core::vector3df xyz = m_kart->getXYZ().toIrrVector();
m_camera->setTarget(xyz);
xyz.Y = xyz.Y+55;
xyz.Z -= 5.0f;
m_camera->setPosition(xyz);
}
else if (m_debug_mode==CM_DEBUG_SIDE_OF_KART)
{
core::vector3df xyz = m_kart->getXYZ().toIrrVector();
Vec3 offset(3, 0, 0);
offset = m_kart->getTrans()(offset);
m_camera->setTarget(xyz);
m_camera->setPosition(offset.toIrrVector());
}
// Update the first person camera
else if (m_debug_mode == CM_DEBUG_FPS)
{
vector3df direction(m_camera->getTarget() - m_camera->getPosition());
vector3df up(m_camera->getUpVector());
vector3df side(direction.crossProduct(up));
vector3df pos = m_camera->getPosition();
// Set local values if the camera is attached to the kart
if (m_attached)
{
direction = m_local_direction;
up = m_local_up;
pos = m_local_position;
}
// Update smooth movement
if (m_smooth)
{
// Angular velocity
if (m_angular_velocity < m_target_angular_velocity)
{
m_angular_velocity += UserConfigParams::m_fpscam_angular_velocity;
if (m_angular_velocity > m_target_angular_velocity)
m_angular_velocity = m_target_angular_velocity;
}
else if (m_angular_velocity > m_target_angular_velocity)
{
m_angular_velocity -= UserConfigParams::m_fpscam_angular_velocity;
if (m_angular_velocity < m_target_angular_velocity)
m_angular_velocity = m_target_angular_velocity;
}
// Linear velocity
core::vector3df diff(m_target_velocity - m_lin_velocity);
if (diff.X != 0 || diff.Y != 0 || diff.Z != 0)
{
if (diff.getLengthSQ() > 1)
diff.setLength(1);
m_lin_velocity += diff;
}
// Camera direction
diff = m_target_direction - direction;
if (diff.X != 0 || diff.Y != 0 || diff.Z != 0)
{
diff.setLength(UserConfigParams::m_fpscam_direction_speed);
m_direction_velocity += diff;
if (m_direction_velocity.getLengthSQ() >
UserConfigParams::m_fpscam_smooth_direction_max_speed *
UserConfigParams::m_fpscam_smooth_direction_max_speed)
m_direction_velocity.setLength(
UserConfigParams::m_fpscam_smooth_direction_max_speed);
direction += m_direction_velocity;
m_target_direction = direction;
}
// Camera rotation
diff = m_target_up_vector - up;
if (diff.X != 0 || diff.Y != 0 || diff.Z != 0)
{
if (diff.getLengthSQ() >
UserConfigParams::m_fpscam_angular_velocity *
UserConfigParams::m_fpscam_angular_velocity)
diff.setLength(UserConfigParams::m_fpscam_angular_velocity);
up += diff;
}
}
else
{
direction = m_target_direction;
up = m_target_up_vector;
side = direction.crossProduct(up);
}
// Rotate camera
core::quaternion quat;
quat.fromAngleAxis(m_angular_velocity * dt, direction);
up = quat * up;
m_target_up_vector = quat * up;
direction.normalize();
up.normalize();
side.normalize();
// Top vector is the real up vector, not the one used by the camera
vector3df top(side.crossProduct(direction));
// Move camera
vector3df movement(direction * m_lin_velocity.Z +
top * m_lin_velocity.Y + side * m_lin_velocity.X);
pos = pos + movement * dt;
if (m_attached)
{
// Save current values
m_local_position = pos;
m_local_direction = direction;
m_local_up = up;
// Move the camera with the kart
btTransform t = m_kart->getTrans();
if (stk_config->m_camera_follow_skid &&
m_kart->getSkidding()->getVisualSkidRotation() != 0)
{
// If the camera should follow the graphical skid, add the
// visual rotation to the relative vector:
btQuaternion q(m_kart->getSkidding()->getVisualSkidRotation(), 0, 0);
t.setBasis(t.getBasis() * btMatrix3x3(q));
}
pos = Vec3(t(Vec3(pos))).toIrrVector();
btQuaternion q = t.getRotation();
btMatrix3x3 mat(q);
direction = Vec3(mat * Vec3(direction)).toIrrVector();
up = Vec3(mat * Vec3(up)).toIrrVector();
}
// Set camera attributes
m_camera->setPosition(pos);
m_camera->setTarget(pos + direction);
m_camera->setUpVector(up);
}
else if (m_mode==CM_FINAL)
{
handleEndCamera(dt);
}
// If an explosion is happening, stop moving the camera,
// but keep it target on the kart.
else if (dynamic_cast<ExplosionAnimation*>(m_kart->getKartAnimation()))
{
getCameraSettings(&above_kart, &cam_angle, &side_way, &distance, &smoothing);
// The camera target needs to be 'smooth moved', otherwise
// there will be a noticable jump in the first frame
// Aim at the usual same position of the kart (i.e. slightly
// above the kart).
// Note: this code is replicated from smoothMoveCamera so that
// the camera keeps on pointing to the same spot.
core::vector3df current_target = (m_kart->getXYZ().toIrrVector()+core::vector3df(0, above_kart, 0));
m_camera->setTarget(current_target);
}
else
{
getCameraSettings(&above_kart, &cam_angle, &side_way, &distance, &smoothing);
positionCamera(dt, above_kart, cam_angle, side_way, distance, smoothing);
} }
} // update } // update
// ----------------------------------------------------------------------------
/** Actually sets the camera based on the given parameter.
* \param above_kart How far above the camera should aim at.
* \param cam_angle Angle above the kart plane for the camera.
* \param sideway Sideway movement of the camera.
* \param distance Distance from kart.
*/
void Camera::positionCamera(float dt, float above_kart, float cam_angle,
float side_way, float distance, float smoothing)
{
Vec3 wanted_position;
Vec3 wanted_target = m_kart->getXYZ();
if(m_debug_mode==CM_DEBUG_GROUND)
{
const btWheelInfo &w = m_kart->getVehicle()->getWheelInfo(2);
wanted_target.setY(w.m_raycastInfo.m_contactPointWS.getY());
}
else
wanted_target.setY(wanted_target.getY()+above_kart);
float tan_up = tan(cam_angle);
Vec3 relative_position(side_way,
fabsf(distance)*tan_up+above_kart,
distance);
btTransform t=m_kart->getTrans();
if(stk_config->m_camera_follow_skid &&
m_kart->getSkidding()->getVisualSkidRotation()!=0)
{
// If the camera should follow the graphical skid, add the
// visual rotation to the relative vector:
btQuaternion q(m_kart->getSkidding()->getVisualSkidRotation(), 0, 0);
t.setBasis(t.getBasis() * btMatrix3x3(q));
}
if (m_debug_mode == CM_DEBUG_GROUND)
{
wanted_position = t(relative_position);
// Make sure that the Y position is a the same height as the wheel.
wanted_position.setY(wanted_target.getY());
}
else
wanted_position = t(relative_position);
if (smoothing && !isDebug())
{
smoothMoveCamera(dt);
}
else
{
if (m_mode!=CM_FALLING)
m_camera->setPosition(wanted_position.toIrrVector());
m_camera->setTarget(wanted_target.toIrrVector());
if (race_manager->getNumLocalPlayers() < 2)
{
SFXManager::get()->positionListener(m_camera->getPosition(),
wanted_target - m_camera->getPosition(),
Vec3(0, 1, 0));
}
}
Kart *kart = dynamic_cast<Kart*>(m_kart);
if (kart && !kart->isFlying())
{
// Rotate the up vector (0,1,0) by the rotation ... which is just column 1
Vec3 up = m_kart->getTrans().getBasis().getColumn(1);
float f = 0.04f; // weight for new up vector to reduce shaking
m_camera->setUpVector( f * up.toIrrVector() +
(1.0f - f) * m_camera->getUpVector());
} // kart && !flying
else
m_camera->setUpVector(core::vector3df(0, 1, 0));
} // positionCamera
// ----------------------------------------------------------------------------
/** This function handles the end camera. It adjusts the camera position
* according to the current camera type, and checks if a switch to the
* next camera should be made.
* \param dt Time step size.
*/
void Camera::handleEndCamera(float dt)
{
// First test if the kart is close enough to the next end camera, and
// if so activate it.
if( m_end_cameras.size()>0 &&
m_end_cameras[m_next_end_camera].isReached(m_kart->getXYZ()))
{
m_current_end_camera = m_next_end_camera;
if(m_end_cameras[m_current_end_camera].m_type
==EndCameraInformation::EC_STATIC_FOLLOW_KART)
{
m_camera->setPosition(
m_end_cameras[m_current_end_camera].m_position.toIrrVector()
);
}
m_camera->setFOV(m_fov);
m_next_end_camera++;
if(m_next_end_camera>=(unsigned)m_end_cameras.size())
m_next_end_camera = 0;
}
EndCameraInformation::EndCameraType info
= m_end_cameras.size()==0 ? EndCameraInformation::EC_AHEAD_OF_KART
: m_end_cameras[m_current_end_camera].m_type;
switch(info)
{
case EndCameraInformation::EC_STATIC_FOLLOW_KART:
{
// Since the camera has no parents, we can use the relative
// position here (otherwise we need to call updateAbsolutePosition
// after changing the relative position in order to get the right
// position here).
const core::vector3df &cp = m_camera->getPosition();
const Vec3 &kp = m_kart->getXYZ();
// Estimate the fov, assuming that the vector from the camera to
// the kart and the kart length are orthogonal to each other
// --> tan (fov) = kart_length / camera_kart_distance
// In order to show a little bit of the surrounding of the kart
// the kart length is multiplied by 6 (experimentally found)
float fov = 6*atan2(m_kart->getKartLength(),
(cp-kp.toIrrVector()).getLength());
m_camera->setFOV(fov);
m_camera->setTarget(m_kart->getXYZ().toIrrVector());
break;
}
case EndCameraInformation::EC_AHEAD_OF_KART:
{
float cam_angle = m_kart->getKartProperties()->getCameraBackwardUpAngle() * DEGREE_TO_RAD;
positionCamera(dt, /*above_kart*/0.75f,
cam_angle, /*side_way*/0,
2.0f*m_distance, /*smoothing*/false);
break;
}
default: break;
} // switch
} // handleEndCamera
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
/** Sets viewport etc. for this camera. Called from irr_driver just before /** Sets viewport etc. for this camera. Called from irr_driver just before
* rendering the view for this kart. * rendering the view for this kart.
@ -855,43 +332,3 @@ void Camera::activate(bool alsoActivateInIrrlicht)
} }
} // activate } // activate
// ----------------------------------------------------------------------------
/** Sets the angular velocity for this camera. */
void Camera::setAngularVelocity(float vel)
{
if (m_smooth)
m_target_angular_velocity = vel;
else
m_angular_velocity = vel;
} // setAngularVelocity
// ----------------------------------------------------------------------------
/** Returns the current target angular velocity. */
float Camera::getAngularVelocity()
{
if (m_smooth)
return m_target_angular_velocity;
else
return m_angular_velocity;
} // getAngularVelocity
// ----------------------------------------------------------------------------
/** Sets the linear velocity for this camera. */
void Camera::setLinearVelocity(core::vector3df vel)
{
if (m_smooth)
m_target_velocity = vel;
else
m_lin_velocity = vel;
} // setLinearVelocity
// ----------------------------------------------------------------------------
/** Returns the current linear velocity. */
const core::vector3df &Camera::getLinearVelocity()
{
if (m_smooth)
return m_target_velocity;
else
return m_lin_velocity;
} // getLinearVelocity

View File

@ -35,11 +35,7 @@
#include <vector> #include <vector>
namespace irr #include "ICameraSceneNode.h"
{
namespace scene { class ICameraSceneNode; }
}
using namespace irr;
class AbstractKart; class AbstractKart;
@ -55,37 +51,34 @@ public:
CM_CLOSEUP, //!< Closer to kart CM_CLOSEUP, //!< Closer to kart
CM_REVERSE, //!< Looking backwards CM_REVERSE, //!< Looking backwards
CM_LEADER_MODE, //!< for deleted player karts in follow the leader CM_LEADER_MODE, //!< for deleted player karts in follow the leader
CM_FINAL, //!< Final camera
CM_SIMPLE_REPLAY, CM_SIMPLE_REPLAY,
CM_FALLING CM_FALLING
}; // Mode }; // Mode
enum DebugMode { enum CameraType {
CM_DEBUG_NONE, CM_TYPE_NORMAL,
CM_DEBUG_TOP_OF_KART, //!< Camera hovering over kart CM_TYPE_DEBUG, //!< A debug camera.
CM_DEBUG_GROUND, //!< Camera at ground level, wheel debugging CM_TYPE_FPS, //!< FPS Camera
CM_DEBUG_FPS, //!< FPS Camera CM_TYPE_END //!< End camera
CM_DEBUG_BEHIND_KART, //!< Camera straight behind kart }; // CameraType
CM_DEBUG_SIDE_OF_KART,//!< Camera to the right of the kart
}; // DebugMode
private: private:
static Camera* s_active_camera; static Camera* s_active_camera;
/** Special debug camera: 0: normal camera; 1: being high over the kart;
2: on ground level; 3: free first person camera;
4: straight behind kart */
static DebugMode m_debug_mode;
/** The camera scene node. */
scene::ICameraSceneNode *m_camera;
/** The project-view matrix of the previous frame, used for the blur shader. */ /** The project-view matrix of the previous frame, used for the blur shader. */
core::matrix4 m_previous_pv_matrix; core::matrix4 m_previous_pv_matrix;
/** Camera's mode. */ /** Camera's mode. */
Mode m_mode; Mode m_mode;
/** The type of the camera. */
CameraType m_type;
/** The default type for any newly created camera. Used to store command
* line parameters. */
static CameraType m_default_type;
/** The index of this camera which is the index of the kart it is /** The index of this camera which is the index of the kart it is
* attached to. */ * attached to. */
unsigned int m_index; unsigned int m_index;
@ -93,24 +86,6 @@ private:
/** Current ambient light for this camera. */ /** Current ambient light for this camera. */
video::SColor m_ambient_light; video::SColor m_ambient_light;
/** Distance between the camera and the kart. */
float m_distance;
/** The speed at which the camera changes position. */
float m_position_speed;
/** The speed at which the camera target changes position. */
float m_target_speed;
/** Factor of the effects of steering in camera aim. */
float m_rotation_range;
/** The kart that the camera follows. It can't be const,
* since in profile mode the camera might change its owner.
* May be NULL (example: cutscene camera)
*/
AbstractKart *m_kart;
/** A pointer to the original kart the camera was pointing at when it /** A pointer to the original kart the camera was pointing at when it
* was created. Used when restarting a race (since the camera might * was created. Used when restarting a race (since the camera might
* get attached to another kart if a kart is elimiated). */ * get attached to another kart if a kart is elimiated). */
@ -128,136 +103,55 @@ private:
/** Aspect ratio for camera. */ /** Aspect ratio for camera. */
float m_aspect; float m_aspect;
/** Smooth acceleration with the first person camera. */
bool m_smooth;
/** Attache the first person camera to a kart.
That means moving the kart also moves the camera. */
bool m_attached;
/** The speed at which the up-vector rotates, only used for the first person camera. */
float m_angular_velocity;
/** Target angular velocity. Used for smooth movement in fps perpective. */
float m_target_angular_velocity;
/** Maximum velocity for fps camera. */
float m_max_velocity;
/** Linear velocity of the camera, used for end and first person camera.
It's stored relative to the camera direction for the first person view. */
core::vector3df m_lin_velocity;
/** Velocity of the target of the camera, used for end and first person camera. */
core::vector3df m_target_velocity;
/** The target direction for the camera, only used for the first person camera. */
core::vector3df m_target_direction;
/** The speed at which the direction changes, only used for the first person camera. */
core::vector3df m_direction_velocity;
/** The up vector the camera should have, only used for the first person camera. */
core::vector3df m_target_up_vector;
/** Save the local position if the first person camera is attached to the kart. */
core::vector3df m_local_position;
/** Save the local direction if the first person camera is attached to the kart. */
core::vector3df m_local_direction;
/** Save the local up vector if the first person camera is attached to the kart. */
core::vector3df m_local_up;
/** List of all cameras. */ /** List of all cameras. */
static std::vector<Camera*> m_all_cameras; static std::vector<Camera*> m_all_cameras;
/** A class that stores information about the different end cameras
* which can be specified in the scene.xml file. */
class EndCameraInformation
{
public:
/** The camera type:
EC_STATIC_FOLLOW_KART A static camera that always points at the
kart.
EC_AHEAD_OF_KART A camera that flies ahead of the kart
always pointing at the kart.
*/
typedef enum {EC_STATIC_FOLLOW_KART,
EC_AHEAD_OF_KART} EndCameraType;
EndCameraType m_type;
/** Position of the end camera. */
Vec3 m_position;
/** Distance to kart by which this camera is activated. */
float m_distance2;
/** Reads end camera information from XML. Returns false if an
* error occurred.
* \param node XML Node with the end camera information. */
bool readXML(const XMLNode &node)
{
std::string s;
node.get("type", &s);
if(s=="static_follow_kart")
m_type = EC_STATIC_FOLLOW_KART;
else if(s=="ahead_of_kart")
m_type = EC_AHEAD_OF_KART;
else
{
Log::warn("Camera", "Invalid camera type '%s' - camera is ignored.",
s.c_str());
return false;
}
node.get("xyz", &m_position);
node.get("distance", &m_distance2);
// Store the squared value
m_distance2 *= m_distance2;
return true;
} // readXML
// --------------------------------------------------------------------
/** Returns true if the specified position is close enough to this
* camera, so that this camera should become the next end camera.
* \param xyz Position to test for distance.
* \returns True if xyz is close enough to this camera.
*/
bool isReached(const Vec3 &xyz)
{ return (xyz-m_position).length2() < m_distance2; }
}; // EndCameraInformation
// ------------------------------------------------------------------------
/** List of all end camera information. This information is shared
* between all cameras, so it's static. */
static AlignedArray<EndCameraInformation> m_end_cameras;
/** Index of the current end camera. */
unsigned int m_current_end_camera;
/** The next end camera to be activated. */
unsigned int m_next_end_camera;
void setupCamera(); void setupCamera();
void smoothMoveCamera(float dt);
void handleEndCamera(float dt);
void getCameraSettings(float *above_kart, float *cam_angle,
float *side_way, float *distance,
bool *smoothing);
void positionCamera(float dt, float above_kart, float cam_angle,
float side_way, float distance, float smoothing);
Camera(int camera_index, AbstractKart* kart); protected:
~Camera(); /** The camera scene node. */
scene::ICameraSceneNode *m_camera;
/** The kart that the camera follows. It can't be const,
* since in profile mode the camera might change its owner.
* May be NULL (example: cutscene camera)
*/
AbstractKart *m_kart;
static Camera* createCamera(unsigned int index, CameraType type,
AbstractKart* kart);
Camera(int camera_index, AbstractKart* kart);
virtual ~Camera();
public: public:
LEAK_CHECK() LEAK_CHECK()
/** Returns the number of cameras used. */ // ========================================================================
static unsigned int getNumCameras() { return (unsigned int)m_all_cameras.size(); } // Static functions
static Camera* createCamera(AbstractKart* kart);
static void changeCamera(unsigned int camera_index, CameraType type);
// ------------------------------------------------------------------------
/** Sets the default type for each camera that will be created. Used for
* command line parameters to select a debug etc camera. */
static void setDefaultCameraType(CameraType type) { m_default_type = type;}
// ------------------------------------------------------------------------
/** Returns the default type for each camera that will be created. Used
* for command line parameters to select a debug etc camera. */
static CameraType getDefaultCameraType() { return m_default_type;}
// ------------------------------------------------------------------------
/** Returns the number of cameras used. */
static unsigned int getNumCameras()
{
return (unsigned int)m_all_cameras.size();
} // getNumCameras
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
/** Returns a camera. */ /** Returns a camera. */
static Camera *getCamera(unsigned int n) { return m_all_cameras[n]; } static Camera *getCamera(unsigned int n) { return m_all_cameras[n]; }
// ------------------------------------------------------------------------
/** Returns the currently active camera. */
static Camera* getActiveCamera() { return s_active_camera; }
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
/** Remove all cameras. */ /** Remove all cameras. */
static void removeAllCameras() static void removeAllCameras()
@ -267,37 +161,21 @@ public:
m_all_cameras.clear(); m_all_cameras.clear();
} // removeAllCameras } // removeAllCameras
// ------------------------------------------------------------------------ // ========================================================================
/** Creates a camera and adds it to the list of all cameras. Also the
* camera index (which determines which viewport to use in split screen)
* is set.
*/
static Camera* createCamera(AbstractKart* kart)
{
Camera *c = new Camera((int)m_all_cameras.size(), kart);
m_all_cameras.push_back(c);
return c;
} // createCamera
// ------------------------------------------------------------------------
static void readEndCamera(const XMLNode &root);
static void clearEndCameras();
// ------------------------------------------------------------------------
static void setDebugMode(DebugMode debug_mode) { m_debug_mode = debug_mode;}
// ------------------------------------------------------------------------
static bool isDebug() { return m_debug_mode != CM_DEBUG_NONE; }
// ------------------------------------------------------------------------
static bool isFPS() { return m_debug_mode == CM_DEBUG_FPS; }
// ------------------------------------------------------------------------
void setMode(Mode mode); /** Set the camera to the given mode */ void setMode(Mode mode); /** Set the camera to the given mode */
Mode getMode(); Mode getMode();
void reset();
void setInitialTransform();
void activate(bool alsoActivateInIrrlicht=true);
void update(float dt);
void setKart(AbstractKart *new_kart); void setKart(AbstractKart *new_kart);
virtual void reset();
virtual void setInitialTransform();
virtual void activate(bool alsoActivateInIrrlicht=true);
virtual void update(float dt);
// ------------------------------------------------------------------------
/** Returns the type of this camera. */
CameraType getType() { return m_type; }
// ------------------------------------------------------------------------
/** Sets the field of view for the irrlicht camera. */
void setFoV() { m_camera->setFOV(m_fov); }
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
/** Returns the camera index (or player kart index, which is the same). */ /** Returns the camera index (or player kart index, which is the same). */
int getIndex() const {return m_index;} int getIndex() const {return m_index;}
@ -317,66 +195,6 @@ public:
/** Returns the kart to which this camera is attached. */ /** Returns the kart to which this camera is attached. */
AbstractKart* getKart() { return m_kart; } AbstractKart* getKart() { return m_kart; }
// ------------------------------------------------------------------------
/** Applies mouse movement to the first person camera. */
void applyMouseMovement (float x, float y);
// ------------------------------------------------------------------------
/** Sets if the first person camera should be moved smooth. */
void setSmoothMovement (bool value) { m_smooth = value; }
// ------------------------------------------------------------------------
/** If the first person camera should be moved smooth. */
bool getSmoothMovement () { return m_smooth; }
// ------------------------------------------------------------------------
/** Sets if the first person camera should be moved with the kart. */
void setAttachedFpsCam (bool value) { m_attached = value; }
// ------------------------------------------------------------------------
/** If the first person camera should be moved with the kart. */
bool getAttachedFpsCam () { return m_attached; }
// ------------------------------------------------------------------------
/** Sets the angular velocity for this camera. */
void setMaximumVelocity (float vel) { m_max_velocity = vel; }
// ------------------------------------------------------------------------
/** Returns the current angular velocity. */
float getMaximumVelocity () { return m_max_velocity; }
// ------------------------------------------------------------------------
/** Sets the vector, the first person camera should look at. */
void setDirection (core::vector3df target) { m_target_direction = target; }
// ------------------------------------------------------------------------
/** Gets the vector, the first person camera should look at. */
const core::vector3df &getDirection () { return m_target_direction; }
// ------------------------------------------------------------------------
/** Sets the up vector, the first person camera should use. */
void setUpVector (core::vector3df target) { m_target_up_vector = target; }
// ------------------------------------------------------------------------
/** Gets the up vector, the first person camera should use. */
const core::vector3df &getUpVector () { return m_target_up_vector; }
// ------------------------------------------------------------------------
/** Sets the angular velocity for this camera. */
void setAngularVelocity (float vel);
// ------------------------------------------------------------------------
/** Returns the current target angular velocity. */
float getAngularVelocity ();
// ------------------------------------------------------------------------
/** Sets the linear velocity for this camera. */
void setLinearVelocity (core::vector3df vel);
// ------------------------------------------------------------------------
/** Returns the current linear velocity. */
const core::vector3df &getLinearVelocity ();
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
/** Sets the ambient light for this camera. */ /** Sets the ambient light for this camera. */
void setAmbientLight(const video::SColor &color) { m_ambient_light=color; } void setAmbientLight(const video::SColor &color) { m_ambient_light=color; }
@ -396,9 +214,9 @@ public:
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
/** Returns the camera scene node. */ /** Returns the camera scene node. */
scene::ICameraSceneNode *getCameraSceneNode() { return m_camera; } scene::ICameraSceneNode *getCameraSceneNode() { return m_camera; }
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
static Camera* getActiveCamera() { return s_active_camera; } /** Returs the absolute position of the camera. */
Vec3 getXYZ() { return Vec3(m_camera->getPosition()); }
} ; } ;
#endif #endif

View File

@ -0,0 +1,217 @@
//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2004-2015 Steve Baker <sjbaker1@airmail.net>
// Copyright (C) 2006-2015 SuperTuxKart-Team, Steve Baker
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#include "graphics/camera_debug.hpp"
#include "config/stk_config.hpp"
#include "karts/abstract_kart.hpp"
#include "karts/explosion_animation.hpp"
#include "karts/kart.hpp"
#include "karts/kart_properties.hpp"
#include "karts/skidding.hpp"
#include "physics/btKart.hpp"
CameraDebug::CameraDebugType CameraDebug::m_default_debug_Type =
CameraDebug::CM_DEBUG_TOP_OF_KART;
// ============================================================================
CameraDebug::CameraDebug(int camera_index, AbstractKart* kart)
: CameraNormal(camera_index, kart)
{
reset();
} // Camera
// ----------------------------------------------------------------------------
/** Removes the camera scene node from the scene.
*/
CameraDebug::~CameraDebug()
{
} // ~CameraDebug
//-----------------------------------------------------------------------------
/** Determine the camera settings for the current frame.
* \param above_kart How far above the camera should aim at.
* \param cam_angle Angle above the kart plane for the camera.
* \param sideway Sideway movement of the camera.
* \param distance Distance from kart.
*/
void CameraDebug::getCameraSettings(float *above_kart, float *cam_angle,
float *sideway, float *distance,
bool *smoothing)
{
const KartProperties *kp = getKart()->getKartProperties();
// Set some default values
float steering = m_kart->getSteerPercent()
* (1.0f + (m_kart->getSkidding()->getSkidFactor()
- 1.0f) / 2.3f);
// quadratically to dampen small variations (but keep sign)
float dampened_steer = fabsf(steering) * steering;
*sideway = -m_rotation_range*dampened_steer*0.5f;
*above_kart = 0;
*cam_angle = 0;
*smoothing = true;
switch(m_default_debug_Type)
{
case CM_DEBUG_BEHIND_KART:
*distance = -0.5f*m_kart->getKartModel()->getLength()-1.0f;
break;
case CM_DEBUG_GROUND:
*distance = -m_kart->getKartModel()->getLength()-1.0f;
break;
case CM_DEBUG_SIDE_OF_KART:
case CM_DEBUG_TOP_OF_KART:
*above_kart = 0.75f;
*cam_angle = kp->getCameraForwardUpAngle() * DEGREE_TO_RAD;
*distance = -m_distance;
break;
} // switch
} // getCameraSettings
//-----------------------------------------------------------------------------
/** Called once per time frame to move the camera to the right position.
* \param dt Time step.
*/
void CameraDebug::update(float dt)
{
Camera::update(dt);
// To view inside tunnels in top mode, increase near value
m_camera->setNearValue(m_default_debug_Type==CM_DEBUG_TOP_OF_KART
? 27.0f : 1.0f);
float above_kart, cam_angle, side_way, distance;
bool smoothing;
// The following settings give a debug camera which shows the track from
// high above the kart straight down.
if (m_default_debug_Type==CM_DEBUG_TOP_OF_KART)
{
core::vector3df xyz = m_kart->getXYZ().toIrrVector();
m_camera->setTarget(xyz);
xyz.Y = xyz.Y+55;
xyz.Z -= 5.0f;
m_camera->setPosition(xyz);
}
else if (m_default_debug_Type==CM_DEBUG_SIDE_OF_KART)
{
core::vector3df xyz = m_kart->getXYZ().toIrrVector();
Vec3 offset(3, 0, 0);
offset = m_kart->getTrans()(offset);
m_camera->setTarget(xyz);
m_camera->setPosition(offset.toIrrVector());
}
// Update the first person camera
// If an explosion is happening, stop moving the camera,
// but keep it target on the kart.
else if (dynamic_cast<ExplosionAnimation*>(m_kart->getKartAnimation()))
{
getCameraSettings(&above_kart, &cam_angle, &side_way, &distance, &smoothing);
// The camera target needs to be 'smooth moved', otherwise
// there will be a noticable jump in the first frame
// Aim at the usual same position of the kart (i.e. slightly
// above the kart).
// Note: this code is replicated from smoothMoveCamera so that
// the camera keeps on pointing to the same spot.
core::vector3df current_target = (m_kart->getXYZ().toIrrVector()+core::vector3df(0, above_kart, 0));
m_camera->setTarget(current_target);
}
else
{
getCameraSettings(&above_kart, &cam_angle, &side_way, &distance, &smoothing);
positionCamera(dt, above_kart, cam_angle, side_way, distance, smoothing);
}
} // update
// ----------------------------------------------------------------------------
/** Actually sets the camera based on the given parameter.
* \param above_kart How far above the camera should aim at.
* \param cam_angle Angle above the kart plane for the camera.
* \param sideway Sideway movement of the camera.
* \param distance Distance from kart.
*/
void CameraDebug::positionCamera(float dt, float above_kart, float cam_angle,
float side_way, float distance,
float smoothing)
{
Vec3 wanted_position;
Vec3 wanted_target = m_kart->getXYZ();
if(m_default_debug_Type==CM_DEBUG_GROUND)
{
const btWheelInfo &w = m_kart->getVehicle()->getWheelInfo(2);
wanted_target.setY(w.m_raycastInfo.m_contactPointWS.getY());
}
else
wanted_target.setY(wanted_target.getY()+above_kart);
float tan_up = tan(cam_angle);
Vec3 relative_position(side_way,
fabsf(distance)*tan_up+above_kart,
distance);
btTransform t=m_kart->getTrans();
if(stk_config->m_camera_follow_skid &&
m_kart->getSkidding()->getVisualSkidRotation()!=0)
{
// If the camera should follow the graphical skid, add the
// visual rotation to the relative vector:
btQuaternion q(m_kart->getSkidding()->getVisualSkidRotation(), 0, 0);
t.setBasis(t.getBasis() * btMatrix3x3(q));
}
if (m_default_debug_Type == CM_DEBUG_GROUND)
{
wanted_position = t(relative_position);
// Make sure that the Y position is a the same height as the wheel.
wanted_position.setY(wanted_target.getY());
}
else
wanted_position = t(relative_position);
if (smoothing && !isDebug())
{
smoothMoveCamera(dt);
}
else
{
if (getMode()!=CM_FALLING)
m_camera->setPosition(wanted_position.toIrrVector());
m_camera->setTarget(wanted_target.toIrrVector());
if (race_manager->getNumLocalPlayers() < 2)
{
SFXManager::get()->positionListener(m_camera->getPosition(),
wanted_target - m_camera->getPosition(),
Vec3(0, 1, 0));
}
}
Kart *kart = dynamic_cast<Kart*>(m_kart);
if (kart && !kart->isFlying())
{
// Rotate the up vector (0,1,0) by the rotation ... which is just column 1
Vec3 up = m_kart->getTrans().getBasis().getColumn(1);
float f = 0.04f; // weight for new up vector to reduce shaking
m_camera->setUpVector( f * up.toIrrVector() +
(1.0f - f) * m_camera->getUpVector());
} // kart && !flying
else
m_camera->setUpVector(core::vector3df(0, 1, 0));
} // positionCamera

View File

@ -0,0 +1,70 @@
//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2004-2015 Steve Baker <sjbaker1@airmail.net>
// Copyright (C) 2006-2015 SuperTuxKart-Team, Steve Baker
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifndef HEADER_CAMERA_DEBUG_HPP
#define HEADER_CAMERA_DEBUG_HPP
#include "graphics/camera_normal.hpp"
class AbstractKart;
/**
* Handles the debug camera. Inherits from CameraNormal to make use
* of the smoothing function.
* \ingroup graphics
*/
class CameraDebug : public CameraNormal
{
public:
enum CameraDebugType {
CM_DEBUG_TOP_OF_KART, //!< Camera hovering over kart
CM_DEBUG_GROUND, //!< Camera at ground level, wheel debugging
CM_DEBUG_BEHIND_KART, //!< Camera straight behind kart
CM_DEBUG_SIDE_OF_KART, //!< Camera to the right of the kart
}; // CameraDebugType
private:
static CameraDebugType m_default_debug_Type;
void getCameraSettings(float *above_kart, float *cam_angle,
float *side_way, float *distance,
bool *smoothing);
void positionCamera(float dt, float above_kart, float cam_angle,
float side_way, float distance, float smoothing);
friend class Camera;
CameraDebug(int camera_index, AbstractKart* kart);
virtual ~CameraDebug();
public:
void update(float dt);
// ------------------------------------------------------------------------
/** Sets the debug type for all cameras. */
static void setDebugType(CameraDebugType type)
{
m_default_debug_Type = type;
} // setDebugType
}; // CameraDebug
#endif
/* EOF */

144
src/graphics/camera_end.cpp Normal file
View File

@ -0,0 +1,144 @@
//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2006-2016 Joerg Henrichs
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#include "graphics/camera_end.hpp"
#include "karts/abstract_kart.hpp"
#include "karts/kart_properties.hpp"
#include "tracks/quad_graph.hpp"
#include "ICameraSceneNode.h"
AlignedArray<CameraEnd::EndCameraInformation> CameraEnd::m_end_cameras;
// ============================================================================
CameraEnd::CameraEnd(int camera_index, AbstractKart* kart)
: CameraNormal(camera_index, kart)
{
reset();
if(m_end_cameras.size()>0)
m_camera->setPosition(m_end_cameras[0].m_position.toIrrVector());
m_next_end_camera = m_end_cameras.size()>1 ? 1 : 0;
m_current_end_camera = 0;
setFoV();
update(0);
} // Camera
//-----------------------------------------------------------------------------
/** This function clears all end camera data structure. This is necessary
* since all end cameras are shared between all camera instances (i.e. are
* static), otherwise (if no end camera is defined for a track) the old
* end camera structure would be used.
*/
void CameraEnd::clearEndCameras()
{
m_end_cameras.clear();
} // clearEndCameras
//-----------------------------------------------------------------------------
/** Reads the information about the end camera. This information is shared
* between all cameras, so this is a static function.
* \param node The XML node containing all end camera informations
*/
void CameraEnd::readEndCamera(const XMLNode &root)
{
m_end_cameras.clear();
for(unsigned int i=0; i<root.getNumNodes(); i++)
{
unsigned int index = i;
// In reverse mode, reverse the order in which the
// end cameras are read.
if(QuadGraph::get()->isReverse())
index = root.getNumNodes() - 1 - i;
const XMLNode *node = root.getNode(index);
EndCameraInformation eci;
if(!eci.readXML(*node)) continue;
m_end_cameras.push_back(eci);
} // for i<getNumNodes()
} // readEndCamera
//-----------------------------------------------------------------------------
/** Called once per time frame to move the camera to the right position.
* This function handles the end camera. It adjusts the camera position
* according to the current camera type, and checks if a switch to the
* next camera should be made.
* \param dt Time step size.
*/
void CameraEnd::update(float dt)
{
Camera::update(dt);
m_camera->setNearValue(1.0f);
// First test if the kart is close enough to the next end camera, and
// if so activate it.
if( m_end_cameras.size()>0 &&
m_end_cameras[m_next_end_camera].isReached(m_kart->getXYZ()))
{
m_current_end_camera = m_next_end_camera;
if(m_end_cameras[m_current_end_camera].m_type
==EndCameraInformation::EC_STATIC_FOLLOW_KART)
{
m_camera->setPosition(
m_end_cameras[m_current_end_camera].m_position.toIrrVector()
);
}
setFoV();
m_next_end_camera++;
if(m_next_end_camera>=(unsigned)m_end_cameras.size())
m_next_end_camera = 0;
}
EndCameraInformation::EndCameraType info
= m_end_cameras.size()==0 ? EndCameraInformation::EC_AHEAD_OF_KART
: m_end_cameras[m_current_end_camera].m_type;
switch(info)
{
case EndCameraInformation::EC_STATIC_FOLLOW_KART:
{
// Since the camera has no parents, we can use the relative
// position here (otherwise we need to call updateAbsolutePosition
// after changing the relative position in order to get the right
// position here).
const core::vector3df &cp = m_camera->getPosition();
const Vec3 &kp = m_kart->getXYZ();
// Estimate the fov, assuming that the vector from the camera to
// the kart and the kart length are orthogonal to each other
// --> tan (fov) = kart_length / camera_kart_distance
// In order to show a little bit of the surrounding of the kart
// the kart length is multiplied by 6 (experimentally found)
float fov = 6*atan2(m_kart->getKartLength(),
(cp-kp.toIrrVector()).getLength());
m_camera->setFOV(fov);
m_camera->setTarget(m_kart->getXYZ().toIrrVector());
break;
}
case EndCameraInformation::EC_AHEAD_OF_KART:
{
float cam_angle = m_kart->getKartProperties()->getCameraBackwardUpAngle()
* DEGREE_TO_RAD;
positionCamera(dt, /*above_kart*/0.75f,
cam_angle, /*side_way*/0,
2.0f*getDistanceToKart(), /*smoothing*/false);
break;
}
default: break;
} // switch
} // update

115
src/graphics/camera_end.hpp Normal file
View File

@ -0,0 +1,115 @@
//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2004-2015 Steve Baker <sjbaker1@airmail.net>
// Copyright (C) 2006-2015 SuperTuxKart-Team, Steve Baker
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifndef HEADER_CAMERA_END_HPP
#define HEADER_CAMERA_END_HPP
#include "graphics/camera_normal.hpp"
#include "utils/cpp2011.hpp"
/**
* Handles the end race camera. It inherits from CameraNormal to make
* use of the normal camera implementation of a reverse camera.
* \ingroup graphics
*/
class CameraEnd : public CameraNormal
{
private:
/** A class that stores information about the different end cameras
* which can be specified in the scene.xml file. */
class EndCameraInformation
{
public:
/** The camera type:
EC_STATIC_FOLLOW_KART A static camera that always points at the
kart.
EC_AHEAD_OF_KART A camera that flies ahead of the kart
always pointing at the kart.
*/
typedef enum {EC_STATIC_FOLLOW_KART,
EC_AHEAD_OF_KART} EndCameraType;
EndCameraType m_type;
/** Position of the end camera. */
Vec3 m_position;
/** Distance to kart by which this camera is activated. */
float m_distance2;
/** Reads end camera information from XML. Returns false if an
* error occurred.
* \param node XML Node with the end camera information. */
bool readXML(const XMLNode &node)
{
std::string s;
node.get("type", &s);
if(s=="static_follow_kart")
m_type = EC_STATIC_FOLLOW_KART;
else if(s=="ahead_of_kart")
m_type = EC_AHEAD_OF_KART;
else
{
Log::warn("Camera", "Invalid camera type '%s' - camera is ignored.",
s.c_str());
return false;
}
node.get("xyz", &m_position);
node.get("distance", &m_distance2);
// Store the squared value
m_distance2 *= m_distance2;
return true;
} // readXML
// --------------------------------------------------------------------
/** Returns true if the specified position is close enough to this
* camera, so that this camera should become the next end camera.
* \param xyz Position to test for distance.
* \returns True if xyz is close enough to this camera.
*/
bool isReached(const Vec3 &xyz)
{ return (xyz-m_position).length2() < m_distance2; }
}; // EndCameraInformation
// ------------------------------------------------------------------------
/** List of all end camera information. This information is shared
* between all cameras, so it's static. */
static AlignedArray<EndCameraInformation> m_end_cameras;
/** Index of the current end camera. */
unsigned int m_current_end_camera;
/** The next end camera to be activated. */
unsigned int m_next_end_camera;
void handleEndCamera(float dt);
friend class Camera; // Give Camera access to constructor
CameraEnd(int camera_index, AbstractKart* kart);
virtual ~CameraEnd() {}
public:
static void readEndCamera(const XMLNode &root);
static void clearEndCameras();
virtual void update(float dt) OVERRIDE;
}; // class CameraEnd
#endif
/* EOF */

289
src/graphics/camera_fps.cpp Normal file
View File

@ -0,0 +1,289 @@
//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2004-2015 Steve Baker <sjbaker1@airmail.net>
// Copyright (C) 2006-2015 SuperTuxKart-Team, Steve Baker
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#include "graphics/camera_fps.hpp"
#include "config/stk_config.hpp"
#include "config/user_config.hpp"
#include "karts/abstract_kart.hpp"
#include "karts/skidding.hpp"
#include "vector3d.h"
using namespace irr;
// ============================================================================
CameraFPS::CameraFPS(int camera_index, AbstractKart* kart)
: Camera(camera_index, kart)
{
m_attached = false;
// TODO: Put these values into a config file
// Global or per split screen zone?
// Either global or per user (for instance, some users may not like
// the extra camera rotation so they could set m_rotation_range to
// zero to disable it for themselves).
m_position_speed = 8.0f;
m_target_speed = 10.0f;
m_rotation_range = 0.4f;
m_rotation_range = 0.0f;
m_lin_velocity = core::vector3df(0, 0, 0);
m_target_velocity = core::vector3df(0, 0, 0);
m_target_direction = core::vector3df(0, 0, 1);
m_target_up_vector = core::vector3df(0, 1, 0);
m_direction_velocity = core::vector3df(0, 0, 0);
m_local_position = core::vector3df(0, 0, 0);
m_local_direction = core::vector3df(0, 0, 1);
m_local_up = core::vector3df(0, 1, 0);
m_angular_velocity = 0;
m_target_angular_velocity = 0;
m_max_velocity = 15;
reset();
} // Camera
// ----------------------------------------------------------------------------
/** Removes the camera scene node from the scene.
*/
CameraFPS::~CameraFPS()
{
} // ~Camera
//-----------------------------------------------------------------------------
/** Applies mouse movement to the first person camera.
* \param x The horizontal difference of the mouse position.
* \param y The vertical difference of the mouse position.
*/
void CameraFPS::applyMouseMovement (float x, float y)
{
core::vector3df direction(m_target_direction);
core::vector3df up(m_camera->getUpVector());
// Set local values if the camera is attached to the kart
if (m_attached)
up = m_local_up;
direction.normalize();
up.normalize();
core::vector3df side(direction.crossProduct(up));
side.normalize();
core::quaternion quat;
quat.fromAngleAxis(y, side);
core::quaternion quat_x;
quat_x.fromAngleAxis(x, up);
quat *= quat_x;
direction = quat * direction;
// Try to prevent toppling over
// If the camera would topple over with the next movement, the vertical
// movement gets reset close to the up vector
if ((direction - up).getLengthSQ() + (m_target_direction - up).getLengthSQ()
<= (direction - m_target_direction).getLengthSQ())
direction = quat_x * ((m_target_direction - up).setLength(0.02f) + up);
// Prevent toppling under
else if ((direction + up).getLengthSQ() + (m_target_direction + up).getLengthSQ()
<= (direction - m_target_direction).getLengthSQ())
direction = quat_x * ((m_target_direction + up).setLength(0.02f) - up);
m_target_direction = direction;
// Don't do that because it looks ugly and is bad to handle ;)
/*side = direction.crossProduct(up);
// Compute new up vector
up = side.crossProduct(direction);
up.normalize();
cam->setUpVector(up);*/
} // applyMouseMovement
//-----------------------------------------------------------------------------
/** Called once per time frame to move the camera to the right position.
* \param dt Time step.
*/
void CameraFPS::update(float dt)
{
Camera::update(dt);
// To view inside tunnels in top mode, increase near value
m_camera->setNearValue(1.0f);
core::vector3df direction(m_camera->getTarget() - m_camera->getPosition());
core::vector3df up(m_camera->getUpVector());
core::vector3df side(direction.crossProduct(up));
core::vector3df pos = m_camera->getPosition();
// Set local values if the camera is attached to the kart
if (m_attached)
{
direction = m_local_direction;
up = m_local_up;
pos = m_local_position;
}
// Update smooth movement
if (m_smooth)
{
// Angular velocity
if (m_angular_velocity < m_target_angular_velocity)
{
m_angular_velocity += UserConfigParams::m_fpscam_angular_velocity;
if (m_angular_velocity > m_target_angular_velocity)
m_angular_velocity = m_target_angular_velocity;
}
else if (m_angular_velocity > m_target_angular_velocity)
{
m_angular_velocity -= UserConfigParams::m_fpscam_angular_velocity;
if (m_angular_velocity < m_target_angular_velocity)
m_angular_velocity = m_target_angular_velocity;
}
// Linear velocity
core::vector3df diff(m_target_velocity - m_lin_velocity);
if (diff.X != 0 || diff.Y != 0 || diff.Z != 0)
{
if (diff.getLengthSQ() > 1) diff.setLength(1);
m_lin_velocity += diff;
}
// Camera direction
diff = m_target_direction - direction;
if (diff.X != 0 || diff.Y != 0 || diff.Z != 0)
{
diff.setLength(UserConfigParams::m_fpscam_direction_speed);
m_direction_velocity += diff;
if (m_direction_velocity.getLengthSQ() >
UserConfigParams::m_fpscam_smooth_direction_max_speed *
UserConfigParams::m_fpscam_smooth_direction_max_speed)
{
m_direction_velocity.setLength(
UserConfigParams::m_fpscam_smooth_direction_max_speed);
}
direction += m_direction_velocity;
m_target_direction = direction;
} // if diff is no 0
// Camera rotation
diff = m_target_up_vector - up;
if (diff.X != 0 || diff.Y != 0 || diff.Z != 0)
{
if (diff.getLengthSQ() >
UserConfigParams::m_fpscam_angular_velocity *
UserConfigParams::m_fpscam_angular_velocity)
{
diff.setLength(UserConfigParams::m_fpscam_angular_velocity);
}
up += diff;
}
}
else
{
direction = m_target_direction;
up = m_target_up_vector;
side = direction.crossProduct(up);
}
// Rotate camera
core::quaternion quat;
quat.fromAngleAxis(m_angular_velocity * dt, direction);
up = quat * up;
m_target_up_vector = quat * up;
direction.normalize();
up.normalize();
side.normalize();
// Top vector is the real up vector, not the one used by the camera
core::vector3df top(side.crossProduct(direction));
// Move camera
core::vector3df movement(direction * m_lin_velocity.Z +
top * m_lin_velocity.Y + side * m_lin_velocity.X);
pos = pos + movement * dt;
if (m_attached)
{
// Save current values
m_local_position = pos;
m_local_direction = direction;
m_local_up = up;
// Move the camera with the kart
btTransform t = m_kart->getTrans();
if (stk_config->m_camera_follow_skid &&
m_kart->getSkidding()->getVisualSkidRotation() != 0)
{
// If the camera should follow the graphical skid, add the
// visual rotation to the relative vector:
btQuaternion q(m_kart->getSkidding()->getVisualSkidRotation(), 0, 0);
t.setBasis(t.getBasis() * btMatrix3x3(q));
}
pos = Vec3(t(Vec3(pos))).toIrrVector();
btQuaternion q = t.getRotation();
btMatrix3x3 mat(q);
direction = Vec3(mat * Vec3(direction)).toIrrVector();
up = Vec3(mat * Vec3(up)).toIrrVector();
}
// Set camera attributes
m_camera->setPosition(pos);
m_camera->setTarget(pos + direction);
m_camera->setUpVector(up);
} // update
// ----------------------------------------------------------------------------
/** Sets the angular velocity for this camera. */
void CameraFPS::setAngularVelocity(float vel)
{
if (m_smooth)
m_target_angular_velocity = vel;
else
m_angular_velocity = vel;
} // setAngularVelocity
// ----------------------------------------------------------------------------
/** Returns the current target angular velocity. */
float CameraFPS::getAngularVelocity()
{
if (m_smooth)
return m_target_angular_velocity;
else
return m_angular_velocity;
} // getAngularVelocity
// ----------------------------------------------------------------------------
/** Sets the linear velocity for this camera. */
void CameraFPS::setLinearVelocity(core::vector3df vel)
{
if (m_smooth)
m_target_velocity = vel;
else
m_lin_velocity = vel;
} // setLinearVelocity
// ----------------------------------------------------------------------------
/** Returns the current linear velocity. */
const core::vector3df &CameraFPS::getLinearVelocity()
{
if (m_smooth)
return m_target_velocity;
else
return m_lin_velocity;
} // getLinearVelocity

165
src/graphics/camera_fps.hpp Normal file
View File

@ -0,0 +1,165 @@
//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2004-2015 Steve Baker <sjbaker1@airmail.net>
// Copyright (C) 2006-2015 SuperTuxKart-Team, Steve Baker
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifndef HEADER_CAMERA_FPS_HPP
#define HEADER_CAMERA_FPS_HPP
#include "graphics/camera.hpp"
#include "utils/cpp2011.hpp"
class AbstractKart;
/**
* \brief Handles the game camera
* \ingroup graphics
*/
class CameraFPS : public Camera
{
private:
/** The speed at which the camera changes position. */
float m_position_speed;
/** The speed at which the camera target changes position. */
float m_target_speed;
/** Factor of the effects of steering in camera aim. */
float m_rotation_range;
/** Smooth acceleration with the first person camera. */
bool m_smooth;
/** Attache the first person camera to a kart.
That means moving the kart also moves the camera. */
bool m_attached;
/** The speed at which the up-vector rotates, only used for the first person camera. */
float m_angular_velocity;
/** Target angular velocity. Used for smooth movement in fps perpective. */
float m_target_angular_velocity;
/** Maximum velocity for fps camera. */
float m_max_velocity;
/** Linear velocity of the camera, used for end and first person camera.
It's stored relative to the camera direction for the first person view. */
core::vector3df m_lin_velocity;
/** Velocity of the target of the camera, used for end and first person camera. */
core::vector3df m_target_velocity;
/** The target direction for the camera, only used for the first person camera. */
core::vector3df m_target_direction;
/** The speed at which the direction changes, only used for the first person camera. */
core::vector3df m_direction_velocity;
/** The up vector the camera should have, only used for the first person camera. */
core::vector3df m_target_up_vector;
/** Save the local position if the first person camera is attached to the kart. */
core::vector3df m_local_position;
/** Save the local direction if the first person camera is attached to the kart. */
core::vector3df m_local_direction;
/** Save the local up vector if the first person camera is attached to the kart. */
core::vector3df m_local_up;
void positionCamera(float dt, float above_kart, float cam_angle,
float side_way, float distance, float smoothing);
friend class Camera;
CameraFPS(int camera_index, AbstractKart* kart);
virtual ~CameraFPS();
public:
// ------------------------------------------------------------------------
static bool isFPS() { return true; }
// ------------------------------------------------------------------------
virtual void update(float dt) OVERRIDE;
// ------------------------------------------------------------------------
/** Applies mouse movement to the first person camera. */
void applyMouseMovement (float x, float y);
// ------------------------------------------------------------------------
/** Sets if the first person camera should be moved smooth. */
void setSmoothMovement (bool value) { m_smooth = value; }
// ------------------------------------------------------------------------
/** If the first person camera should be moved smooth. */
bool getSmoothMovement () { return m_smooth; }
// ------------------------------------------------------------------------
/** Sets if the first person camera should be moved with the kart. */
void setAttachedFpsCam (bool value) { m_attached = value; }
// ------------------------------------------------------------------------
/** If the first person camera should be moved with the kart. */
bool getAttachedFpsCam () { return m_attached; }
// ------------------------------------------------------------------------
/** Sets the angular velocity for this camera. */
void setMaximumVelocity (float vel) { m_max_velocity = vel; }
// ------------------------------------------------------------------------
/** Returns the current angular velocity. */
float getMaximumVelocity () { return m_max_velocity; }
// ------------------------------------------------------------------------
/** Sets the vector, the first person camera should look at. */
void setDirection (core::vector3df target) { m_target_direction = target; }
// ------------------------------------------------------------------------
/** Gets the vector, the first person camera should look at. */
const core::vector3df &getDirection () { return m_target_direction; }
// ------------------------------------------------------------------------
/** Sets the up vector, the first person camera should use. */
void setUpVector (core::vector3df target) { m_target_up_vector = target; }
// ------------------------------------------------------------------------
/** Gets the up vector, the first person camera should use. */
const core::vector3df &getUpVector () { return m_target_up_vector; }
// ------------------------------------------------------------------------
/** Sets the angular velocity for this camera. */
void setAngularVelocity (float vel);
// ------------------------------------------------------------------------
/** Returns the current target angular velocity. */
float getAngularVelocity ();
// ------------------------------------------------------------------------
/** Sets the linear velocity for this camera. */
void setLinearVelocity (core::vector3df vel);
// ------------------------------------------------------------------------
/** Returns the current linear velocity. */
const core::vector3df &getLinearVelocity ();
}; // class CameraFPS
#endif
/* EOF */

View File

@ -0,0 +1,293 @@
//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2004-2015 Steve Baker <sjbaker1@airmail.net>
// Copyright (C) 2006-2015 SuperTuxKart-Team, Steve Baker
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#include "graphics/camera_normal.hpp"
#include "karts/abstract_kart.hpp"
#include "karts/explosion_animation.hpp"
#include "karts/kart.hpp"
#include "karts/kart_properties.hpp"
#include "karts/skidding.hpp"
#include "modes/world.hpp"
#include "tracks/track.hpp"
// ============================================================================
CameraNormal::CameraNormal(int camera_index, AbstractKart* kart)
: Camera(camera_index, kart)
{
m_distance = kart ? kart->getKartProperties()->getCameraDistance() : 1000.0f;
m_ambient_light = World::getWorld()->getTrack()->getDefaultAmbientColor();
// TODO: Put these values into a config file
// Global or per split screen zone?
// Either global or per user (for instance, some users may not like
// the extra camera rotation so they could set m_rotation_range to
// zero to disable it for themselves).
m_position_speed = 8.0f;
m_target_speed = 10.0f;
m_rotation_range = 0.4f;
m_rotation_range = 0.0f;
reset();
m_camera->setNearValue(1.0f);
} // Camera
//-----------------------------------------------------------------------------
/** Moves the camera smoothly from the current camera position (and target)
* to the new position and target.
* \param wanted_position The position the camera wanted to reach.
* \param wanted_target The point the camera wants to point to.
*/
void CameraNormal::smoothMoveCamera(float dt)
{
Kart *kart = dynamic_cast<Kart*>(m_kart);
if (kart->isFlying())
{
Vec3 vec3 = m_kart->getXYZ() + Vec3(sin(m_kart->getHeading()) * -4.0f,
0.5f,
cos(m_kart->getHeading()) * -4.0f);
m_camera->setTarget(m_kart->getXYZ().toIrrVector());
m_camera->setPosition(vec3.toIrrVector());
return;
} // kart is flying
core::vector3df current_position = m_camera->getPosition();
// Smoothly interpolate towards the position and target
const KartProperties *kp = m_kart->getKartProperties();
float max_increase_with_zipper = kp->getZipperMaxSpeedIncrease();
float max_speed_without_zipper = kp->getEngineMaxSpeed();
float current_speed = m_kart->getSpeed();
const Skidding *ks = m_kart->getSkidding();
float skid_factor = ks->getVisualSkidRotation();
float skid_angle = asin(skid_factor);
float ratio = (current_speed - max_speed_without_zipper) / max_increase_with_zipper;
ratio = ratio > -0.12f ? ratio : -0.12f;
// distance of camera from kart in x and z plane
float camera_distance = -3 * (0.5f + ratio);
if (camera_distance > -2.0f) camera_distance = -2.0f;
// Defines how far camera should be from player kart.
Vec3 camera_offset(camera_distance * sin(skid_angle / 2),
1.1f * (1 + ratio / 2),
camera_distance * cos(skid_angle / 2));
Vec3 m_kart_camera_position_with_offset = m_kart->getTrans()(camera_offset);
// next target
core::vector3df current_target = m_kart->getXYZ().toIrrVector();
current_target.Y += 0.5f;
// new required position of camera
core::vector3df wanted_position = m_kart_camera_position_with_offset.toIrrVector();
float f = 5.0f;
if ((m_kart->getSpeed() > 5 ) || (m_kart->getSpeed() < 0 ))
{
f = m_kart->getSpeed()>0 ? m_kart->getSpeed()/3 + 1.0f
: -1.5f * m_kart->getSpeed() + 2.0f;
}
current_position += (wanted_position - current_position) * (dt *f);
// Avoid camera crash: if the speed is negative, the current_position
// can oscillate between plus and minus, getting bigger and bigger. If
// this happens often enough, floating point overflow happens (large
// negative speeds can happen when the kart is tumbling/falling)
// To avoid this, we just move the camera to the wanted position if
// the distance becomes too large (see #1356).
if( (current_position - wanted_position).getLengthSQ() > 100)
{
Log::debug("camera", "Resetting camera position to avoid crash");
current_position = wanted_position;
}
if(getMode()!=CM_FALLING)
m_camera->setPosition(current_position);
m_camera->setTarget(current_target);//set new target
assert(!std::isnan(m_camera->getPosition().X));
assert(!std::isnan(m_camera->getPosition().Y));
assert(!std::isnan(m_camera->getPosition().Z));
} // smoothMoveCamera
//-----------------------------------------------------------------------------
/** Determine the camera settings for the current frame.
* \param above_kart How far above the camera should aim at.
* \param cam_angle Angle above the kart plane for the camera.
* \param sideway Sideway movement of the camera.
* \param distance Distance from kart.
*/
void CameraNormal::getCameraSettings(float *above_kart, float *cam_angle,
float *sideway, float *distance,
bool *smoothing)
{
const KartProperties *kp = m_kart->getKartProperties();
switch(getMode())
{
case CM_NORMAL:
case CM_FALLING:
{
*above_kart = 0.75f;
*cam_angle = kp->getCameraForwardUpAngle() * DEGREE_TO_RAD;
*distance = -m_distance;
float steering = m_kart->getSteerPercent()
* (1.0f + (m_kart->getSkidding()->getSkidFactor()
- 1.0f)/2.3f );
// quadratically to dampen small variations (but keep sign)
float dampened_steer = fabsf(steering) * steering;
*sideway = -m_rotation_range*dampened_steer*0.5f;
*smoothing = true;
break;
} // CM_FALLING
case CM_REVERSE: // Same as CM_NORMAL except it looks backwards
{
*above_kart = 0.75f;
*cam_angle = kp->getCameraBackwardUpAngle() * DEGREE_TO_RAD;
*sideway = 0;
*distance = 2.0f*m_distance;
*smoothing = false;
break;
}
case CM_CLOSEUP: // Lower to the ground and closer to the kart
{
*above_kart = 0.75f;
*cam_angle = 20.0f*DEGREE_TO_RAD;
*sideway = m_rotation_range
* m_kart->getSteerPercent()
* m_kart->getSkidding()->getSkidFactor();
*distance = -0.5f*m_distance;
*smoothing = false;
break;
}
case CM_LEADER_MODE:
{
*above_kart = 0.0f;
*cam_angle = 40*DEGREE_TO_RAD;
*sideway = 0;
*distance = 2.0f*m_distance;
*smoothing = true;
break;
}
case CM_SIMPLE_REPLAY:
// TODO: Implement
break;
}
} // getCameraSettings
//-----------------------------------------------------------------------------
/** Called once per time frame to move the camera to the right position.
* \param dt Time step.
*/
void CameraNormal::update(float dt)
{
Camera::update(dt);
if(!m_kart) return;
m_camera->setNearValue(1.0f);
// If an explosion is happening, stop moving the camera,
// but keep it target on the kart.
if (dynamic_cast<ExplosionAnimation*>(m_kart->getKartAnimation()))
{
float above_kart, cam_angle, side_way, distance;
bool smoothing;
getCameraSettings(&above_kart, &cam_angle, &side_way, &distance, &smoothing);
// The camera target needs to be 'smooth moved', otherwise
// there will be a noticable jump in the first frame
// Aim at the usual same position of the kart (i.e. slightly
// above the kart).
// Note: this code is replicated from smoothMoveCamera so that
// the camera keeps on pointing to the same spot.
core::vector3df current_target = (m_kart->getXYZ().toIrrVector()
+ core::vector3df(0, above_kart, 0));
m_camera->setTarget(current_target);
}
else // no kart animation
{
float above_kart, cam_angle, side_way, distance;
bool smoothing;
getCameraSettings(&above_kart, &cam_angle, &side_way, &distance, &smoothing);
positionCamera(dt, above_kart, cam_angle, side_way, distance, smoothing);
}
} // update
// ----------------------------------------------------------------------------
/** Actually sets the camera based on the given parameter.
* \param above_kart How far above the camera should aim at.
* \param cam_angle Angle above the kart plane for the camera.
* \param sideway Sideway movement of the camera.
* \param distance Distance from kart.
*/
void CameraNormal::positionCamera(float dt, float above_kart, float cam_angle,
float side_way, float distance, float smoothing)
{
Vec3 wanted_position;
Vec3 wanted_target = m_kart->getXYZ();
wanted_target.setY(wanted_target.getY() + above_kart);
float tan_up = tan(cam_angle);
Vec3 relative_position(side_way,
fabsf(distance)*tan_up+above_kart,
distance);
btTransform t=m_kart->getTrans();
if(stk_config->m_camera_follow_skid &&
m_kart->getSkidding()->getVisualSkidRotation()!=0)
{
// If the camera should follow the graphical skid, add the
// visual rotation to the relative vector:
btQuaternion q(m_kart->getSkidding()->getVisualSkidRotation(), 0, 0);
t.setBasis(t.getBasis() * btMatrix3x3(q));
}
wanted_position = t(relative_position);
if (smoothing)
{
smoothMoveCamera(dt);
}
else
{
if (getMode()!=CM_FALLING)
m_camera->setPosition(wanted_position.toIrrVector());
m_camera->setTarget(wanted_target.toIrrVector());
if (race_manager->getNumLocalPlayers() < 2)
{
SFXManager::get()->positionListener(m_camera->getPosition(),
wanted_target - m_camera->getPosition(),
Vec3(0, 1, 0));
}
}
Kart *kart = dynamic_cast<Kart*>(m_kart);
if (kart && !kart->isFlying())
{
// Rotate the up vector (0,1,0) by the rotation ... which is just column 1
Vec3 up = m_kart->getTrans().getBasis().getColumn(1);
float f = 0.04f; // weight for new up vector to reduce shaking
m_camera->setUpVector( f * up.toIrrVector() +
(1.0f - f) * m_camera->getUpVector());
} // kart && !flying
else
m_camera->setUpVector(core::vector3df(0, 1, 0));
} // positionCamera

View File

@ -0,0 +1,85 @@
//
// SuperTuxKart - a fun racing game with go-kart
// Copyright (C) 2004-2015 Steve Baker <sjbaker1@airmail.net>
// Copyright (C) 2006-2015 SuperTuxKart-Team, Steve Baker
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifndef HEADER_CAMERA_NORMAL_HPP
#define HEADER_CAMERA_NORMAL_HPP
#include "graphics/camera.hpp"
#include "utils/cpp2011.hpp"
/**
* \brief Handles the normal racing camera
* \ingroup graphics
*/
class CameraNormal : public Camera
{
private:
/** Current ambient light for this camera. */
video::SColor m_ambient_light;
/** Distance between the camera and the kart. */
float m_distance;
/** The speed at which the camera changes position. */
float m_position_speed;
/** The speed at which the camera target changes position. */
float m_target_speed;
/** Factor of the effects of steering in camera aim. */
float m_rotation_range;
void smoothMoveCamera(float dt);
void handleEndCamera(float dt);
void getCameraSettings(float *above_kart, float *cam_angle,
float *side_way, float *distance,
bool *smoothing);
void positionCamera(float dt, float above_kart, float cam_angle,
float side_way, float distance, float smoothing);
// Give a few classes access to the constructor (mostly for inheritance)
friend class Camera;
friend class CameraDebug;
friend class CameraEnd;
CameraNormal(int camera_index, AbstractKart* kart);
virtual ~CameraNormal() {}
public:
bool isDebug() { return false; }
// ------------------------------------------------------------------------
bool isFPS() { return false; }
// ------------------------------------------------------------------------
virtual void update(float dt) OVERRIDE;
// ------------------------------------------------------------------------
/** Sets the ambient light for this camera. */
void setAmbientLight(const video::SColor &color) { m_ambient_light=color; }
// ------------------------------------------------------------------------
float getDistanceToKart() const { return m_distance; }
// ------------------------------------------------------------------------
/** Returns the current ambient light. */
const video::SColor &getAmbientLight() const {return m_ambient_light; }
}; // class CameraNormal
#endif
/* EOF */

View File

@ -19,7 +19,7 @@
#include "input/input_manager.hpp" #include "input/input_manager.hpp"
#include "config/user_config.hpp" #include "config/user_config.hpp"
#include "graphics/camera.hpp" #include "graphics/camera_fps.hpp"
#include "graphics/irr_driver.hpp" #include "graphics/irr_driver.hpp"
#include "guiengine/engine.hpp" #include "guiengine/engine.hpp"
#include "guiengine/event_handler.hpp" #include "guiengine/event_handler.hpp"
@ -174,10 +174,9 @@ void InputManager::handleStaticAction(int key, int value)
// Moving the first person camera // Moving the first person camera
case KEY_KEY_W: case KEY_KEY_W:
{ {
if (world && UserConfigParams::m_artist_debug_mode && CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
Camera::isFPS() ) if (world && UserConfigParams::m_artist_debug_mode && cam )
{ {
Camera *cam = Camera::getActiveCamera();
core::vector3df vel(cam->getLinearVelocity()); core::vector3df vel(cam->getLinearVelocity());
vel.Z = value ? cam->getMaximumVelocity() : 0; vel.Z = value ? cam->getMaximumVelocity() : 0;
cam->setLinearVelocity(vel); cam->setLinearVelocity(vel);
@ -186,10 +185,9 @@ void InputManager::handleStaticAction(int key, int value)
} }
case KEY_KEY_S: case KEY_KEY_S:
{ {
if (world && UserConfigParams::m_artist_debug_mode && CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
Camera::isFPS() ) if (world && UserConfigParams::m_artist_debug_mode && cam)
{ {
Camera *cam = Camera::getActiveCamera();
core::vector3df vel(cam->getLinearVelocity()); core::vector3df vel(cam->getLinearVelocity());
vel.Z = value ? -cam->getMaximumVelocity() : 0; vel.Z = value ? -cam->getMaximumVelocity() : 0;
cam->setLinearVelocity(vel); cam->setLinearVelocity(vel);
@ -198,10 +196,9 @@ void InputManager::handleStaticAction(int key, int value)
} }
case KEY_KEY_D: case KEY_KEY_D:
{ {
if (world && !UserConfigParams::m_artist_debug_mode && CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
Camera::isFPS() ) if (world && !UserConfigParams::m_artist_debug_mode && cam)
{ {
Camera *cam = Camera::getActiveCamera();
core::vector3df vel(cam->getLinearVelocity()); core::vector3df vel(cam->getLinearVelocity());
vel.X = value ? -cam->getMaximumVelocity() : 0; vel.X = value ? -cam->getMaximumVelocity() : 0;
cam->setLinearVelocity(vel); cam->setLinearVelocity(vel);
@ -210,10 +207,9 @@ void InputManager::handleStaticAction(int key, int value)
} }
case KEY_KEY_A: case KEY_KEY_A:
{ {
if (world && UserConfigParams::m_artist_debug_mode && CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
Camera::isFPS() ) if (world && UserConfigParams::m_artist_debug_mode && cam)
{ {
Camera *cam = Camera::getActiveCamera();
core::vector3df vel(cam->getLinearVelocity()); core::vector3df vel(cam->getLinearVelocity());
vel.X = value ? cam->getMaximumVelocity() : 0; vel.X = value ? cam->getMaximumVelocity() : 0;
cam->setLinearVelocity(vel); cam->setLinearVelocity(vel);
@ -222,10 +218,9 @@ void InputManager::handleStaticAction(int key, int value)
} }
case KEY_KEY_R: case KEY_KEY_R:
{ {
if (world && UserConfigParams::m_artist_debug_mode && CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
Camera::isFPS() ) if (world && UserConfigParams::m_artist_debug_mode && cam)
{ {
Camera *cam = Camera::getActiveCamera();
core::vector3df vel(cam->getLinearVelocity()); core::vector3df vel(cam->getLinearVelocity());
vel.Y = value ? cam->getMaximumVelocity() : 0; vel.Y = value ? cam->getMaximumVelocity() : 0;
cam->setLinearVelocity(vel); cam->setLinearVelocity(vel);
@ -234,10 +229,9 @@ void InputManager::handleStaticAction(int key, int value)
} }
case KEY_KEY_F: case KEY_KEY_F:
{ {
if (world && UserConfigParams::m_artist_debug_mode && CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
Camera::isFPS() ) if (world && UserConfigParams::m_artist_debug_mode && cam)
{ {
Camera *cam = Camera::getActiveCamera();
core::vector3df vel(cam->getLinearVelocity()); core::vector3df vel(cam->getLinearVelocity());
vel.Y = value ? -cam->getMaximumVelocity() : 0; vel.Y = value ? -cam->getMaximumVelocity() : 0;
cam->setLinearVelocity(vel); cam->setLinearVelocity(vel);
@ -247,22 +241,20 @@ void InputManager::handleStaticAction(int key, int value)
// Rotating the first person camera // Rotating the first person camera
case KEY_KEY_Q: case KEY_KEY_Q:
{ {
if (world && UserConfigParams::m_artist_debug_mode && CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
Camera::isFPS() ) if (world && UserConfigParams::m_artist_debug_mode && cam )
{ {
Camera *active_cam = Camera::getActiveCamera(); cam->setAngularVelocity(value ?
active_cam->setAngularVelocity(value ?
UserConfigParams::m_fpscam_max_angular_velocity : 0.0f); UserConfigParams::m_fpscam_max_angular_velocity : 0.0f);
} }
break; break;
} }
case KEY_KEY_E: case KEY_KEY_E:
{ {
if (world && UserConfigParams::m_artist_debug_mode && CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
Camera::isFPS() ) if (world && UserConfigParams::m_artist_debug_mode && cam)
{ {
Camera *active_cam = Camera::getActiveCamera(); cam->setAngularVelocity(value ?
active_cam->setAngularVelocity(value ?
-UserConfigParams::m_fpscam_max_angular_velocity : 0); -UserConfigParams::m_fpscam_max_angular_velocity : 0);
} }
break; break;
@ -1009,9 +1001,9 @@ EventPropagation InputManager::input(const SEvent& event)
if (type == EMIE_MOUSE_MOVED) if (type == EMIE_MOUSE_MOVED)
{ {
if (Camera::isFPS()) CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
if (cam)
{ {
Camera *cam = Camera::getActiveCamera();
// Center of the screen // Center of the screen
core::vector2df screen_size = irr_driver->getCurrentScreenSize(); core::vector2df screen_size = irr_driver->getCurrentScreenSize();
int mid_x = (int) screen_size.X / 2; int mid_x = (int) screen_size.X / 2;
@ -1064,12 +1056,12 @@ EventPropagation InputManager::input(const SEvent& event)
} }
else if (type == EMIE_MOUSE_WHEEL) else if (type == EMIE_MOUSE_WHEEL)
{ {
if (Camera::isFPS()) CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
if (cam)
{ {
// Use scrolling to change the maximum speed // Use scrolling to change the maximum speed
// Only test if it's more or less than 0 as it seems to be not // Only test if it's more or less than 0 as it seems to be not
// reliable accross more platforms. // reliable accross more platforms.
Camera *cam = Camera::getActiveCamera();
if (event.MouseInput.Wheel < 0) if (event.MouseInput.Wheel < 0)
{ {
float vel = cam->getMaximumVelocity() - 3; float vel = cam->getMaximumVelocity() - 3;

View File

@ -66,7 +66,7 @@ void AIBaseController::update(float dt)
void AIBaseController::setControllerName(const std::string &name) void AIBaseController::setControllerName(const std::string &name)
{ {
#ifdef DEBUG #ifdef DEBUG
if(m_ai_debug && !Camera::isDebug()) if(m_ai_debug && Camera::getActiveCamera()->getType()==Camera::CM_NORMAL)
m_kart->setOnScreenText(core::stringw(name.c_str()).c_str()); m_kart->setOnScreenText(core::stringw(name.c_str()).c_str());
#endif #endif
Controller::setControllerName(name); Controller::setControllerName(name);

View File

@ -16,7 +16,7 @@
// along with this program; if not, write to the Free Software // along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#include "graphics/camera.hpp" #include "graphics/camera_fps.hpp"
#include "karts/controller/ghost_controller.hpp" #include "karts/controller/ghost_controller.hpp"
#include "karts/controller/kart_control.hpp" #include "karts/controller/kart_control.hpp"
#include "modes/world.hpp" #include "modes/world.hpp"
@ -48,19 +48,23 @@ void GhostController::update(float dt)
} }
// Watching replay use only // Watching replay use only
Camera *camera = Camera::getActiveCamera(); for(unsigned int i=0; i<Camera::getNumCameras(); i++)
if (camera != NULL && camera->getMode() != Camera::CM_FINAL)
{ {
if (m_controls->m_look_back) Camera *camera = Camera::getCamera(i);
if(camera->getKart()!=m_kart) continue;
if (camera->getType() != Camera::CM_TYPE_END)
{ {
camera->setMode(Camera::CM_REVERSE); if (m_controls->m_look_back)
} {
else camera->setMode(Camera::CM_REVERSE);
{ }
if (camera->getMode() == Camera::CM_REVERSE) else
camera->setMode(Camera::CM_NORMAL); {
} if (camera->getMode() == Camera::CM_REVERSE)
} camera->setMode(Camera::CM_NORMAL);
}
} // if camera mode != END
} // for i in all cameras
} // update } // update

View File

@ -61,7 +61,8 @@ LocalPlayerController::LocalPlayerController(AbstractKart *kart,
// Keep a pointer to the camera to remove the need to search for // Keep a pointer to the camera to remove the need to search for
// the right camera once per frame later. // the right camera once per frame later.
m_camera = Camera::createCamera(kart); Camera *camera = Camera::createCamera(kart);
m_camera_index = camera->getIndex();
m_bzzt_sound = SFXManager::get()->createSoundSource("bzzt"); m_bzzt_sound = SFXManager::get()->createSoundSource("bzzt");
m_wee_sound = SFXManager::get()->createSoundSource("wee"); m_wee_sound = SFXManager::get()->createSoundSource("wee");
m_ugh_sound = SFXManager::get()->createSoundSource("ugh"); m_ugh_sound = SFXManager::get()->createSoundSource("ugh");
@ -166,17 +167,18 @@ void LocalPlayerController::update(float dt)
// look backward when the player requests or // look backward when the player requests or
// if automatic reverse camera is active // if automatic reverse camera is active
if (m_camera->getMode() != Camera::CM_FINAL) Camera *camera = Camera::getCamera(m_camera_index);
if (camera->getType() != Camera::CM_TYPE_END)
{ {
if (m_controls->m_look_back || (UserConfigParams::m_reverse_look_threshold > 0 && if (m_controls->m_look_back || (UserConfigParams::m_reverse_look_threshold > 0 &&
m_kart->getSpeed() < -UserConfigParams::m_reverse_look_threshold)) m_kart->getSpeed() < -UserConfigParams::m_reverse_look_threshold))
{ {
m_camera->setMode(Camera::CM_REVERSE); camera->setMode(Camera::CM_REVERSE);
} }
else else
{ {
if (m_camera->getMode() == Camera::CM_REVERSE) if (camera->getMode() == Camera::CM_REVERSE)
m_camera->setMode(Camera::CM_NORMAL); camera->setMode(Camera::CM_NORMAL);
} }
} }
@ -242,8 +244,7 @@ void LocalPlayerController::setPosition(int p)
void LocalPlayerController::finishedRace(float time) void LocalPlayerController::finishedRace(float time)
{ {
// This will implicitely trigger setting the first end camera to be active // This will implicitely trigger setting the first end camera to be active
m_camera->setMode(Camera::CM_FINAL); Camera::changeCamera(m_camera_index, Camera::CM_TYPE_END);
} // finishedRace } // finishedRace
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
@ -263,7 +264,7 @@ void LocalPlayerController::handleZipper(bool play_sound)
} }
// Apply the motion blur according to the speed of the kart // Apply the motion blur according to the speed of the kart
irr_driver->getPostProcessing()->giveBoost(m_camera->getIndex()); irr_driver->getPostProcessing()->giveBoost(m_camera_index);
} // handleZipper } // handleZipper

View File

@ -24,7 +24,6 @@
#include "karts/controller/player_controller.hpp" #include "karts/controller/player_controller.hpp"
class AbstractKart; class AbstractKart;
class Camera;
class Player; class Player;
class SFXBase; class SFXBase;
@ -42,9 +41,10 @@ private:
bool m_sound_schedule; bool m_sound_schedule;
/** The camera attached to the kart for this controller. The camera
* object is managed in the Camera class, so no need to free it. */ /** The index of the camera attached to the kart for this controller. The
Camera *m_camera; * camera object is managed in the Camera class, so no need to free it. */
int m_camera_index;
SFXBase *m_bzzt_sound; SFXBase *m_bzzt_sound;
SFXBase *m_wee_sound; SFXBase *m_wee_sound;

View File

@ -127,7 +127,7 @@ ExplosionAnimation::~ExplosionAnimation()
for(unsigned int i=0; i<Camera::getNumCameras(); i++) for(unsigned int i=0; i<Camera::getNumCameras(); i++)
{ {
Camera *camera = Camera::getCamera(i); Camera *camera = Camera::getCamera(i);
if(camera->getMode() != Camera::CM_FINAL) if(camera->getType() != Camera::CM_TYPE_END)
camera->setMode(Camera::CM_NORMAL); camera->setMode(Camera::CM_NORMAL);
} }
} }

View File

@ -83,7 +83,7 @@ RescueAnimation::~RescueAnimation()
{ {
Camera *camera = Camera::getCamera(i); Camera *camera = Camera::getCamera(i);
if(camera && camera->getKart()==m_kart && if(camera && camera->getKart()==m_kart &&
camera->getMode() != Camera::CM_FINAL) camera->getType() != Camera::CM_TYPE_END)
camera->setMode(Camera::CM_NORMAL); camera->setMode(Camera::CM_NORMAL);
} }
} }

View File

@ -151,6 +151,7 @@
#include "config/stk_config.hpp" #include "config/stk_config.hpp"
#include "config/user_config.hpp" #include "config/user_config.hpp"
#include "graphics/camera.hpp" #include "graphics/camera.hpp"
#include "graphics/camera_debug.hpp"
#include "graphics/central_settings.hpp" #include "graphics/central_settings.hpp"
#include "graphics/graphics_restrictions.hpp" #include "graphics/graphics_restrictions.hpp"
#include "graphics/irr_driver.hpp" #include "graphics/irr_driver.hpp"
@ -761,14 +762,23 @@ int handleCmdLine()
if (CommandLine::has("--fps-debug")) if (CommandLine::has("--fps-debug"))
UserConfigParams::m_fps_debug = true; UserConfigParams::m_fps_debug = true;
if(UserConfigParams::m_artist_debug_mode) if (UserConfigParams::m_artist_debug_mode)
{ {
if(CommandLine::has("--camera-wheel-debug")) if (CommandLine::has("--camera-wheel-debug"))
Camera::setDebugMode(Camera::CM_DEBUG_GROUND); {
Camera::setDefaultCameraType(Camera::CM_TYPE_DEBUG);
CameraDebug::setDebugType(CameraDebug::CM_DEBUG_GROUND);
}
if(CommandLine::has("--camera-debug")) if(CommandLine::has("--camera-debug"))
Camera::setDebugMode(Camera::CM_DEBUG_TOP_OF_KART); {
Camera::setDefaultCameraType(Camera::CM_TYPE_DEBUG);
CameraDebug::setDebugType(CameraDebug::CM_DEBUG_TOP_OF_KART);
}
if(CommandLine::has("--camera-kart-debug")) if(CommandLine::has("--camera-kart-debug"))
Camera::setDebugMode(Camera::CM_DEBUG_BEHIND_KART); {
Camera::setDefaultCameraType(Camera::CM_TYPE_DEBUG);
CameraDebug::setDebugType(CameraDebug::CM_DEBUG_BEHIND_KART);
}
if(CommandLine::has("--physics-debug")) if(CommandLine::has("--physics-debug"))
UserConfigParams::m_physics_debug=1; UserConfigParams::m_physics_debug=1;
if(CommandLine::has("--check-debug")) if(CommandLine::has("--check-debug"))

View File

@ -26,7 +26,7 @@
#include "config/player_manager.hpp" #include "config/player_manager.hpp"
#include "config/stk_config.hpp" #include "config/stk_config.hpp"
#include "config/user_config.hpp" #include "config/user_config.hpp"
#include "graphics/camera.hpp" #include "graphics/camera_end.hpp"
#include "graphics/CBatchingMesh.hpp" #include "graphics/CBatchingMesh.hpp"
#include "graphics/central_settings.hpp" #include "graphics/central_settings.hpp"
#include "graphics/glwrap.hpp" #include "graphics/glwrap.hpp"
@ -1606,7 +1606,7 @@ void Track::loadTrackModel(bool reverse_track, unsigned int mode_id)
#endif #endif
} }
Camera::clearEndCameras(); CameraEnd::clearEndCameras();
m_sky_type = SKY_NONE; m_sky_type = SKY_NONE;
m_track_object_manager = new TrackObjectManager(); m_track_object_manager = new TrackObjectManager();
@ -1761,7 +1761,8 @@ void Track::loadTrackModel(bool reverse_track, unsigned int mode_id)
// It's important to execute this BEFORE the code that creates the skycube, // It's important to execute this BEFORE the code that creates the skycube,
// otherwise the skycube node could be modified to have fog enabled, which // otherwise the skycube node could be modified to have fog enabled, which
// we don't want // we don't want
if (m_use_fog && !Camera::isDebug() && !CVS->isGLSL()) if (m_use_fog && Camera::getDefaultCameraType()!=Camera::CM_TYPE_DEBUG &&
!CVS->isGLSL())
{ {
/* NOTE: if LINEAR type, density does not matter, if EXP or EXP2, start /* NOTE: if LINEAR type, density does not matter, if EXP or EXP2, start
and end do not matter */ and end do not matter */
@ -2003,7 +2004,7 @@ void Track::loadObjects(const XMLNode* root, const std::string& path, ModelDefin
} }
else if (name == "end-cameras") else if (name == "end-cameras")
{ {
Camera::readEndCamera(*node); CameraEnd::readEndCamera(*node);
} }
else if (name == "light") else if (name == "light")
{ {

View File

@ -19,7 +19,8 @@
#include "debug.hpp" #include "debug.hpp"
#include "config/user_config.hpp" #include "config/user_config.hpp"
#include "graphics/camera.hpp" #include "graphics/camera_debug.hpp"
#include "graphics/camera_fps.hpp"
#include "graphics/irr_driver.hpp" #include "graphics/irr_driver.hpp"
#include "graphics/light.hpp" #include "graphics/light.hpp"
#include "graphics/shaders.hpp" #include "graphics/shaders.hpp"
@ -440,47 +441,58 @@ bool handleContextMenuAction(s32 cmdID)
} }
else if (cmdID == DEBUG_GUI_CAM_TOP) else if (cmdID == DEBUG_GUI_CAM_TOP)
{ {
Camera::setDebugMode(Camera::CM_DEBUG_TOP_OF_KART); CameraDebug::setDebugType(CameraDebug::CM_DEBUG_TOP_OF_KART);
irr_driver->getDevice()->getCursorControl()->setVisible(true); irr_driver->getDevice()->getCursorControl()->setVisible(true);
} }
else if (cmdID == DEBUG_GUI_CAM_WHEEL) else if (cmdID == DEBUG_GUI_CAM_WHEEL)
{ {
Camera::setDebugMode(Camera::CM_DEBUG_GROUND); CameraDebug::setDebugType(CameraDebug::CM_DEBUG_GROUND);
irr_driver->getDevice()->getCursorControl()->setVisible(true); irr_driver->getDevice()->getCursorControl()->setVisible(true);
} }
else if (cmdID == DEBUG_GUI_CAM_BEHIND_KART) else if (cmdID == DEBUG_GUI_CAM_BEHIND_KART)
{ {
Camera::setDebugMode(Camera::CM_DEBUG_BEHIND_KART); CameraDebug::setDebugType(CameraDebug::CM_DEBUG_BEHIND_KART);
irr_driver->getDevice()->getCursorControl()->setVisible(true); irr_driver->getDevice()->getCursorControl()->setVisible(true);
} }
else if (cmdID == DEBUG_GUI_CAM_SIDE_OF_KART) else if (cmdID == DEBUG_GUI_CAM_SIDE_OF_KART)
{ {
Camera::setDebugMode(Camera::CM_DEBUG_SIDE_OF_KART); CameraDebug::setDebugType(CameraDebug::CM_DEBUG_SIDE_OF_KART);
irr_driver->getDevice()->getCursorControl()->setVisible(true); irr_driver->getDevice()->getCursorControl()->setVisible(true);
} }
else if (cmdID == DEBUG_GUI_CAM_FREE) else if (cmdID == DEBUG_GUI_CAM_FREE)
{ {
Camera::setDebugMode(Camera::CM_DEBUG_FPS); Camera *camera = Camera::getActiveCamera();
Camera::changeCamera(camera->getIndex(), Camera::CM_TYPE_FPS);
irr_driver->getDevice()->getCursorControl()->setVisible(false); irr_driver->getDevice()->getCursorControl()->setVisible(false);
// Reset camera rotation // Reset camera rotation
Camera *cam = Camera::getActiveCamera(); CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
cam->setDirection(vector3df(0, 0, 1)); if(cam)
cam->setUpVector(vector3df(0, 1, 0)); {
cam->setDirection(vector3df(0, 0, 1));
cam->setUpVector(vector3df(0, 1, 0));
}
} }
else if (cmdID == DEBUG_GUI_CAM_NORMAL) else if (cmdID == DEBUG_GUI_CAM_NORMAL)
{ {
Camera::setDebugMode(Camera::CM_DEBUG_NONE); Camera *camera = Camera::getActiveCamera();
Camera::changeCamera(camera->getIndex(), Camera::CM_TYPE_NORMAL);
irr_driver->getDevice()->getCursorControl()->setVisible(true); irr_driver->getDevice()->getCursorControl()->setVisible(true);
} }
else if (cmdID == DEBUG_GUI_CAM_SMOOTH) else if (cmdID == DEBUG_GUI_CAM_SMOOTH)
{ {
Camera *cam = Camera::getActiveCamera(); CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
cam->setSmoothMovement(!cam->getSmoothMovement()); if(cam)
{
cam->setSmoothMovement(!cam->getSmoothMovement());
}
} }
else if (cmdID == DEBUG_GUI_CAM_ATTACH) else if (cmdID == DEBUG_GUI_CAM_ATTACH)
{ {
Camera *cam = Camera::getActiveCamera(); CameraFPS *cam = dynamic_cast<CameraFPS*>(Camera::getActiveCamera());
cam->setAttachedFpsCam(!cam->getAttachedFpsCam()); if(cam)
{
cam->setAttachedFpsCam(!cam->getAttachedFpsCam());
}
} }
else if (cmdID == DEBUG_VIEW_KART_ONE) else if (cmdID == DEBUG_VIEW_KART_ONE)
{ {