1) Added an (additional) impulse to push karts away from each other.
This impulse does not cause any rotation of the kart, it just pushes the kart orthogonal to its velocity. 2) The rotational velocity is set to 0 in case of a collision, hopefully avoiding the problem that karts will rotate as result of a collision. 3) A collision pair now stores the exact collision point for both bodies (which is then used to determine the side in which the impulse to be applied). git-svn-id: svn+ssh://svn.code.sf.net/p/supertuxkart/code/main/trunk@10422 178a84e3-b1eb-0310-8ba1-8eac791a3b58
This commit is contained in:
parent
411fffa55b
commit
d06acf1f7b
@ -289,7 +289,7 @@
|
||||
the orientation - if a kart is pushed in the direction it is
|
||||
driving, it will be more (no friction from tires), while when
|
||||
pushed to the side, hardly anything happens. -->
|
||||
<collision impulse="0" restitution="0.5" side-impulse="0"/>
|
||||
<collision impulse="1500" restitution="0.5" side-impulse="4500"/>
|
||||
|
||||
<!-- Kart-specific plunger and rubber band handling: max-length is
|
||||
the maximum length of rubber band before it snaps. force is
|
||||
|
@ -173,12 +173,12 @@ void RaceState::receive(ENetPacket *pkt)
|
||||
else
|
||||
{
|
||||
// FIXME: KartKartCollision now takes information about the
|
||||
// collision point. This either needs to be added as the third
|
||||
// collision points. This either needs to be added as the third
|
||||
// parameter, or perhaps the outcome of the collision (the
|
||||
// impulse) could be added.
|
||||
world->getPhysics()->KartKartCollision(world->getKart(kart_id1),
|
||||
world->getKart(kart_id2),
|
||||
btVector3(0,0,0));
|
||||
world->getPhysics()->KartKartCollision(
|
||||
world->getKart(kart_id1), Vec3(0,0,0),
|
||||
world->getKart(kart_id2), Vec3(0,0,0));
|
||||
}
|
||||
} // for(i=0; i<num_collisions; i+=2)
|
||||
clear(); // free message buffer
|
||||
|
@ -95,20 +95,6 @@ btWheelInfo& btKart::addWheel(const btVector3& connectionPointCS,
|
||||
m_forwardImpulse.resize(m_wheelInfo.size());
|
||||
m_sideImpulse.resize(m_wheelInfo.size());
|
||||
|
||||
// The average of all front wheel chassis points define the
|
||||
// front center. This is always adjusted after adding a wheel
|
||||
// to avoid calling a separate function just for that.
|
||||
m_front_center_pointCS = btVector3(0,0,0);
|
||||
unsigned int count=0;
|
||||
for(int i=0; i<m_wheelInfo.size(); i++)
|
||||
{
|
||||
if(m_wheelInfo[i].m_chassisConnectionPointCS.getZ()>0)
|
||||
{
|
||||
m_front_center_pointCS += m_wheelInfo[i].m_chassisConnectionPointCS;
|
||||
count ++;
|
||||
}
|
||||
}
|
||||
m_front_center_pointCS *= 1.0f/count;
|
||||
return wheel;
|
||||
} // addWheel
|
||||
|
||||
|
@ -89,9 +89,6 @@ protected:
|
||||
*/
|
||||
bool m_allow_sliding;
|
||||
|
||||
/** The center point of the front (in car coordinates). */
|
||||
btVector3 m_front_center_pointCS;
|
||||
|
||||
btRigidBody* m_chassisBody;
|
||||
|
||||
int m_num_wheels_on_ground;
|
||||
@ -259,14 +256,7 @@ public:
|
||||
// ------------------------------------------------------------------------
|
||||
/** Returns the number of wheels on the ground. */
|
||||
unsigned int getNumWheelsOnGround() const {return m_num_wheels_on_ground;}
|
||||
// ------------------------------------------------------------------------
|
||||
/** Returns the middle point of the front wheel connection points in
|
||||
* world coordinates. */
|
||||
btVector3 getFrontCenterPointWS() const
|
||||
{
|
||||
return m_chassisBody->getWorldTransform()(m_front_center_pointCS);
|
||||
} // getFrontCenterPointWS
|
||||
};
|
||||
}; // class btKart
|
||||
|
||||
#endif //BT_RAYCASTVEHICLE_H
|
||||
|
||||
|
@ -121,37 +121,39 @@ void Physics::update(float dt)
|
||||
{
|
||||
// Kart-kart collision
|
||||
// --------------------
|
||||
if(p->a->is(UserPointer::UP_KART))
|
||||
if(p->getUserPointer(0)->is(UserPointer::UP_KART))
|
||||
{
|
||||
Kart *a=p->a->getPointerKart();
|
||||
Kart *b=p->b->getPointerKart();
|
||||
Kart *a=p->getUserPointer(0)->getPointerKart();
|
||||
Kart *b=p->getUserPointer(1)->getPointerKart();
|
||||
race_state->addCollision(a->getWorldKartId(),
|
||||
b->getWorldKartId());
|
||||
KartKartCollision(p->a->getPointerKart(), p->b->getPointerKart(),
|
||||
p->getContactPoint());
|
||||
KartKartCollision(p->getUserPointer(0)->getPointerKart(),
|
||||
p->getContactPointCS(0),
|
||||
p->getUserPointer(1)->getPointerKart(),
|
||||
p->getContactPointCS(1) );
|
||||
continue;
|
||||
} // if kart-kart collision
|
||||
|
||||
if(p->a->is(UserPointer::UP_PHYSICAL_OBJECT))
|
||||
if(p->getUserPointer(0)->is(UserPointer::UP_PHYSICAL_OBJECT))
|
||||
{
|
||||
// Kart hits physical object
|
||||
// -------------------------
|
||||
PhysicalObject *obj = p->a->getPointerPhysicalObject();
|
||||
PhysicalObject *obj = p->getUserPointer(0)->getPointerPhysicalObject();
|
||||
if(obj->isCrashReset())
|
||||
{
|
||||
Kart *kart = p->b->getPointerKart();
|
||||
Kart *kart = p->getUserPointer(1)->getPointerKart();
|
||||
kart->forceRescue();
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if(p->a->is(UserPointer::UP_ANIMATION))
|
||||
if(p->getUserPointer(0)->is(UserPointer::UP_ANIMATION))
|
||||
{
|
||||
// Kart hits animation
|
||||
ThreeDAnimation *anim=p->a->getPointerAnimation();
|
||||
ThreeDAnimation *anim=p->getUserPointer(0)->getPointerAnimation();
|
||||
if(anim->isCrashReset())
|
||||
{
|
||||
Kart *kart = p->b->getPointerKart();
|
||||
Kart *kart = p->getUserPointer(1)->getPointerKart();
|
||||
kart->forceRescue();
|
||||
}
|
||||
continue;
|
||||
@ -159,37 +161,38 @@ void Physics::update(float dt)
|
||||
}
|
||||
// now the first object must be a projectile
|
||||
// =========================================
|
||||
if(p->b->is(UserPointer::UP_TRACK))
|
||||
if(p->getUserPointer(1)->is(UserPointer::UP_TRACK))
|
||||
{
|
||||
// Projectile hits track
|
||||
// ---------------------
|
||||
p->a->getPointerFlyable()->hitTrack();
|
||||
p->getUserPointer(0)->getPointerFlyable()->hitTrack();
|
||||
}
|
||||
else if(p->b->is(UserPointer::UP_PHYSICAL_OBJECT))
|
||||
else if(p->getUserPointer(1)->is(UserPointer::UP_PHYSICAL_OBJECT))
|
||||
{
|
||||
// Projectile hits physical object
|
||||
// -------------------------------
|
||||
p->a->getPointerFlyable()
|
||||
->hit(NULL, p->b->getPointerPhysicalObject());
|
||||
p->getUserPointer(0)->getPointerFlyable()
|
||||
->hit(NULL, p->getUserPointer(1)->getPointerPhysicalObject());
|
||||
|
||||
}
|
||||
else if(p->b->is(UserPointer::UP_KART))
|
||||
else if(p->getUserPointer(1)->is(UserPointer::UP_KART))
|
||||
{
|
||||
// Projectile hits kart
|
||||
// --------------------
|
||||
// Only explode a bowling ball if the target is
|
||||
// not invulnerable
|
||||
if(p->a->getPointerFlyable()->getType()
|
||||
!=PowerupManager::POWERUP_BOWLING ||
|
||||
!p->b->getPointerKart()->isInvulnerable() )
|
||||
p->a->getPointerFlyable()->hit(p->b->getPointerKart());
|
||||
if(p->getUserPointer(0)->getPointerFlyable()->getType()
|
||||
!=PowerupManager::POWERUP_BOWLING ||
|
||||
!p->getUserPointer(1)->getPointerKart()->isInvulnerable() )
|
||||
p->getUserPointer(0)->getPointerFlyable()
|
||||
->hit(p->getUserPointer(1)->getPointerKart());
|
||||
}
|
||||
else
|
||||
{
|
||||
// Projectile hits projectile
|
||||
// --------------------------
|
||||
p->a->getPointerFlyable()->hit(NULL);
|
||||
p->b->getPointerFlyable()->hit(NULL);
|
||||
p->getUserPointer(0)->getPointerFlyable()->hit(NULL);
|
||||
p->getUserPointer(1)->getPointerFlyable()->hit(NULL);
|
||||
}
|
||||
} // for all p in m_all_collisions
|
||||
} // update
|
||||
@ -206,6 +209,56 @@ bool Physics::projectKartDownwards(const Kart *k)
|
||||
/*allow translation*/true);
|
||||
} //projectKartsDownwards
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Determines the side (left, front, ...) of a rigid body with a box
|
||||
* collision shape that has a given contact point.
|
||||
* \param body The rigid body (box shape).
|
||||
* \param contact_point The contact point (in local coordinates) of the
|
||||
* contact point.
|
||||
*/
|
||||
Physics::CollisionSide Physics::getCollisionSide(const btRigidBody *body,
|
||||
const Vec3 &contact_point)
|
||||
{
|
||||
btVector3 aabb_min, aabb_max;
|
||||
static btTransform zero_trans(btQuaternion(0, 0, 0));
|
||||
body->getCollisionShape()->getAabb(zero_trans, aabb_min, aabb_max);
|
||||
btVector3 extend = 0.5f*(aabb_max - aabb_min);
|
||||
|
||||
CollisionSide result = COL_LEFT;
|
||||
if(contact_point.getX()>0) // --> right side
|
||||
{
|
||||
if(contact_point.getZ()>0) // --> front or right side
|
||||
{
|
||||
result = fabsf(extend.getX() - contact_point.getX()) <
|
||||
fabsf(extend.getZ() - contact_point.getZ()) ? COL_RIGHT
|
||||
: COL_FRONT;
|
||||
}
|
||||
else // getZ()<0 --> back or right side
|
||||
{
|
||||
result = fabsf( extend.getX() - contact_point.getX()) <
|
||||
fabsf( extend.getZ() + contact_point.getZ()) ? COL_RIGHT
|
||||
: COL_BACK;
|
||||
}
|
||||
}
|
||||
else // getX() < 0 --> left side
|
||||
{
|
||||
if(contact_point.getZ()>0) // --> front or left side
|
||||
{
|
||||
result = fabsf(extend.getX() + contact_point.getX()) <
|
||||
fabsf(extend.getZ() - contact_point.getZ()) ? COL_LEFT
|
||||
: COL_FRONT;
|
||||
}
|
||||
else // --> back or left side
|
||||
{
|
||||
result = fabsf(extend.getX() + contact_point.getX()) <
|
||||
fabsf(extend.getZ() + contact_point.getZ()) ? COL_LEFT
|
||||
: COL_BACK;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
} // getCollisionSide
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Handles the special case of two karts colliding with each other, which
|
||||
* means that bombs must be passed on. If both karts have a bomb, they'll
|
||||
@ -215,8 +268,8 @@ bool Physics::projectKartDownwards(const Kart *k)
|
||||
* \param kart_a First kart involved in the collision.
|
||||
* \param kart_b Second kart involved in the collision.
|
||||
*/
|
||||
void Physics::KartKartCollision(Kart *kart_a, Kart *kart_b,
|
||||
const Vec3 &contact_point)
|
||||
void Physics::KartKartCollision(Kart *kart_a, const Vec3 &contact_point_a,
|
||||
Kart *kart_b, const Vec3 &contact_point_b)
|
||||
{
|
||||
kart_a->crashed(kart_b); // will play crash sound for player karts
|
||||
kart_b->crashed(kart_a);
|
||||
@ -256,60 +309,80 @@ void Physics::KartKartCollision(Kart *kart_a, Kart *kart_b,
|
||||
// If bouncing crashes is enabled, add an additional force to the
|
||||
// slower kart
|
||||
Kart *faster_kart, *slower_kart;
|
||||
Vec3 faster_cp, slower_cp;
|
||||
if(kart_a->getSpeed()>=kart_b->getSpeed())
|
||||
{
|
||||
faster_kart = kart_a;
|
||||
faster_cp = contact_point_a;
|
||||
slower_kart = kart_b;
|
||||
slower_cp = contact_point_b;
|
||||
}
|
||||
else
|
||||
{
|
||||
faster_kart = kart_b;
|
||||
faster_cp = contact_point_b;
|
||||
slower_kart = kart_a;
|
||||
slower_cp = contact_point_a;
|
||||
}
|
||||
|
||||
Vec3 front_center = faster_kart->getVehicle()->getFrontCenterPointWS();
|
||||
float radius = 0.5f*faster_kart->getKartWidth();
|
||||
bool frontal_collision =
|
||||
(contact_point-front_center).length2_2d() < radius*radius;
|
||||
CollisionSide faster_side = getCollisionSide(faster_kart->getBody(),
|
||||
faster_cp);
|
||||
CollisionSide slower_side = getCollisionSide(slower_kart->getBody(),
|
||||
slower_cp);
|
||||
|
||||
float side_impulse =
|
||||
faster_kart->getKartProperties()->getCollisionSideImpulse();
|
||||
if(!frontal_collision)
|
||||
// This probably needs adjusting once we have different kart properties.
|
||||
// E.g. besides speed we might also want to take mass into account(?)
|
||||
if(faster_side==COL_FRONT)
|
||||
{
|
||||
Vec3 diff = faster_kart->getXYZ() - slower_kart->getXYZ();
|
||||
// Remove any y component to reduce the chance of karts
|
||||
// toppling over
|
||||
diff.setY(0);
|
||||
diff = diff.normalize();
|
||||
float impulse_base = 10.0f;
|
||||
Vec3 impulse_fast =
|
||||
slower_kart->getKartProperties()->getCollisionImpulse()*diff;
|
||||
faster_kart->getBody()->applyCentralImpulse(impulse_fast);
|
||||
Vec3 impulse_slow =
|
||||
(-faster_kart->getKartProperties()->getCollisionImpulse())*diff;
|
||||
slower_kart->getBody()->applyCentralImpulse(impulse_slow);
|
||||
}
|
||||
else if(side_impulse>0) // and frontal collision
|
||||
{
|
||||
Vec3 forwards_ws(0, 1, 0);
|
||||
Vec3 forwards = faster_kart->getTrans()*forwards_ws;
|
||||
core::line2df f(faster_kart->getXYZ().getX(),
|
||||
faster_kart->getXYZ().getY(),
|
||||
forwards.getX(), forwards.getY());
|
||||
core::vector2df p(slower_kart->getXYZ().getX(),
|
||||
slower_kart->getXYZ().getY());
|
||||
// Special case: the faster kart hits a kart front on. In this case
|
||||
// the slower kart will be pushed out of the faster kart's way
|
||||
Vec3 dir = faster_kart->getVelocity();
|
||||
|
||||
float orientation=f.getPointOrientation(p);
|
||||
// Now compute the vector to the side (right or left depending
|
||||
// on where the kart was hit).
|
||||
Vec3 side((orientation>=0) ? -1.0f : 1.0f, 0, 0);
|
||||
float speed_frac = faster_kart->getSpeed()/faster_kart->getCurrentMaxSpeed();
|
||||
Vec3 impulse =
|
||||
faster_kart->getTrans().getBasis()*side*side_impulse*speed_frac;
|
||||
printf("orientation is %f impulse is %f %f %f\n",
|
||||
orientation, impulse.getX(),impulse.getY(),impulse.getZ());
|
||||
// The direction in which the impulse will be applied depends on
|
||||
// which side of the faster kart was hitting it: if the hit is
|
||||
// on the right side of the faster kart, it will push the slower
|
||||
// kart to the right and vice versa. This is based on the
|
||||
// assumption that a hit to the right indicates that it's
|
||||
// shorter to push the slower kart to the right.
|
||||
Vec3 impulse;
|
||||
if(faster_cp.getX()>0)
|
||||
impulse = Vec3( dir.getZ(), 0, -dir.getX());
|
||||
else
|
||||
impulse = Vec3(-dir.getZ(), 0, dir.getX());
|
||||
impulse.normalize();
|
||||
impulse *= faster_kart->getKartProperties()->getCollisionImpulse();
|
||||
slower_kart->getBody()->applyCentralImpulse(impulse);
|
||||
slower_kart->getBody()->setAngularVelocity(btVector3(0,0,0));
|
||||
// Apply some impulse to the slower kart as well?
|
||||
}
|
||||
else
|
||||
{
|
||||
// Non-frontal collision, push the two karts away from each other
|
||||
// First the faster kart
|
||||
Vec3 dir = faster_kart->getVelocity();
|
||||
Vec3 impulse;
|
||||
if(faster_cp.getX()>0)
|
||||
impulse = Vec3(-dir.getZ(), 0, dir.getX());
|
||||
else
|
||||
impulse = Vec3( dir.getZ(), 0, -dir.getX());
|
||||
impulse.normalize();
|
||||
impulse *= slower_kart->getKartProperties()->getCollisionImpulse();
|
||||
faster_kart->getBody()->applyCentralImpulse(impulse);
|
||||
faster_kart->getBody()->setAngularVelocity(btVector3(0,0,0));
|
||||
|
||||
// Then the slower kart
|
||||
dir = slower_kart->getVelocity();
|
||||
if(slower_cp.getX()>0)
|
||||
impulse = Vec3(-dir.getZ(), 0, dir.getX());
|
||||
else
|
||||
impulse = Vec3( dir.getZ(), 0, -dir.getX());
|
||||
|
||||
impulse.normalize();
|
||||
impulse *= faster_kart->getKartProperties()->getCollisionImpulse();
|
||||
slower_kart->getBody()->applyCentralImpulse(impulse);
|
||||
slower_kart->getBody()->setAngularVelocity(btVector3(0,0,0));
|
||||
}
|
||||
|
||||
} // KartKartCollision
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
@ -364,8 +437,9 @@ btScalar Physics::solveGroup(btCollisionObject** bodies, int numBodies,
|
||||
if(upA->is(UserPointer::UP_TRACK))
|
||||
{
|
||||
if(upB->is(UserPointer::UP_FLYABLE)) // 1.1 projectile hits track
|
||||
m_all_collisions.push_back(upB, upA,
|
||||
contactManifold->getContactPoint(0).getPositionWorldOnA());
|
||||
m_all_collisions.push_back(
|
||||
upB, contactManifold->getContactPoint(0).m_localPointB,
|
||||
upA, contactManifold->getContactPoint(0).m_localPointA);
|
||||
else if(upB->is(UserPointer::UP_KART))
|
||||
{
|
||||
Kart *kart=upB->getPointerKart();
|
||||
@ -393,19 +467,23 @@ btScalar Physics::solveGroup(btCollisionObject** bodies, int numBodies,
|
||||
}
|
||||
else if(upB->is(UserPointer::UP_FLYABLE))
|
||||
// 2.1 projectile hits kart
|
||||
m_all_collisions.push_back(upB, upA,
|
||||
contactManifold->getContactPoint(0).getPositionWorldOnA());
|
||||
m_all_collisions.push_back(
|
||||
upB, contactManifold->getContactPoint(0).m_localPointB,
|
||||
upA, contactManifold->getContactPoint(0).m_localPointA);
|
||||
else if(upB->is(UserPointer::UP_KART))
|
||||
// 2.2 kart hits kart
|
||||
m_all_collisions.push_back(upA, upB,
|
||||
contactManifold->getContactPoint(0).getPositionWorldOnA());
|
||||
m_all_collisions.push_back(
|
||||
upA, contactManifold->getContactPoint(0).m_localPointA,
|
||||
upB, contactManifold->getContactPoint(0).m_localPointB);
|
||||
else if(upB->is(UserPointer::UP_PHYSICAL_OBJECT))
|
||||
// 2.3 kart hits physical object
|
||||
m_all_collisions.push_back(upB, upA,
|
||||
contactManifold->getContactPoint(0).getPositionWorldOnA());
|
||||
m_all_collisions.push_back(
|
||||
upB, contactManifold->getContactPoint(0).m_localPointB,
|
||||
upA, contactManifold->getContactPoint(0).m_localPointA);
|
||||
else if(upB->is(UserPointer::UP_ANIMATION))
|
||||
m_all_collisions.push_back(upB, upA,
|
||||
contactManifold->getContactPoint(0).getPositionWorldOnA());
|
||||
m_all_collisions.push_back(
|
||||
upB, contactManifold->getContactPoint(0).m_localPointB,
|
||||
upA, contactManifold->getContactPoint(0).m_localPointA);
|
||||
}
|
||||
// 3) object is a projectile
|
||||
// =========================
|
||||
@ -420,8 +498,9 @@ btScalar Physics::solveGroup(btCollisionObject** bodies, int numBodies,
|
||||
upB->is(UserPointer::UP_PHYSICAL_OBJECT) ||
|
||||
upB->is(UserPointer::UP_KART ) )
|
||||
{
|
||||
m_all_collisions.push_back(upA, upB,
|
||||
contactManifold->getContactPoint(0).getPositionWorldOnA());
|
||||
m_all_collisions.push_back(
|
||||
upA, contactManifold->getContactPoint(0).m_localPointA,
|
||||
upB, contactManifold->getContactPoint(0).m_localPointB);
|
||||
}
|
||||
}
|
||||
// Object is a physical object
|
||||
@ -429,17 +508,20 @@ btScalar Physics::solveGroup(btCollisionObject** bodies, int numBodies,
|
||||
else if(upA->is(UserPointer::UP_PHYSICAL_OBJECT))
|
||||
{
|
||||
if(upB->is(UserPointer::UP_FLYABLE))
|
||||
m_all_collisions.push_back(upB, upA,
|
||||
contactManifold->getContactPoint(0).getPositionWorldOnA());
|
||||
m_all_collisions.push_back(
|
||||
upB, contactManifold->getContactPoint(0).m_localPointB,
|
||||
upA, contactManifold->getContactPoint(0).m_localPointA);
|
||||
else if(upB->is(UserPointer::UP_KART))
|
||||
m_all_collisions.push_back(upA, upB,
|
||||
contactManifold->getContactPoint(0).getPositionWorldOnA());
|
||||
m_all_collisions.push_back(
|
||||
upA, contactManifold->getContactPoint(0).m_localPointA,
|
||||
upB, contactManifold->getContactPoint(0).m_localPointB);
|
||||
}
|
||||
else if (upA->is(UserPointer::UP_ANIMATION))
|
||||
{
|
||||
if(upB->is(UserPointer::UP_KART))
|
||||
m_all_collisions.push_back(upA, upB,
|
||||
contactManifold->getContactPoint(0).getPositionWorldOnA());
|
||||
m_all_collisions.push_back(
|
||||
upA, contactManifold->getContactPoint(0).m_localPointA,
|
||||
upB, contactManifold->getContactPoint(0).m_localPointB);
|
||||
}
|
||||
else assert("Unknown user pointer"); // 4) Should never happen
|
||||
} // for i<numManifolds
|
||||
|
@ -43,6 +43,11 @@ class Vec3;
|
||||
class Physics : public btSequentialImpulseConstraintSolver
|
||||
{
|
||||
private:
|
||||
/** Which side of a rigid body has a collision. */
|
||||
enum CollisionSide {COL_LEFT, COL_FRONT, COL_RIGHT, COL_BACK};
|
||||
|
||||
CollisionSide getCollisionSide(const btRigidBody *body,
|
||||
const Vec3 &contact_point);
|
||||
|
||||
/** Bullet can report the same collision more than once (up to 4
|
||||
* contact points per collision. Additionally, more than one internal
|
||||
@ -55,35 +60,51 @@ private:
|
||||
* Considering that the number of collisions is usually rather small
|
||||
* a simple list and linear search is faster is is being used here. */
|
||||
class CollisionPair {
|
||||
public:
|
||||
private:
|
||||
/** The user pointer of the objects involved in this collision. */
|
||||
const UserPointer *a, *b;
|
||||
const UserPointer *m_up[2];
|
||||
|
||||
/** A contact point of the collision. For now only one of the two
|
||||
* contact points is needed (since they are close). */
|
||||
Vec3 m_contact_point;
|
||||
/** The contact point for each object (in local coordincates). */
|
||||
Vec3 m_contact_point[2];
|
||||
|
||||
public:
|
||||
/** The entries in Collision Pairs are sorted: if a projectile
|
||||
* is included, it's always 'a'. If only two karts are reported
|
||||
* the first kart pointer is the smaller one. */
|
||||
CollisionPair(const UserPointer *a1, const UserPointer *b1,
|
||||
const btVector3 &contact_point) {
|
||||
if(a1->is(UserPointer::UP_KART) &&
|
||||
b1->is(UserPointer::UP_KART) && a1>b1) {
|
||||
a=b1;b=a1;
|
||||
CollisionPair(const UserPointer *a, const btVector3 &contact_point_a,
|
||||
const UserPointer *b, const btVector3 &contact_point_b)
|
||||
{
|
||||
if(a->is(UserPointer::UP_KART) &&
|
||||
b->is(UserPointer::UP_KART) && a>b) {
|
||||
m_up[0]=b; m_contact_point[0] = contact_point_b;
|
||||
m_up[1]=a; m_contact_point[1] = contact_point_a;
|
||||
} else {
|
||||
a=a1; b=b1;
|
||||
m_up[0]=a; m_contact_point[0] = contact_point_a;
|
||||
m_up[1]=b; m_contact_point[1] = contact_point_b;
|
||||
}
|
||||
m_contact_point = contact_point;
|
||||
}; // CollisionPair
|
||||
// --------------------------------------------------------------------
|
||||
/** Tests if two collision pairs involve the same objects. This test
|
||||
* is simplified (i.e. no test if p.b==a and p.a==b) since the
|
||||
* elements are sorted. */
|
||||
bool operator==(const CollisionPair p) {return (p.a==a && p.b==b);}
|
||||
bool operator==(const CollisionPair p)
|
||||
{
|
||||
return (p.m_up[0]==m_up[0] && p.m_up[1]==m_up[1]);
|
||||
} // operator==
|
||||
// --------------------------------------------------------------------
|
||||
/** Returns the contact point of the collision. */
|
||||
const Vec3 &getContactPoint() const { return m_contact_point; }
|
||||
const UserPointer *getUserPointer(unsigned int n) const
|
||||
{
|
||||
assert(n>=0 && n<=1);
|
||||
return m_up[n];
|
||||
} // getUserPointer
|
||||
// --------------------------------------------------------------------
|
||||
/** Returns the contact point of the collision in
|
||||
* car (local) coordinates. */
|
||||
const Vec3 &getContactPointCS(unsigned int n) const
|
||||
{
|
||||
assert(n>=0 && n<=1);
|
||||
return m_contact_point[n];
|
||||
} // getContactPointCS
|
||||
}; // CollisionPair
|
||||
|
||||
// ========================================================================
|
||||
@ -101,10 +122,10 @@ private:
|
||||
}; // push_back
|
||||
public:
|
||||
/** Adds information about a collision to this vector. */
|
||||
void push_back(const UserPointer* a, const UserPointer*b,
|
||||
const btVector3 &contact_point)
|
||||
void push_back(const UserPointer *a, const btVector3 &contact_point_a,
|
||||
const UserPointer *b, const btVector3 &contact_point_b)
|
||||
{
|
||||
push_back(CollisionPair(a, b, contact_point));
|
||||
push_back(CollisionPair(a, contact_point_a, b, contact_point_b));
|
||||
}
|
||||
}; // CollisionList
|
||||
// ========================================================================
|
||||
@ -127,8 +148,8 @@ public:
|
||||
void addBody (btRigidBody* b) {m_dynamics_world->addRigidBody(b);}
|
||||
void removeKart (const Kart *k);
|
||||
void removeBody (btRigidBody* b) {m_dynamics_world->removeRigidBody(b);}
|
||||
void KartKartCollision(Kart *ka, Kart *kb,
|
||||
const Vec3 &contact_point);
|
||||
void KartKartCollision(Kart *ka, const Vec3 &contact_point_a,
|
||||
Kart *kb, const Vec3 &contact_point_b);
|
||||
void update (float dt);
|
||||
void draw ();
|
||||
STKDynamicsWorld*
|
||||
|
Loading…
Reference in New Issue
Block a user