Simplified camera settings, fixed jump in camera when rescue is triggered.

git-svn-id: svn+ssh://svn.code.sf.net/p/supertuxkart/code/main/trunk@7773 178a84e3-b1eb-0310-8ba1-8eac791a3b58
This commit is contained in:
hikerstk 2011-02-28 22:35:30 +00:00
parent b89794169a
commit b36597ba1b
2 changed files with 150 additions and 108 deletions

View File

@ -314,6 +314,94 @@ void Camera::computeNormalCameraPosition(Vec3 *wanted_position,
} // computeNormalCameraPosition
//-----------------------------------------------------------------------------
/** Determine the camera settings for the current frame.
* \param above_kart How far above the camera should aim at.
* \param cam_angle Angle above the kart plane for the camera.
* \param sideway Sideway movement of the camera.
* \param distance Distance from kart.
*/
void Camera::getCameraSettings(float *above_kart, float *cam_angle,
float *sideway, float *distance,
bool *smoothing)
{
const KartProperties *kp = m_kart->getKartProperties();
if( (m_mode==CM_NORMAL && m_camera_style==CS_MODERN) ||
(m_mode==CM_FALLING) )
{
*above_kart = 0.75f;
float steering = m_kart->getSteerPercent()
* (1.0f + (m_kart->getSkidding() - 1.0f)/2.3f );
// quadratically to dampen small variations (but keep sign)
float dampened_steer = fabsf(steering) * steering;
*cam_angle = kp->getCameraForwardUpAngle();
*sideway = -m_rotation_range*dampened_steer*0.5f;
*distance = -m_distance;
*smoothing = true;
return;
}
switch(m_mode)
{
case CM_NORMAL:
assert(m_camera_style==CS_CLASSIC);
*above_kart = 0.3f;
*cam_angle = kp->getCameraBackwardUpAngle();
*sideway = 0.0f;
*distance = -1.5f*m_distance;
*smoothing = true;
break;
case CM_FALLING:
{
*above_kart = 0.75f;
float steering = m_kart->getSteerPercent()
* (1.0f + (m_kart->getSkidding() - 1.0f)/2.3f );
// quadratically to dampen small variations (but keep sign)
float dampened_steer = fabsf(steering) * steering;
*cam_angle = kp->getCameraForwardUpAngle();
*sideway = -m_rotation_range*dampened_steer*0.5f;
*distance = m_distance;
*smoothing = true;
break;
} // CM_FALLING
case CM_REVERSE: // Same as CM_NORMAL except it looks backwards
{
*above_kart = 0.75f;
*cam_angle = kp->getCameraBackwardUpAngle();
*sideway = 0;
*distance = 2.0f*m_distance;
*smoothing = false;
break;
}
case CM_CLOSEUP: // Lower to the ground and closer to the kart
{
*above_kart = 0.75f;
*cam_angle = 20.0f*DEGREE_TO_RAD;
*sideway = m_rotation_range
* m_kart->getSteerPercent()
* m_kart->getSkidding();
*distance = -0.5f*m_distance;
*smoothing = false;
break;
}
case CM_LEADER_MODE:
{
*above_kart = 0.0f;
*cam_angle = 40*DEGREE_TO_RAD;
*sideway = 0;
*distance = 2.0f*m_distance;
*smoothing = true;
break;
}
case CM_FINAL:
case CM_SIMPLE_REPLAY:
// TODO: Implement
break;
}
} // get CameraPosition
//-----------------------------------------------------------------------------
/** Called once per time frame to move the camera to the right position.
* \param dt Time step.
@ -332,109 +420,70 @@ void Camera::update(float dt)
return;
}
if(m_mode==CM_FINAL)
{
handleEndCamera(dt);
return;
}
float above_kart, cam_angle, side_way, distance;
bool smoothing;
getCameraSettings(&above_kart, &cam_angle, &side_way, &distance,
&smoothing);
// If an explosion or rescue is happening, stop moving the camera,
// but keep it target on the kart.
if(m_kart->playingEmergencyAnimation())
{
m_camera->setTarget(m_kart->getXYZ().toIrrVector());
// The camera target needs to be 'smooth moved', otherwise
// there will be a noticable jump in the first frame
// Aim at the usual same position of the kart (i.e. slightly
// above the kart).
core::vector3df wanted_target(m_kart->getXYZ().toIrrVector()
+core::vector3df(0, above_kart, 0) );
core::vector3df current_target = m_camera->getTarget();
// Note: this code is replicated from smoothMoveCamera so that
// the camera keeps on pointing to the same spot.
current_target += ((wanted_target-current_target)*m_target_speed)*dt;
m_camera->setTarget(current_target);
return;
}
positionCamera(dt, above_kart, cam_angle, side_way, distance, smoothing);
} // update
// ----------------------------------------------------------------------------
/** Actually sets the camera based on the given parameter.
* \param above_kart How far above the camera should aim at.
* \param cam_angle Angle above the kart plane for the camera.
* \param sideway Sideway movement of the camera.
* \param distance Distance from kart.
*/
void Camera::positionCamera(float dt, float above_kart, float cam_angle,
float side_way, float distance, float smoothing)
{
Vec3 wanted_position;
Vec3 wanted_target = m_kart->getXYZ();
wanted_target.setY(wanted_target.getY()+above_kart);
Vec3 relative_position;
const KartProperties *kp = m_kart->getKartProperties();
const btTransform &trans = m_kart->getTrans();
// Each case should set wanted_position and wanted_target according to
// what is needed for that mode. Yes, there is a lot of duplicate code
// but it is (IMHO) much easier to follow this way.
switch(m_mode)
float tan_up = tan(cam_angle);
Vec3 relative_position(side_way,
fabsf(distance)*tan_up+above_kart,
distance);
const btTransform &trans=m_kart->getTrans();
wanted_position = trans(relative_position);
if(smoothing)
smoothMoveCamera(dt, wanted_position, wanted_target);
else
{
case CM_NORMAL:
{
switch (m_camera_style)
{
// 0.7 flexible link
case CS_MODERN:
{
computeNormalCameraPosition(&wanted_position,
&wanted_target);
smoothMoveCamera(dt, wanted_position, wanted_target);
break;
}
// More like the 0.6 STK way
case CS_CLASSIC:
{
wanted_target.setY(wanted_target.getY()+ 0.3f);
float tan_up = tan(kp->getCameraBackwardUpAngle());
relative_position.setValue(0,
1.5f*m_distance*tan_up+0.3f,
-1.5f*m_distance );
wanted_position = trans(relative_position);
smoothMoveCamera(dt, wanted_position, wanted_target);
break;
}
}
break;
}
case CM_FALLING:
{
computeNormalCameraPosition(&wanted_position, &wanted_target);
wanted_position = m_camera->getPosition();
smoothMoveCamera(dt, wanted_position, wanted_target);
break;
}
case CM_FINAL:
{
handleEndCamera(dt);
break;
}
case CM_REVERSE: // Same as CM_NORMAL except it looks backwards
{
wanted_target.setY(wanted_target.getY()+0.75f);
float tan_up = tan(kp->getCameraBackwardUpAngle());
relative_position.setValue(0,
2.0f*m_distance*tan_up+0.75f,
2.0f*m_distance);
wanted_position = trans(relative_position);
smoothMoveCamera(dt, wanted_position, wanted_target);
m_camera->setPosition(wanted_position.toIrrVector());
m_camera->setTarget(wanted_target.toIrrVector());
break;
}
case CM_CLOSEUP: // Lower to the ground and closer to the kart
{
wanted_target.setY(wanted_target.getY()+0.75f);
float tan_up = tan(20.0f*DEGREE_TO_RAD);
relative_position.setX( m_rotation_range
* m_kart->getSteerPercent()
* m_kart->getSkidding());
relative_position.setY(0.5f*m_distance*tan_up+0.75f);
relative_position.setZ(0.5f*m_distance);
smoothMoveCamera(dt, wanted_position, wanted_target);
break;
}
case CM_LEADER_MODE:
{
World *world = World::getWorld();
Kart *kart = world->getKart(0);
wanted_target = kart->getXYZ().toIrrVector();
float tan_up = tan(40.0f*DEGREE_TO_RAD);
wanted_position.setValue(0,
2.0f*m_distance*tan_up,
2.0f*m_distance);
smoothMoveCamera(dt, wanted_position, wanted_target);
break;
}
case CM_SIMPLE_REPLAY:
// TODO: Implement
break;
m_camera->setPosition(wanted_position.toIrrVector());
m_camera->setTarget(wanted_target.toIrrVector());
}
} // update
} // positionCamera
// ----------------------------------------------------------------------------
/** This function handles the end camera. It adjusts the camera position
@ -469,23 +518,12 @@ void Camera::handleEndCamera(float dt)
}
case EndCameraInformation::EC_AHEAD_OF_KART:
{
Vec3 wanted_target = m_kart->getXYZ();
wanted_target.setY(wanted_target.getY()+ 0.75f);
float angle_around = m_kart->getHeading()
//+ m_rotation_range * m_kart->getSteerPercent()
//* m_kart->getSkidding()
;
float angle_up = m_kart->getKartProperties()->getCameraBackwardUpAngle()
- m_kart->getPitch() ;
Vec3 wanted_position;
wanted_position.setX( sin(angle_around));
wanted_position.setY( sin(angle_up) );
wanted_position.setZ( cos(angle_around));
wanted_position *= m_distance * 2.0f;
wanted_position += wanted_target;
smoothMoveCamera(dt, wanted_position, wanted_target);
m_camera->setPosition(wanted_position.toIrrVector());
m_camera->setTarget(wanted_target.toIrrVector());
const KartProperties *kp=m_kart->getKartProperties();
float cam_angle = kp->getCameraBackwardUpAngle();
positionCamera(dt, /*above_kart*/0.75f,
cam_angle, /*side_way*/0,
2.0f*m_distance, /*smoothing*/false);
break;
}
default: break;
@ -506,7 +544,7 @@ void Camera::handleEndCamera(float dt)
m_next_end_camera++;
if(m_next_end_camera>=(unsigned)m_end_cameras.size()) m_next_end_camera = 0;
}
} // handleEndCamera
} // checkForNextEndCamera
// ----------------------------------------------------------------------------
/** Sets viewport etc. for this camera. Called from irr_driver just before

View File

@ -178,7 +178,11 @@ private:
void computeNormalCameraPosition(Vec3 *wanted_position,
Vec3 *wanted_target);
void handleEndCamera(float dt);
void getCameraSettings(float *above_kart, float *cam_angle,
float *side_way, float *distance,
bool *smoothing);
void positionCamera(float dt, float above_kart, float cam_angle,
float side_way, float distance, float smoothing);
public:
Camera (int camera_index, const Kart* kart);
~Camera ();