Simplified computations in camera, which fixes also looking backwards

when going downhill.


git-svn-id: svn+ssh://svn.code.sf.net/p/supertuxkart/code/main/trunk@7748 178a84e3-b1eb-0310-8ba1-8eac791a3b58
This commit is contained in:
hikerstk 2011-02-22 21:37:27 +00:00
parent e12f538563
commit 78cd11f881

View File

@ -302,20 +302,15 @@ void Camera::computeNormalCameraPosition(Vec3 *wanted_position,
// towards where the kart is turning (and turning even more while skidding).
// The skidding effect is dampened.
float steering = m_kart->getSteerPercent()
* (1.0f + (m_kart->getSkidding() - 1.0f)/2.3f );
* (1.0f + (m_kart->getSkidding() - 1.0f)/2.3f );
// quadratically to dampen small variations (but keep sign)
float dampened_steer = fabsf(steering) * steering;
float angle_around = m_kart->getHeading()
+ m_rotation_range * dampened_steer * 0.5f;
float angle_up = m_kart->getKartProperties()->getCameraForwardUpAngle()
- m_kart->getPitch() ;
wanted_position->setX(-sin(angle_around));
wanted_position->setY( sin(angle_up) );
wanted_position->setZ(-cos(angle_around));
*wanted_position *= m_distance;
*wanted_position += *wanted_target;
float tan_up = tan(m_kart->getKartProperties()->getCameraForwardUpAngle());
Vec3 relative_position(-m_distance*m_rotation_range*dampened_steer*0.5f,
m_distance*tan_up+0.75f,
-m_distance);
*wanted_position = m_kart->getTrans()(relative_position);
} // computeNormalCameraPosition
@ -339,6 +334,11 @@ void Camera::update(float dt)
Vec3 wanted_position;
Vec3 wanted_target = m_kart->getXYZ();
Vec3 relative_position;
const KartProperties *kp = m_kart->getKartProperties();
const btTransform &trans = m_kart->getTrans();
// Each case should set wanted_position and wanted_target according to
// what is needed for that mode. Yes, there is a lot of duplicate code
// but it is (IMHO) much easier to follow this way.
@ -351,7 +351,8 @@ void Camera::update(float dt)
// 0.7 flexible link
case CS_MODERN:
{
computeNormalCameraPosition(&wanted_position, &wanted_target);
computeNormalCameraPosition(&wanted_position,
&wanted_target);
smoothMoveCamera(dt, wanted_position, wanted_target);
break;
}
@ -359,20 +360,13 @@ void Camera::update(float dt)
// More like the 0.6 STK way
case CS_CLASSIC:
{
// wanted_target.setY(wanted_target.getY()+ 0.75f);
wanted_target.setY(wanted_target.getY()+ 0.30f);
float angle_around = m_kart->getHeading();
float angle_up = m_kart->getKartProperties()->getCameraBackwardUpAngle()
- m_kart->getPitch() ;
angle_around += M_PI; // face forward
wanted_position.setX( sin(angle_around));
wanted_position.setY( sin(angle_up) );
wanted_position.setZ( cos(angle_around));
wanted_position *= m_distance * 1.5f;
wanted_position += wanted_target;
wanted_target.setY(wanted_target.getY()+ 0.3f);
float tan_up = tan(kp->getCameraBackwardUpAngle());
relative_position.setValue(0,
1.5f*m_distance*tan_up+0.3f,
-1.5f*m_distance );
wanted_position = trans(relative_position);
smoothMoveCamera(dt, wanted_position, wanted_target);
m_camera->setPosition(wanted_position.toIrrVector());
m_camera->setTarget(wanted_target.toIrrVector());
break;
}
}
@ -380,12 +374,7 @@ void Camera::update(float dt)
}
case CM_FALLING:
{
Vec3 previous_wanted_position = wanted_position;
computeNormalCameraPosition(&wanted_position, &wanted_target);
//const float previousY = wanted_position.getY();
//wanted_position.setY(m_camera->getPosition().Y - (m_camera->getPosition().Y - previousY)*dt);
computeNormalCameraPosition(&wanted_position, &wanted_target);
wanted_position = m_camera->getPosition();
smoothMoveCamera(dt, wanted_position, wanted_target);
break;
@ -397,15 +386,12 @@ void Camera::update(float dt)
}
case CM_REVERSE: // Same as CM_NORMAL except it looks backwards
{
wanted_target.setY(wanted_target.getY()+ 0.75f);
float angle_around = m_kart->getHeading();
float angle_up = m_kart->getKartProperties()->getCameraBackwardUpAngle()
- m_kart->getPitch() ;
wanted_position.setX( sin(angle_around));
wanted_position.setY( sin(angle_up) );
wanted_position.setZ( cos(angle_around));
wanted_position *= m_distance * 2.0f;
wanted_position += wanted_target;
wanted_target.setY(wanted_target.getY()+0.75f);
float tan_up = tan(kp->getCameraBackwardUpAngle());
relative_position.setValue(0,
2.0f*m_distance*tan_up+0.75f,
2.0f*m_distance);
wanted_position = trans(relative_position);
smoothMoveCamera(dt, wanted_position, wanted_target);
m_camera->setPosition(wanted_position.toIrrVector());
m_camera->setTarget(wanted_target.toIrrVector());
@ -414,16 +400,12 @@ void Camera::update(float dt)
case CM_CLOSEUP: // Lower to the ground and closer to the kart
{
wanted_target.setY(wanted_target.getY()+0.75f);
float angle_around = m_kart->getHeading()
+ m_rotation_range * m_kart->getSteerPercent()
* m_kart->getSkidding();
float angle_up = -m_kart->getPitch()
- 20.0f*DEGREE_TO_RAD;
wanted_position.setX( sin(angle_around));
wanted_position.setY(-sin(angle_up) );
wanted_position.setZ(-cos(angle_around));
wanted_position *= m_distance * 0.5f;
wanted_position += wanted_target;
float tan_up = tan(20.0f*DEGREE_TO_RAD);
relative_position.setX( m_rotation_range
* m_kart->getSteerPercent()
* m_kart->getSkidding());
relative_position.setY(0.5f*m_distance*tan_up+0.75f);
relative_position.setZ(0.5f*m_distance);
smoothMoveCamera(dt, wanted_position, wanted_target);
break;
}
@ -432,15 +414,10 @@ void Camera::update(float dt)
World *world = World::getWorld();
Kart *kart = world->getKart(0);
wanted_target = kart->getXYZ().toIrrVector();
// Follows the leader kart, higher off of the ground, further from the kart,
// and turns in the opposite direction from the kart for a nice effect. :)
float angle_around = kart->getHeading();
float angle_up = 40.0f*DEGREE_TO_RAD - kart->getPitch() ;
wanted_position.setX(sin(angle_around));
wanted_position.setY(sin(angle_up) );
wanted_position.setZ(cos(angle_around));
wanted_position *= m_distance * 2.0f;
wanted_position += wanted_target;
float tan_up = tan(40.0f*DEGREE_TO_RAD);
wanted_position.setValue(0,
2.0f*m_distance*tan_up,
2.0f*m_distance);
smoothMoveCamera(dt, wanted_position, wanted_target);
break;
}