Merged master

This commit is contained in:
Sachith Hasaranga Seneviratne 2014-09-13 08:45:41 +05:30
commit 10e2634f22
25 changed files with 587 additions and 376 deletions

View File

@ -78,17 +78,17 @@ include_directories("${PROJECT_SOURCE_DIR}/lib/angelscript/include")
include_directories(${STK_SOURCE_DIR}) include_directories(${STK_SOURCE_DIR})
# These variables enable MSVC to find libraries located in "dependencies" # These variables enable MSVC to find libraries located in "dependencies"
if(MSVC) if(WIN32)
set(ENV{PATH} ${PROJECT_SOURCE_DIR}/dependencies/include) set(ENV{PATH} "$ENV{PATH};${PROJECT_SOURCE_DIR}/dependencies/include")
set(ENV{LIB} ${PROJECT_SOURCE_DIR}/dependencies/lib) set(ENV{LIB} ${PROJECT_SOURCE_DIR}/dependencies/lib)
set(ENV{OPENALDIR} ${PROJECT_SOURCE_DIR}/dependencies) set(ENV{OPENALDIR} ${PROJECT_SOURCE_DIR}/dependencies)
add_definitions(/D_IRR_STATIC_LIB_) if(MSVC)
add_definitions(/D_IRR_STATIC_LIB_)
elseif(MINGW)
add_definitions(-D_IRR_STATIC_LIB_)
endif()
endif() endif()
if(MINGW)
set(ENV{OPENALDIR} ${PROJECT_SOURCE_DIR}/dependencies)
add_definitions(-D_IRR_STATIC_LIB_)
endif()
if(APPLE) if(APPLE)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -arch i386") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -arch i386")

View File

@ -7,7 +7,7 @@ void sheep_dance()
//displayMessage("moo"); //displayMessage("moo");
sheepMesh.setLoop(1,3); //rapid-nod sheep sheepMesh.setLoop(1,3); //rapid-nod sheep
Vec3 newloc = Vec3(2,3,4); Vec3 newloc = Vec3(2,3,4);
sheepMesh.move(newloc); //sheepMesh.move(newloc);
//runScript("sheep_approach"); //runScript("sheep_approach");
TrackObject @t_obj2 = getTrackObject("waterfall"); TrackObject @t_obj2 = getTrackObject("waterfall");
ParticleEmitter @waterfallemitter = t_obj2.getParticleEmitter(); ParticleEmitter @waterfallemitter = t_obj2.getParticleEmitter();

View File

@ -1,6 +1,6 @@
void onUpdate() void onUpdate()
{ {
/*
TrackObject @t_obj = getTrackObject("anim_sheep2.b3d"); TrackObject @t_obj = getTrackObject("anim_sheep2.b3d");
Mesh @sheepMesh = t_obj.getMesh(); Mesh @sheepMesh = t_obj.getMesh();
Vec3 newloc = Vec3(2,-2,-2); Vec3 newloc = Vec3(2,-2,-2);
@ -14,4 +14,5 @@ void onUpdate()
Vec3 kartLoc = getKartLocation(0); Vec3 kartLoc = getKartLocation(0);
sheepMesh.move(kartLoc); sheepMesh.move(kartLoc);
printVec3(kartLoc); printVec3(kartLoc);
*/
} }

View File

@ -1,3 +1,4 @@
#if __VERSION__ >= 330
layout(location=0) in vec3 Position; layout(location=0) in vec3 Position;
layout(location = 1) in float lifetime; layout(location = 1) in float lifetime;
layout(location = 2) in float size; layout(location = 2) in float size;
@ -7,6 +8,17 @@ layout(location = 4) in vec2 quadcorner;
layout(location = 5) in vec3 rotationvec; layout(location = 5) in vec3 rotationvec;
layout(location = 6) in float anglespeed; layout(location = 6) in float anglespeed;
#else
in vec3 Position;
in float lifetime;
in float size;
in vec2 Texcoord;
in vec2 quadcorner;
in vec3 rotationvec;
float anglespeed;
#endif
out float lf; out float lf;
out vec2 tc; out vec2 tc;

View File

@ -12,8 +12,8 @@
#include "aabbox3d.h" #include "aabbox3d.h"
#include "rect.h" #include "rect.h"
#include "irrString.h" #include "irrString.h"
#if defined(WIN32) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86)) #if defined(WIN32) && !defined(__MINGW32__) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86))
#include <intrin.h> #include <intrin.h>
#endif #endif
// enable this to keep track of changes to the matrix // enable this to keep track of changes to the matrix
@ -48,7 +48,7 @@ namespace core
class CMatrix4 class CMatrix4
{ {
private: private:
#if defined(WIN32) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86)) #if defined(WIN32) && !defined(__MINGW32__) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86))
float M_raw[24]; float M_raw[24];
#endif #endif
public: public:
@ -409,7 +409,7 @@ namespace core
bool equals(const core::CMatrix4<T>& other, const T tolerance=(T)ROUNDING_ERROR_f64) const; bool equals(const core::CMatrix4<T>& other, const T tolerance=(T)ROUNDING_ERROR_f64) const;
private: private:
#if defined(WIN32) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86)) #if defined(WIN32) && !defined(__MINGW32__) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86))
//! Matrix data, stored in row-major order //! Matrix data, stored in row-major order
T* M = (T*)((uintptr_t)&M_raw[4] & ~0xF); T* M = (T*)((uintptr_t)&M_raw[4] & ~0xF);
#else #else
@ -669,7 +669,7 @@ namespace core
const T *m1 = other_a.M; const T *m1 = other_a.M;
const T *m2 = other_b.M; const T *m2 = other_b.M;
#if defined(WIN32) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86)) #if defined(WIN32) && !defined(__MINGW32__) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86))
// From http://drrobsjournal.blogspot.fr/2012/10/fast-simd-4x4-matrix-multiplication.html // From http://drrobsjournal.blogspot.fr/2012/10/fast-simd-4x4-matrix-multiplication.html
// Use unaligned load/store // Use unaligned load/store
@ -1019,13 +1019,13 @@ namespace core
const f64 t = 1.0 - c; const f64 t = 1.0 - c;
const f64 tx = t * axis.X; const f64 tx = t * axis.X;
const f64 ty = t * axis.Y; const f64 ty = t * axis.Y;
const f64 tz = t * axis.Z; const f64 tz = t * axis.Z;
const f64 sx = s * axis.X; const f64 sx = s * axis.X;
const f64 sy = s * axis.Y; const f64 sy = s * axis.Y;
const f64 sz = s * axis.Z; const f64 sz = s * axis.Z;
M[0] = (T)(tx * axis.X + c); M[0] = (T)(tx * axis.X + c);
M[1] = (T)(tx * axis.Y + sz); M[1] = (T)(tx * axis.Y + sz);
M[2] = (T)(tx * axis.Z - sy); M[2] = (T)(tx * axis.Z - sy);
@ -1385,7 +1385,7 @@ namespace core
} }
#endif #endif
const CMatrix4<T> &m = *this; const CMatrix4<T> &m = *this;
#if defined(WIN32) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86)) #if defined(WIN32) && !defined(__MINGW32__) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386) || defined(_M_IX86))
float *src = (float*)m.pointer(); float *src = (float*)m.pointer();
float *dst = (float*)out.pointer(); float *dst = (float*)out.pointer();
// from http://www.intel.com/design/pentiumiii/sml/245043.htm // from http://www.intel.com/design/pentiumiii/sml/245043.htm

View File

@ -104,7 +104,10 @@ void initGL()
if (is_gl_init) if (is_gl_init)
return; return;
is_gl_init = true; is_gl_init = true;
// For Mesa extension reporting
#ifdef UNIX
glewExperimental = GL_TRUE; glewExperimental = GL_TRUE;
#endif
GLenum err = glewInit(); GLenum err = glewInit();
if (GLEW_OK != err) if (GLEW_OK != err)
Log::fatal("GLEW", "Glew initialisation failed with error %s", glewGetErrorString(err)); Log::fatal("GLEW", "Glew initialisation failed with error %s", glewGetErrorString(err));
@ -217,6 +220,8 @@ void setAttribute(AttributeType Tp, GLuint ProgramID)
glBindAttribLocation(ProgramID, 1, "lifetime"); glBindAttribLocation(ProgramID, 1, "lifetime");
glBindAttribLocation(ProgramID, 2, "size"); glBindAttribLocation(ProgramID, 2, "size");
glBindAttribLocation(ProgramID, 4, "quadcorner"); glBindAttribLocation(ProgramID, 4, "quadcorner");
glBindAttribLocation(ProgramID, 5, "rotationvec");
glBindAttribLocation(ProgramID, 6, "anglespeed");
break; break;
} }
} }
@ -247,182 +252,6 @@ GLuint LoadTFBProgram(const char * vertex_file_path, const char **varyings, unsi
return Program; return Program;
} }
GLuint getTextureGLuint(irr::video::ITexture *tex)
{
return static_cast<irr::video::COpenGLTexture*>(tex)->getOpenGLTextureName();
}
GLuint getDepthTexture(irr::video::ITexture *tex)
{
assert(tex->isRenderTarget());
return static_cast<irr::video::COpenGLFBOTexture*>(tex)->DepthBufferTexture;
}
std::set<irr::video::ITexture *> AlreadyTransformedTexture;
void resetTextureTable()
{
AlreadyTransformedTexture.clear();
}
void compressTexture(irr::video::ITexture *tex, bool srgb, bool premul_alpha)
{
if (AlreadyTransformedTexture.find(tex) != AlreadyTransformedTexture.end())
return;
AlreadyTransformedTexture.insert(tex);
glBindTexture(GL_TEXTURE_2D, getTextureGLuint(tex));
std::string cached_file;
if (UserConfigParams::m_texture_compression)
{
// Try to retrieve the compressed texture in cache
std::string tex_name = irr_driver->getTextureName(tex);
if (!tex_name.empty()) {
cached_file = file_manager->getTextureCacheLocation(tex_name) + ".gltz";
if (!file_manager->fileIsNewer(tex_name, cached_file)) {
if (loadCompressedTexture(cached_file))
return;
}
}
}
size_t w = tex->getSize().Width, h = tex->getSize().Height;
unsigned char *data = new unsigned char[w * h * 4];
memcpy(data, tex->lock(), w * h * 4);
tex->unlock();
unsigned internalFormat, Format;
if (tex->hasAlpha())
Format = GL_BGRA;
else
Format = GL_BGR;
if (premul_alpha)
{
for (unsigned i = 0; i < w * h; i++)
{
float alpha = data[4 * i + 3];
if (alpha > 0.)
alpha = pow(alpha / 255.f, 1.f / 2.2f);
data[4 * i ] = (unsigned char)(data[4 * i ] * alpha);
data[4 * i + 1] = (unsigned char)(data[4 * i + 1] * alpha);
data[4 * i + 2] = (unsigned char)(data[4 * i + 2] * alpha);
}
}
if (!UserConfigParams::m_texture_compression)
{
if (srgb)
internalFormat = (tex->hasAlpha()) ? GL_SRGB_ALPHA : GL_SRGB;
else
internalFormat = (tex->hasAlpha()) ? GL_RGBA : GL_RGB;
}
else
{
if (srgb)
internalFormat = (tex->hasAlpha()) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT : GL_COMPRESSED_SRGB_S3TC_DXT1_EXT;
else
internalFormat = (tex->hasAlpha()) ? GL_COMPRESSED_RGBA_S3TC_DXT5_EXT : GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
}
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, w, h, 0, Format, GL_UNSIGNED_BYTE, (GLvoid *)data);
glGenerateMipmap(GL_TEXTURE_2D);
delete[] data;
if (UserConfigParams::m_texture_compression && !cached_file.empty())
{
// Save the compressed texture in the cache for later use.
saveCompressedTexture(cached_file);
}
}
//-----------------------------------------------------------------------------
/** Try to load a compressed texture from the given file name.
* Data in the specified file need to have a specific format. See the
* saveCompressedTexture() function for a description of the format.
* \return true if the loading succeeded, false otherwise.
* \see saveCompressedTexture
*/
bool loadCompressedTexture(const std::string& compressed_tex)
{
std::ifstream ifs(compressed_tex.c_str(), std::ios::in | std::ios::binary);
if (!ifs.is_open())
return false;
int internal_format;
int w, h;
int size = -1;
ifs.read((char*)&internal_format, sizeof(int));
ifs.read((char*)&w, sizeof(int));
ifs.read((char*)&h, sizeof(int));
ifs.read((char*)&size, sizeof(int));
if (ifs.fail() || size == -1)
return false;
char *data = new char[size];
ifs.read(data, size);
if (!ifs.fail())
{
glCompressedTexImage2D(GL_TEXTURE_2D, 0, internal_format,
w, h, 0, size, (GLvoid*)data);
glGenerateMipmap(GL_TEXTURE_2D);
delete[] data;
ifs.close();
return true;
}
delete[] data;
return false;
}
//-----------------------------------------------------------------------------
/** Try to save the last texture sent to glTexImage2D in a file of the given
* file name. This function should only be used for textures sent to
* glTexImage2D with a compressed internal format as argument.<br>
* \note The following format is used to save the compressed texture:<br>
* <internal-format><width><height><size><data> <br>
* The first four elements are integers and the last one is stored
* on \c size bytes.
* \see loadCompressedTexture
*/
void saveCompressedTexture(const std::string& compressed_tex)
{
int internal_format, width, height, size, compressionSuccessful;
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, (GLint *)&internal_format);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, (GLint *)&width);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, (GLint *)&height);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_COMPRESSED, (GLint *)&compressionSuccessful);
if (!compressionSuccessful)
return;
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_COMPRESSED_IMAGE_SIZE, (GLint *)&size);
char *data = new char[size];
glGetCompressedTexImage(GL_TEXTURE_2D, 0, (GLvoid*)data);
std::ofstream ofs(compressed_tex.c_str(), std::ios::out | std::ios::binary);
if (ofs.is_open())
{
ofs.write((char*)&internal_format, sizeof(int));
ofs.write((char*)&width, sizeof(int));
ofs.write((char*)&height, sizeof(int));
ofs.write((char*)&size, sizeof(int));
ofs.write(data, size);
ofs.close();
}
delete[] data;
}
static unsigned colorcount = 0;
video::ITexture* getUnicolorTexture(video::SColor c)
{
video::SColor tmp[4] = {
c, c, c, c
};
video::IImage *img = irr_driver->getVideoDriver()->createImageFromData(video::ECF_A8R8G8B8, core::dimension2d<u32>(2, 2), tmp);
img->grab();
std::string name("color");
name += colorcount++;
return irr_driver->getVideoDriver()->addTexture(name.c_str(), img);
}
void setTexture(unsigned TextureUnit, GLuint TextureId, GLenum MagFilter, GLenum MinFilter, bool allowAF) void setTexture(unsigned TextureUnit, GLuint TextureId, GLenum MagFilter, GLenum MinFilter, bool allowAF)
{ {
glActiveTexture(GL_TEXTURE0 + TextureUnit); glActiveTexture(GL_TEXTURE0 + TextureUnit);

View File

@ -129,13 +129,7 @@ public:
// core::rect<s32> needs these includes // core::rect<s32> needs these includes
#include <rect.h> #include <rect.h>
#include "utils/vec3.hpp" #include "utils/vec3.hpp"
#include "texturemanager.hpp"
GLuint getTextureGLuint(irr::video::ITexture *tex);
GLuint getDepthTexture(irr::video::ITexture *tex);
void resetTextureTable();
void compressTexture(irr::video::ITexture *tex, bool srgb, bool premul_alpha = false);
bool loadCompressedTexture(const std::string& compressed_tex);
void saveCompressedTexture(const std::string& compressed_tex);
void draw3DLine(const core::vector3df& start, void draw3DLine(const core::vector3df& start,
const core::vector3df& end, irr::video::SColor color); const core::vector3df& end, irr::video::SColor color);

View File

@ -608,7 +608,7 @@ FrameBuffer *PostProcessing::render(scene::ICameraSceneNode * const camnode, boo
// Grab the sky // Grab the sky
out_fbo->Bind(); out_fbo->Bind();
glClear(GL_COLOR_BUFFER_BIT); glClear(GL_COLOR_BUFFER_BIT);
irr_driver->renderSkybox(camnode); // irr_driver->renderSkybox(camnode);
// Set the sun's color // Set the sun's color
const SColor col = track->getGodRaysColor(); const SColor col = track->getGodRaysColor();
@ -617,9 +617,9 @@ FrameBuffer *PostProcessing::render(scene::ICameraSceneNode * const camnode, boo
// The sun interposer // The sun interposer
STKMeshSceneNode *sun = irr_driver->getSunInterposer(); STKMeshSceneNode *sun = irr_driver->getSunInterposer();
sun->setGlowColors(col);
sun->setPosition(track->getGodRaysPosition()); sun->setPosition(track->getGodRaysPosition());
sun->updateAbsolutePosition(); sun->updateAbsolutePosition();
irr_driver->getSceneManager()->drawAll(ESNRP_CAMERA);
irr_driver->setPhase(GLOW_PASS); irr_driver->setPhase(GLOW_PASS);
sun->render(); sun->render();
glDisable(GL_DEPTH_TEST); glDisable(GL_DEPTH_TEST);

View File

@ -628,6 +628,9 @@ void IrrDriver::renderTransparent()
TexUnit(0, true)), ListAdditiveTransparent::getInstance()); TexUnit(0, true)), ListAdditiveTransparent::getInstance());
} }
for (unsigned i = 0; i < BillBoardList::getInstance()->size(); i++)
BillBoardList::getInstance()->at(i)->render();
if (!UserConfigParams::m_dynamic_lights) if (!UserConfigParams::m_dynamic_lights)
return; return;

View File

@ -280,6 +280,8 @@ void STKMeshSceneNode::render()
AbsoluteTransformation.getInverse(invmodel); AbsoluteTransformation.getInverse(invmodel);
glDisable(GL_CULL_FACE); glDisable(GL_CULL_FACE);
if (update_each_frame && !UserConfigParams::m_dynamic_lights)
updatevbo();
if (!spareWhiteTex) if (!spareWhiteTex)
spareWhiteTex = getUnicolorTexture(video::SColor(255, 255, 255, 255)); spareWhiteTex = getUnicolorTexture(video::SColor(255, 255, 255, 255));
glUseProgram(MeshShader::ObjectPass2Shader::getInstance()->Program); glUseProgram(MeshShader::ObjectPass2Shader::getInstance()->Program);
@ -294,51 +296,30 @@ void STKMeshSceneNode::render()
if (UserConfigParams::m_azdo) if (UserConfigParams::m_azdo)
{ {
irr_driver->IncreaseObjectCount(); GLuint64 DiffuseHandle = glGetTextureSamplerHandleARB(irr_driver->getRenderTargetTexture(RTT_DIFFUSE), MeshShader::ObjectPass2Shader::getInstance()->SamplersId[0]);
GLMesh &mesh = GLmeshes[i]; if (!glIsTextureHandleResidentARB(DiffuseHandle))
GLenum ptype = mesh.PrimitiveType; glMakeTextureHandleResidentARB(DiffuseHandle);
GLenum itype = mesh.IndexType;
size_t count = mesh.IndexCount;
if (UserConfigParams::m_azdo) GLuint64 SpecularHandle = glGetTextureSamplerHandleARB(irr_driver->getRenderTargetTexture(RTT_SPECULAR), MeshShader::ObjectPass2Shader::getInstance()->SamplersId[1]);
{ if (!glIsTextureHandleResidentARB(SpecularHandle))
GLuint64 DiffuseHandle = glGetTextureSamplerHandleARB(irr_driver->getRenderTargetTexture(RTT_DIFFUSE), MeshShader::ObjectPass2Shader::getInstance()->SamplersId[0]); glMakeTextureHandleResidentARB(SpecularHandle);
if (!glIsTextureHandleResidentARB(DiffuseHandle))
glMakeTextureHandleResidentARB(DiffuseHandle);
GLuint64 SpecularHandle = glGetTextureSamplerHandleARB(irr_driver->getRenderTargetTexture(RTT_SPECULAR), MeshShader::ObjectPass2Shader::getInstance()->SamplersId[1]); GLuint64 SSAOHandle = glGetTextureSamplerHandleARB(irr_driver->getRenderTargetTexture(RTT_HALF1_R), MeshShader::ObjectPass2Shader::getInstance()->SamplersId[2]);
if (!glIsTextureHandleResidentARB(SpecularHandle)) if (!glIsTextureHandleResidentARB(SSAOHandle))
glMakeTextureHandleResidentARB(SpecularHandle); glMakeTextureHandleResidentARB(SSAOHandle);
GLuint64 SSAOHandle = glGetTextureSamplerHandleARB(irr_driver->getRenderTargetTexture(RTT_HALF1_R), MeshShader::ObjectPass2Shader::getInstance()->SamplersId[2]); if (!mesh.TextureHandles[0])
if (!glIsTextureHandleResidentARB(SSAOHandle)) mesh.TextureHandles[0] = glGetTextureSamplerHandleARB(getTextureGLuint(spareWhiteTex), MeshShader::TransparentFogShader::getInstance()->SamplersId[0]);
glMakeTextureHandleResidentARB(SSAOHandle); if (!glIsTextureHandleResidentARB(mesh.TextureHandles[0]))
glMakeTextureHandleResidentARB(mesh.TextureHandles[0]);
if (!mesh.TextureHandles[0]) MeshShader::ObjectPass2Shader::getInstance()->SetTextureHandles(createVector<uint64_t>(DiffuseHandle, SpecularHandle, SSAOHandle, mesh.TextureHandles[0]));
mesh.TextureHandles[0] = glGetTextureSamplerHandleARB(getTextureGLuint(spareWhiteTex), MeshShader::TransparentFogShader::getInstance()->SamplersId[0]);
if (!glIsTextureHandleResidentARB(mesh.TextureHandles[0]))
glMakeTextureHandleResidentARB(mesh.TextureHandles[0]);
MeshShader::ObjectPass2Shader::getInstance()->SetTextureHandles(createVector<uint64_t>(DiffuseHandle, SpecularHandle, SSAOHandle, mesh.TextureHandles[0]));
}
else
MeshShader::ObjectPass2Shader::getInstance()->SetTextureUnits(createVector<GLuint>(
irr_driver->getRenderTargetTexture(RTT_DIFFUSE),
irr_driver->getRenderTargetTexture(RTT_SPECULAR),
irr_driver->getRenderTargetTexture(RTT_HALF1_R),
getTextureGLuint(spareWhiteTex)));
MeshShader::ObjectPass2Shader::getInstance()->setUniforms(AbsoluteTransformation, mesh.TextureMatrix);
assert(mesh.vao);
glBindVertexArray(mesh.vao);
glDrawElements(ptype, count, itype, 0);
glBindVertexArray(0);
} }
else else
MeshShader::ObjectPass2Shader::getInstance()->SetTextureUnits(createVector<GLuint>( MeshShader::ObjectPass2Shader::getInstance()->SetTextureUnits(createVector<GLuint>(
irr_driver->getRenderTargetTexture(RTT_DIFFUSE), irr_driver->getRenderTargetTexture(RTT_DIFFUSE),
irr_driver->getRenderTargetTexture(RTT_SPECULAR), irr_driver->getRenderTargetTexture(RTT_SPECULAR),
irr_driver->getRenderTargetTexture(RTT_HALF1_R), irr_driver->getRenderTargetTexture(RTT_HALF1_R),
getTextureGLuint(mesh.textures[0]))); getTextureGLuint(spareWhiteTex)));
MeshShader::ObjectPass2Shader::getInstance()->setUniforms(AbsoluteTransformation, mesh.TextureMatrix); MeshShader::ObjectPass2Shader::getInstance()->setUniforms(AbsoluteTransformation, mesh.TextureMatrix);
assert(mesh.vao); assert(mesh.vao);
glBindVertexArray(mesh.vao); glBindVertexArray(mesh.vao);

View File

@ -117,24 +117,7 @@ void FillInstances(const std::unordered_map<scene::IMeshBuffer *, std::vector<st
} }
} }
static
void FillInstancesGrass(const std::unordered_map<scene::IMeshBuffer *, std::vector<std::pair<GLMesh *, scene::ISceneNode*> > > &GatheredGLMesh, std::vector<GLMesh *> &InstancedList,
InstanceData *InstanceBuffer, DrawElementsIndirectCommand *CommandBuffer, size_t &InstanceBufferOffset, size_t &CommandBufferOffset, const core::vector3df &dir, size_t &PolyCount,
std::function<bool (const scene::ISceneNode *)> cull_func)
{
auto It = GatheredGLMesh.begin(), E = GatheredGLMesh.end();
SunLightProvider * const cb = (SunLightProvider *)irr_driver->getCallback(ES_SUNLIGHT);
for (; It != E; ++It)
{
FillInstances_impl(It->second, InstanceBuffer, CommandBuffer, InstanceBufferOffset, CommandBufferOffset, PolyCount, cull_func);
if (!UserConfigParams::m_azdo)
InstancedList.push_back(It->second.front().first);
}
}
static std::unordered_map <scene::IMeshBuffer *, std::vector<std::pair<GLMesh *, scene::ISceneNode*> > > MeshForSolidPass[MAT_COUNT]; static std::unordered_map <scene::IMeshBuffer *, std::vector<std::pair<GLMesh *, scene::ISceneNode*> > > MeshForSolidPass[MAT_COUNT];
static std::unordered_map <scene::IMeshBuffer *, std::vector<std::pair<GLMesh *, scene::ISceneNode*> > > MeshForShadowPass[4][MAT_COUNT];
static std::unordered_map <scene::IMeshBuffer *, std::vector<std::pair<GLMesh *, scene::ISceneNode*> > > MeshForRSMPass[MAT_COUNT];
static std::unordered_map <scene::IMeshBuffer *, std::vector<std::pair<GLMesh *, STKMeshCommon *> > > MeshForGlowPass; static std::unordered_map <scene::IMeshBuffer *, std::vector<std::pair<GLMesh *, STKMeshCommon *> > > MeshForGlowPass;
static std::vector <STKMeshCommon *> DeferredUpdate; static std::vector <STKMeshCommon *> DeferredUpdate;
@ -151,7 +134,7 @@ bool isBoxInFrontOfPlane(const core::plane3df &plane, const core::vector3df edge
} }
static static
bool isCulled(const scene::ICameraSceneNode *cam, const scene::ISceneNode *node) bool isCulledPrecise(const scene::ICameraSceneNode *cam, const scene::ISceneNode *node)
{ {
if (!node->getAutomaticCulling()) if (!node->getAutomaticCulling())
return false; return false;
@ -172,8 +155,20 @@ bool isCulled(const scene::ICameraSceneNode *cam, const scene::ISceneNode *node)
return false; return false;
} }
static
bool isCulledFast(const scene::ICameraSceneNode *cam, const scene::ISceneNode *node)
{
if (!node->getAutomaticCulling())
return false;
core::aabbox3d<f32> tbox = node->getBoundingBox();
node->getAbsoluteTransformation().transformBoxEx(tbox);
return !(tbox.intersectsWithBox(cam->getViewFrustum()->getBoundingBox()));
}
static void static void
handleSTKCommon(scene::ISceneNode *Node, std::vector<scene::ISceneNode *> *ImmediateDraw) handleSTKCommon(scene::ISceneNode *Node, std::vector<scene::ISceneNode *> *ImmediateDraw,
const scene::ICameraSceneNode *cam, scene::ICameraSceneNode *shadowcam[4], const scene::ICameraSceneNode *rsmcam)
{ {
STKMeshCommon *node = dynamic_cast<STKMeshCommon*>(Node); STKMeshCommon *node = dynamic_cast<STKMeshCommon*>(Node);
if (!node) if (!node)
@ -187,7 +182,6 @@ handleSTKCommon(scene::ISceneNode *Node, std::vector<scene::ISceneNode *> *Immed
return; return;
} }
// Transparent // Transparent
GLMesh *mesh; GLMesh *mesh;
if (World::getWorld() && World::getWorld()->isFogEnabled()) if (World::getWorld() && World::getWorld()->isFogEnabled())
@ -258,6 +252,8 @@ handleSTKCommon(scene::ISceneNode *Node, std::vector<scene::ISceneNode *> *Immed
} }
else else
{ {
if (isCulledFast(cam, Node))
continue;
core::matrix4 ModelMatrix = Node->getAbsoluteTransformation(), InvModelMatrix; core::matrix4 ModelMatrix = Node->getAbsoluteTransformation(), InvModelMatrix;
ModelMatrix.getInverse(InvModelMatrix); ModelMatrix.getInverse(InvModelMatrix);
@ -299,13 +295,10 @@ handleSTKCommon(scene::ISceneNode *Node, std::vector<scene::ISceneNode *> *Immed
{ {
for (unsigned cascade = 0; cascade < 4; ++cascade) for (unsigned cascade = 0; cascade < 4; ++cascade)
{ {
if (irr_driver->hasARB_draw_indirect()) if (!irr_driver->hasARB_draw_indirect())
{
for_in(mesh, node->MeshSolidMaterial[Mat])
MeshForShadowPass[cascade][Mat][mesh->mb].emplace_back(mesh, Node);
}
else
{ {
if (isCulledFast(shadowcam[cascade], Node))
continue;
core::matrix4 ModelMatrix = Node->getAbsoluteTransformation(), InvModelMatrix; core::matrix4 ModelMatrix = Node->getAbsoluteTransformation(), InvModelMatrix;
ModelMatrix.getInverse(InvModelMatrix); ModelMatrix.getInverse(InvModelMatrix);
@ -347,10 +340,8 @@ handleSTKCommon(scene::ISceneNode *Node, std::vector<scene::ISceneNode *> *Immed
{ {
if (irr_driver->hasARB_draw_indirect()) if (irr_driver->hasARB_draw_indirect())
{ {
for_in(mesh, node->MeshSolidMaterial[Mat]) if (Mat == MAT_SPLATTING)
if (Mat != MAT_SPLATTING) for_in(mesh, node->MeshSolidMaterial[Mat])
MeshForRSMPass[Mat][mesh->mb].emplace_back(mesh, Node);
else
{ {
core::matrix4 ModelMatrix = Node->getAbsoluteTransformation(), InvModelMatrix; core::matrix4 ModelMatrix = Node->getAbsoluteTransformation(), InvModelMatrix;
ModelMatrix.getInverse(InvModelMatrix); ModelMatrix.getInverse(InvModelMatrix);
@ -359,6 +350,8 @@ handleSTKCommon(scene::ISceneNode *Node, std::vector<scene::ISceneNode *> *Immed
} }
else else
{ {
if (isCulledFast(rsmcam, Node))
continue;
core::matrix4 ModelMatrix = Node->getAbsoluteTransformation(), InvModelMatrix; core::matrix4 ModelMatrix = Node->getAbsoluteTransformation(), InvModelMatrix;
ModelMatrix.getInverse(InvModelMatrix); ModelMatrix.getInverse(InvModelMatrix);
@ -398,27 +391,34 @@ handleSTKCommon(scene::ISceneNode *Node, std::vector<scene::ISceneNode *> *Immed
static void static void
parseSceneManager(core::list<scene::ISceneNode*> List, std::vector<scene::ISceneNode *> *ImmediateDraw, parseSceneManager(core::list<scene::ISceneNode*> List, std::vector<scene::ISceneNode *> *ImmediateDraw,
scene::ICameraSceneNode* cam) const scene::ICameraSceneNode* cam, scene::ICameraSceneNode *shadow_cam[4], const scene::ICameraSceneNode *rsmcam)
{ {
core::list<scene::ISceneNode*>::Iterator I = List.begin(), E = List.end(); core::list<scene::ISceneNode*>::Iterator I = List.begin(), E = List.end();
for (; I != E; ++I) for (; I != E; ++I)
{ {
if (LODNode *node = dynamic_cast<LODNode *>(*I)) if (LODNode *node = dynamic_cast<LODNode *>(*I))
node->updateVisibility(); node->updateVisibility();
(*I)->updateAbsolutePosition();
if (!(*I)->isVisible()) if (!(*I)->isVisible())
continue; continue;
(*I)->updateAbsolutePosition();
if (ParticleSystemProxy *node = dynamic_cast<ParticleSystemProxy *>(*I)) if (ParticleSystemProxy *node = dynamic_cast<ParticleSystemProxy *>(*I))
{ {
if (!isCulled(cam, *I) && node->update()) if (!isCulledPrecise(cam, *I) && node->update())
ParticlesList::getInstance()->push_back(node); ParticlesList::getInstance()->push_back(node);
continue; continue;
} }
handleSTKCommon(*I, ImmediateDraw); if (STKBillboard *node = dynamic_cast<STKBillboard *>(*I))
{
if (!isCulledPrecise(cam, *I))
BillBoardList::getInstance()->push_back(node);
continue;
}
parseSceneManager((*I)->getChildren(), ImmediateDraw, cam); handleSTKCommon(*I, ImmediateDraw, cam, shadow_cam, rsmcam);
parseSceneManager((*I)->getChildren(), ImmediateDraw, cam, shadow_cam, rsmcam);
} }
} }
@ -429,22 +429,12 @@ GenDrawCalls(unsigned cascade, std::vector<GLMesh *> &InstancedList,
std::function<bool(const scene::ISceneNode *)> shadowculling = [&](const scene::ISceneNode *nd) {return dynamic_cast<const STKMeshCommon*>(nd)->isCulledForShadowCam(cascade); }; std::function<bool(const scene::ISceneNode *)> shadowculling = [&](const scene::ISceneNode *nd) {return dynamic_cast<const STKMeshCommon*>(nd)->isCulledForShadowCam(cascade); };
if (irr_driver->hasARB_draw_indirect()) if (irr_driver->hasARB_draw_indirect())
ShadowPassCmd::getInstance()->Offset[cascade][Mat] = CommandBufferOffset; // Store command buffer offset ShadowPassCmd::getInstance()->Offset[cascade][Mat] = CommandBufferOffset; // Store command buffer offset
FillInstances(MeshForShadowPass[cascade][Mat], InstancedList, InstanceBuffer, CommandBuffer, InstanceBufferOffset, CommandBufferOffset, PolyCount, shadowculling); FillInstances(MeshForSolidPass[Mat], InstancedList, InstanceBuffer, CommandBuffer, InstanceBufferOffset, CommandBufferOffset, PolyCount, shadowculling);
if (UserConfigParams::m_azdo) if (UserConfigParams::m_azdo)
ShadowPassCmd::getInstance()->Size[cascade][Mat] = CommandBufferOffset - ShadowPassCmd::getInstance()->Offset[cascade][Mat]; ShadowPassCmd::getInstance()->Size[cascade][Mat] = CommandBufferOffset - ShadowPassCmd::getInstance()->Offset[cascade][Mat];
} }
template<MeshMaterial Mat> static void int enableOpenMP;
GenDrawCallsGrass(unsigned cascade, std::vector<GLMesh *> &InstancedList,
InstanceData *InstanceBuffer, DrawElementsIndirectCommand *CommandBuffer, size_t &InstanceBufferOffset, size_t &CommandBufferOffset, const core::vector3df &dir, size_t &PolyCount)
{
std::function<bool(const scene::ISceneNode *)> shadowculling = [&](const scene::ISceneNode *nd) {return dynamic_cast<const STKMeshCommon*>(nd)->isCulledForShadowCam(cascade); };
if (irr_driver->hasARB_draw_indirect())
ShadowPassCmd::getInstance()->Offset[cascade][Mat] = CommandBufferOffset; // Store command buffer offset
FillInstancesGrass(MeshForShadowPass[cascade][Mat], InstancedList, InstanceBuffer, CommandBuffer, InstanceBufferOffset, CommandBufferOffset, dir, PolyCount, shadowculling);
if (UserConfigParams::m_azdo)
ShadowPassCmd::getInstance()->Size[cascade][Mat] = CommandBufferOffset - ShadowPassCmd::getInstance()->Offset[cascade][Mat];
}
void IrrDriver::PrepareDrawCalls(scene::ICameraSceneNode *camnode) void IrrDriver::PrepareDrawCalls(scene::ICameraSceneNode *camnode)
{ {
@ -465,32 +455,28 @@ void IrrDriver::PrepareDrawCalls(scene::ICameraSceneNode *camnode)
ListMatSplatting::getInstance()->clear(); ListMatSplatting::getInstance()->clear();
ImmediateDrawList::getInstance()->clear(); ImmediateDrawList::getInstance()->clear();
BillBoardList::getInstance()->clear();
ParticlesList::getInstance()->clear(); ParticlesList::getInstance()->clear();
ListInstancedGlow::getInstance()->clear(); ListInstancedGlow::getInstance()->clear();
for (unsigned Mat = 0; Mat < MAT_COUNT; ++Mat) for (unsigned Mat = 0; Mat < MAT_COUNT; ++Mat)
{
MeshForSolidPass[Mat].clear(); MeshForSolidPass[Mat].clear();
MeshForRSMPass[Mat].clear();
for (unsigned cascade = 0; cascade < 4; ++cascade)
MeshForShadowPass[cascade][Mat].clear();
}
MeshForGlowPass.clear(); MeshForGlowPass.clear();
DeferredUpdate.clear(); DeferredUpdate.clear();
core::list<scene::ISceneNode*> List = m_scene_manager->getRootSceneNode()->getChildren(); core::list<scene::ISceneNode*> List = m_scene_manager->getRootSceneNode()->getChildren();
parseSceneManager(List, ImmediateDrawList::getInstance(), camnode); parseSceneManager(List, ImmediateDrawList::getInstance(), camnode, m_shadow_camnodes, m_suncam);
#pragma omp parallel for #pragma omp parallel for
for (int i = 0; i < (int)DeferredUpdate.size(); i++) for (int i = 0; i < (int)DeferredUpdate.size(); i++)
{ {
scene::ISceneNode *node = dynamic_cast<scene::ISceneNode *>(DeferredUpdate[i]); scene::ISceneNode *node = dynamic_cast<scene::ISceneNode *>(DeferredUpdate[i]);
DeferredUpdate[i]->setCulledForPlayerCam(isCulled(camnode, node)); DeferredUpdate[i]->setCulledForPlayerCam(isCulledPrecise(camnode, node));
DeferredUpdate[i]->setCulledForRSMCam(isCulled(m_suncam, node)); DeferredUpdate[i]->setCulledForRSMCam(isCulledPrecise(m_suncam, node));
DeferredUpdate[i]->setCulledForShadowCam(0, isCulled(m_shadow_camnodes[0], node)); DeferredUpdate[i]->setCulledForShadowCam(0, isCulledPrecise(m_shadow_camnodes[0], node));
DeferredUpdate[i]->setCulledForShadowCam(1, isCulled(m_shadow_camnodes[1], node)); DeferredUpdate[i]->setCulledForShadowCam(1, isCulledPrecise(m_shadow_camnodes[1], node));
DeferredUpdate[i]->setCulledForShadowCam(2, isCulled(m_shadow_camnodes[2], node)); DeferredUpdate[i]->setCulledForShadowCam(2, isCulledPrecise(m_shadow_camnodes[2], node));
DeferredUpdate[i]->setCulledForShadowCam(3, isCulled(m_shadow_camnodes[3], node)); DeferredUpdate[i]->setCulledForShadowCam(3, isCulledPrecise(m_shadow_camnodes[3], node));
} }
// Add a 1 s timeout // Add a 1 s timeout
@ -541,7 +527,10 @@ void IrrDriver::PrepareDrawCalls(scene::ICameraSceneNode *camnode)
ShadowCmdBuffer = ShadowPassCmd::getInstance()->Ptr; ShadowCmdBuffer = ShadowPassCmd::getInstance()->Ptr;
GlowCmdBuffer = GlowPassCmd::getInstance()->Ptr; GlowCmdBuffer = GlowPassCmd::getInstance()->Ptr;
RSMCmdBuffer = RSMPassCmd::getInstance()->Ptr; RSMCmdBuffer = RSMPassCmd::getInstance()->Ptr;
enableOpenMP = 1;
} }
else
enableOpenMP = 0;
ListInstancedMatDefault::getInstance()->clear(); ListInstancedMatDefault::getInstance()->clear();
ListInstancedMatAlphaRef::getInstance()->clear(); ListInstancedMatAlphaRef::getInstance()->clear();
@ -556,7 +545,7 @@ void IrrDriver::PrepareDrawCalls(scene::ICameraSceneNode *camnode)
PROFILER_PUSH_CPU_MARKER("- Draw Command upload", 0xFF, 0x0, 0xFF); PROFILER_PUSH_CPU_MARKER("- Draw Command upload", 0xFF, 0x0, 0xFF);
auto playercamculling = [](const scene::ISceneNode *nd) {return dynamic_cast<const STKMeshCommon*>(nd)->isCulledForPlayerCam(); }; auto playercamculling = [](const scene::ISceneNode *nd) {return dynamic_cast<const STKMeshCommon*>(nd)->isCulledForPlayerCam(); };
#pragma omp parallel sections #pragma omp parallel sections if(enableOpenMP)
{ {
#pragma omp section #pragma omp section
{ {
@ -597,7 +586,7 @@ void IrrDriver::PrepareDrawCalls(scene::ICameraSceneNode *camnode)
// Grass // Grass
SolidPassCmd::getInstance()->Offset[MAT_GRASS] = current_cmd; SolidPassCmd::getInstance()->Offset[MAT_GRASS] = current_cmd;
FillInstancesGrass(MeshForSolidPass[MAT_GRASS], ListInstancedMatGrass::getInstance()->SolidPass, InstanceBuffer, CmdBuffer, offset, current_cmd, windDir, SolidPoly, playercamculling); FillInstances(MeshForSolidPass[MAT_GRASS], ListInstancedMatGrass::getInstance()->SolidPass, InstanceBuffer, CmdBuffer, offset, current_cmd, SolidPoly, playercamculling);
SolidPassCmd::getInstance()->Size[MAT_GRASS] = current_cmd - SolidPassCmd::getInstance()->Offset[MAT_GRASS]; SolidPassCmd::getInstance()->Size[MAT_GRASS] = current_cmd - SolidPassCmd::getInstance()->Offset[MAT_GRASS];
if (!irr_driver->hasBufferStorageExtension()) if (!irr_driver->hasBufferStorageExtension())
@ -667,7 +656,7 @@ void IrrDriver::PrepareDrawCalls(scene::ICameraSceneNode *camnode)
// Mat Detail // Mat Detail
GenDrawCalls<MAT_DETAIL>(i, ListInstancedMatDetails::getInstance()->Shadows[i], ShadowInstanceBuffer, ShadowCmdBuffer, offset, current_cmd, ShadowPoly); GenDrawCalls<MAT_DETAIL>(i, ListInstancedMatDetails::getInstance()->Shadows[i], ShadowInstanceBuffer, ShadowCmdBuffer, offset, current_cmd, ShadowPoly);
// Mat Grass // Mat Grass
GenDrawCallsGrass<MAT_GRASS>(i, ListInstancedMatGrass::getInstance()->Shadows[i], ShadowInstanceBuffer, ShadowCmdBuffer, offset, current_cmd, windDir, ShadowPoly); GenDrawCalls<MAT_GRASS>(i, ListInstancedMatGrass::getInstance()->Shadows[i], ShadowInstanceBuffer, ShadowCmdBuffer, offset, current_cmd, ShadowPoly);
} }
if (!irr_driver->hasBufferStorageExtension()) if (!irr_driver->hasBufferStorageExtension())
{ {
@ -689,23 +678,23 @@ void IrrDriver::PrepareDrawCalls(scene::ICameraSceneNode *camnode)
// Default Material // Default Material
RSMPassCmd::getInstance()->Offset[MAT_DEFAULT] = current_cmd; RSMPassCmd::getInstance()->Offset[MAT_DEFAULT] = current_cmd;
FillInstances(MeshForRSMPass[MAT_DEFAULT], ListInstancedMatDefault::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling); FillInstances(MeshForSolidPass[MAT_DEFAULT], ListInstancedMatDefault::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling);
RSMPassCmd::getInstance()->Size[MAT_DEFAULT] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_DEFAULT]; RSMPassCmd::getInstance()->Size[MAT_DEFAULT] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_DEFAULT];
// Alpha Ref // Alpha Ref
RSMPassCmd::getInstance()->Offset[MAT_ALPHA_REF] = current_cmd; RSMPassCmd::getInstance()->Offset[MAT_ALPHA_REF] = current_cmd;
FillInstances(MeshForRSMPass[MAT_ALPHA_REF], ListInstancedMatAlphaRef::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling); FillInstances(MeshForSolidPass[MAT_ALPHA_REF], ListInstancedMatAlphaRef::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling);
RSMPassCmd::getInstance()->Size[MAT_ALPHA_REF] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_ALPHA_REF]; RSMPassCmd::getInstance()->Size[MAT_ALPHA_REF] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_ALPHA_REF];
// Unlit // Unlit
RSMPassCmd::getInstance()->Offset[MAT_UNLIT] = current_cmd; RSMPassCmd::getInstance()->Offset[MAT_UNLIT] = current_cmd;
FillInstances(MeshForRSMPass[MAT_UNLIT], ListInstancedMatUnlit::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling); FillInstances(MeshForSolidPass[MAT_UNLIT], ListInstancedMatUnlit::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling);
RSMPassCmd::getInstance()->Size[MAT_UNLIT] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_UNLIT]; RSMPassCmd::getInstance()->Size[MAT_UNLIT] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_UNLIT];
// Detail // Detail
RSMPassCmd::getInstance()->Offset[MAT_DETAIL] = current_cmd; RSMPassCmd::getInstance()->Offset[MAT_DETAIL] = current_cmd;
FillInstances(MeshForRSMPass[MAT_DETAIL], ListInstancedMatDetails::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling); FillInstances(MeshForSolidPass[MAT_DETAIL], ListInstancedMatDetails::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling);
RSMPassCmd::getInstance()->Size[MAT_DETAIL] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_DETAIL]; RSMPassCmd::getInstance()->Size[MAT_DETAIL] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_DETAIL];
// Normal Map // Normal Map
RSMPassCmd::getInstance()->Offset[MAT_NORMAL_MAP] = current_cmd; RSMPassCmd::getInstance()->Offset[MAT_NORMAL_MAP] = current_cmd;
FillInstances(MeshForRSMPass[MAT_NORMAL_MAP], ListInstancedMatNormalMap::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling); FillInstances(MeshForSolidPass[MAT_NORMAL_MAP], ListInstancedMatNormalMap::getInstance()->RSM, RSMInstanceBuffer, RSMCmdBuffer, offset, current_cmd, MiscPoly, rsmcamculling);
RSMPassCmd::getInstance()->Size[MAT_NORMAL_MAP] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_NORMAL_MAP]; RSMPassCmd::getInstance()->Size[MAT_NORMAL_MAP] = current_cmd - RSMPassCmd::getInstance()->Offset[MAT_NORMAL_MAP];
if (!irr_driver->hasBufferStorageExtension()) if (!irr_driver->hasBufferStorageExtension())

View File

@ -8,6 +8,7 @@
#include "gl_headers.hpp" #include "gl_headers.hpp"
#include "stkmesh.hpp" #include "stkmesh.hpp"
#include "gpuparticles.hpp" #include "gpuparticles.hpp"
#include "stkbillboard.hpp"
template<typename T> template<typename T>
class CommandBuffer : public Singleton<T> class CommandBuffer : public Singleton<T>
@ -34,6 +35,9 @@ public:
class ImmediateDrawList : public Singleton<ImmediateDrawList>, public std::vector<scene::ISceneNode *> class ImmediateDrawList : public Singleton<ImmediateDrawList>, public std::vector<scene::ISceneNode *>
{}; {};
class BillBoardList : public Singleton<BillBoardList>, public std::vector<STKBillboard *>
{};
class ParticlesList : public Singleton<ParticlesList>, public std::vector<ParticleSystemProxy *> class ParticlesList : public Singleton<ParticlesList>, public std::vector<ParticleSystemProxy *>
{}; {};

View File

@ -0,0 +1,182 @@
#include "texturemanager.hpp"
#include <fstream>
#include <string>
#include "../../lib/irrlicht/source/Irrlicht/COpenGLTexture.h"
#include "irr_driver.hpp"
GLuint getTextureGLuint(irr::video::ITexture *tex)
{
return static_cast<irr::video::COpenGLTexture*>(tex)->getOpenGLTextureName();
}
GLuint getDepthTexture(irr::video::ITexture *tex)
{
assert(tex->isRenderTarget());
return static_cast<irr::video::COpenGLFBOTexture*>(tex)->DepthBufferTexture;
}
std::set<irr::video::ITexture *> AlreadyTransformedTexture;
void resetTextureTable()
{
AlreadyTransformedTexture.clear();
}
void compressTexture(irr::video::ITexture *tex, bool srgb, bool premul_alpha)
{
if (AlreadyTransformedTexture.find(tex) != AlreadyTransformedTexture.end())
return;
AlreadyTransformedTexture.insert(tex);
glBindTexture(GL_TEXTURE_2D, getTextureGLuint(tex));
std::string cached_file;
if (UserConfigParams::m_texture_compression)
{
// Try to retrieve the compressed texture in cache
std::string tex_name = irr_driver->getTextureName(tex);
if (!tex_name.empty()) {
cached_file = file_manager->getTextureCacheLocation(tex_name) + ".gltz";
if (!file_manager->fileIsNewer(tex_name, cached_file)) {
if (loadCompressedTexture(cached_file))
return;
}
}
}
size_t w = tex->getSize().Width, h = tex->getSize().Height;
unsigned char *data = new unsigned char[w * h * 4];
memcpy(data, tex->lock(), w * h * 4);
tex->unlock();
unsigned internalFormat, Format;
if (tex->hasAlpha())
Format = GL_BGRA;
else
Format = GL_BGR;
if (premul_alpha)
{
for (unsigned i = 0; i < w * h; i++)
{
float alpha = data[4 * i + 3];
if (alpha > 0.)
alpha = pow(alpha / 255.f, 1.f / 2.2f);
data[4 * i] = (unsigned char)(data[4 * i] * alpha);
data[4 * i + 1] = (unsigned char)(data[4 * i + 1] * alpha);
data[4 * i + 2] = (unsigned char)(data[4 * i + 2] * alpha);
}
}
if (!UserConfigParams::m_texture_compression)
{
if (srgb)
internalFormat = (tex->hasAlpha()) ? GL_SRGB_ALPHA : GL_SRGB;
else
internalFormat = (tex->hasAlpha()) ? GL_RGBA : GL_RGB;
}
else
{
if (srgb)
internalFormat = (tex->hasAlpha()) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT : GL_COMPRESSED_SRGB_S3TC_DXT1_EXT;
else
internalFormat = (tex->hasAlpha()) ? GL_COMPRESSED_RGBA_S3TC_DXT5_EXT : GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
}
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, w, h, 0, Format, GL_UNSIGNED_BYTE, (GLvoid *)data);
glGenerateMipmap(GL_TEXTURE_2D);
delete[] data;
if (UserConfigParams::m_texture_compression && !cached_file.empty())
{
// Save the compressed texture in the cache for later use.
saveCompressedTexture(cached_file);
}
}
//-----------------------------------------------------------------------------
/** Try to load a compressed texture from the given file name.
* Data in the specified file need to have a specific format. See the
* saveCompressedTexture() function for a description of the format.
* \return true if the loading succeeded, false otherwise.
* \see saveCompressedTexture
*/
bool loadCompressedTexture(const std::string& compressed_tex)
{
std::ifstream ifs(compressed_tex.c_str(), std::ios::in | std::ios::binary);
if (!ifs.is_open())
return false;
int internal_format;
int w, h;
int size = -1;
ifs.read((char*)&internal_format, sizeof(int));
ifs.read((char*)&w, sizeof(int));
ifs.read((char*)&h, sizeof(int));
ifs.read((char*)&size, sizeof(int));
if (ifs.fail() || size == -1)
return false;
char *data = new char[size];
ifs.read(data, size);
if (!ifs.fail())
{
glCompressedTexImage2D(GL_TEXTURE_2D, 0, internal_format,
w, h, 0, size, (GLvoid*)data);
glGenerateMipmap(GL_TEXTURE_2D);
delete[] data;
ifs.close();
return true;
}
delete[] data;
return false;
}
//-----------------------------------------------------------------------------
/** Try to save the last texture sent to glTexImage2D in a file of the given
* file name. This function should only be used for textures sent to
* glTexImage2D with a compressed internal format as argument.<br>
* \note The following format is used to save the compressed texture:<br>
* <internal-format><width><height><size><data> <br>
* The first four elements are integers and the last one is stored
* on \c size bytes.
* \see loadCompressedTexture
*/
void saveCompressedTexture(const std::string& compressed_tex)
{
int internal_format, width, height, size, compressionSuccessful;
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, (GLint *)&internal_format);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, (GLint *)&width);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, (GLint *)&height);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_COMPRESSED, (GLint *)&compressionSuccessful);
if (!compressionSuccessful)
return;
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_COMPRESSED_IMAGE_SIZE, (GLint *)&size);
char *data = new char[size];
glGetCompressedTexImage(GL_TEXTURE_2D, 0, (GLvoid*)data);
std::ofstream ofs(compressed_tex.c_str(), std::ios::out | std::ios::binary);
if (ofs.is_open())
{
ofs.write((char*)&internal_format, sizeof(int));
ofs.write((char*)&width, sizeof(int));
ofs.write((char*)&height, sizeof(int));
ofs.write((char*)&size, sizeof(int));
ofs.write(data, size);
ofs.close();
}
delete[] data;
}
static unsigned colorcount = 0;
video::ITexture* getUnicolorTexture(video::SColor c)
{
video::SColor tmp[4] = {
c, c, c, c
};
video::IImage *img = irr_driver->getVideoDriver()->createImageFromData(video::ECF_A8R8G8B8, core::dimension2d<u32>(2, 2), tmp);
img->grab();
std::string name("color");
name += colorcount++;
return irr_driver->getVideoDriver()->addTexture(name.c_str(), img);
}

View File

@ -0,0 +1,15 @@
#ifndef MEMORYMANAGER_HPP
#define MEMORYMANAGER_HPP
#include "gl_headers.hpp"
#include <ITexture.h>
#include <string>
GLuint getTextureGLuint(irr::video::ITexture *tex);
GLuint getDepthTexture(irr::video::ITexture *tex);
void resetTextureTable();
void compressTexture(irr::video::ITexture *tex, bool srgb, bool premul_alpha = false);
bool loadCompressedTexture(const std::string& compressed_tex);
void saveCompressedTexture(const std::string& compressed_tex);
#endif

View File

@ -308,6 +308,8 @@ void PhysicalObject::init()
} }
case MP_EXACT: case MP_EXACT:
{ {
m_graphical_offset = Vec3(0,0,0);
extend.setY(0);
TriangleMesh* triangle_mesh = new TriangleMesh(); TriangleMesh* triangle_mesh = new TriangleMesh();
// In case of readonly materials we have to get the material from // In case of readonly materials we have to get the material from
@ -472,7 +474,8 @@ void PhysicalObject::init()
} }
World::getWorld()->getPhysics()->addBody(m_body); World::getWorld()->getPhysics()->addBody(m_body);
if(m_triangle_mesh)
m_triangle_mesh->setBody(m_body);
} // init } // init
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
@ -505,6 +508,36 @@ void PhysicalObject::update(float dt)
return; return;
} // update } // update
// ----------------------------------------------------------------------------
/** Does a raycast against this physical object. The physical object must
* have an 'exact' shape, i.e. be a triangle mesh (for other physical objects
* no material information would be available).
* \param from/to The from and to position for the raycast.
* \param xyz The position in world where the ray hit.
* \param material The material of the mesh that was hit.
* \param normal The intrapolated normal at that position.
* \param interpolate_normal If true, the returned normal is the interpolated
* based on the three normals of the triangle and the location of the
* hit point (which is more compute intensive, but results in much
* smoother results).
* \return True if a triangle was hit, false otherwise (and no output
* variable will be set.
*/
bool PhysicalObject::castRay(const btVector3 &from, const btVector3 &to,
btVector3 *hit_point, const Material **material,
btVector3 *normal, bool interpolate_normal) const
{
if(m_body_type!=MP_EXACT)
{
Log::warn("PhysicalObject", "Can only raycast against 'exact' meshes.");
return false;
}
bool result = m_triangle_mesh->castRay(from, to, hit_point,
material, normal,
interpolate_normal);
return result;
} // castRay
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
void PhysicalObject::reset() void PhysicalObject::reset()
{ {

View File

@ -164,6 +164,11 @@ public:
void move (const Vec3& xyz, const core::vector3df& hpr); void move (const Vec3& xyz, const core::vector3df& hpr);
void hit (const Material *m, const Vec3 &normal); void hit (const Material *m, const Vec3 &normal);
bool isSoccerBall () const; bool isSoccerBall () const;
bool castRay(const btVector3 &from,
const btVector3 &to, btVector3 *hit_point,
const Material **material, btVector3 *normal,
bool interpolate_normal) const;
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
/** Returns the ID of this physical object. */ /** Returns the ID of this physical object. */
std::string getID() { return m_id; } std::string getID() { return m_id; }

View File

@ -33,6 +33,7 @@
TriangleMesh::TriangleMesh() : m_mesh() TriangleMesh::TriangleMesh() : m_mesh()
{ {
m_body = NULL; m_body = NULL;
m_free_body = true;
m_motion_state = NULL; m_motion_state = NULL;
// FIXME: on VS in release mode this statement actually overwrites // FIXME: on VS in release mode this statement actually overwrites
// part of the data of m_mesh, causing a crash later. Debugging // part of the data of m_mesh, causing a crash later. Debugging
@ -200,7 +201,8 @@ void TriangleMesh::createPhysicalBody(btCollisionObject::CollisionFlags flags,
*/ */
void TriangleMesh::removeAll() void TriangleMesh::removeAll()
{ {
if(m_body) // Don't free the physical body if it was created outside this object.
if(m_body && m_free_body)
{ {
World::getWorld()->getPhysics()->removeBody(m_body); World::getWorld()->getPhysics()->removeBody(m_body);
delete m_body; delete m_body;
@ -270,7 +272,7 @@ btVector3 TriangleMesh::getInterpolatedNormal(unsigned int index,
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
/** Casts a ray from 'from' to 'to'. If a triangle of this mesh was hit, /** Casts a ray from 'from' to 'to'. If a triangle of this mesh was hit,
* xyz and material will be set. * xyz and material will be set.
* \param from/to The from and to position for the raycast/ * \param from/to The from and to position for the raycast.
* \param xyz The position in world where the ray hit. * \param xyz The position in world where the ray hit.
* \param material The material of the mesh that was hit. * \param material The material of the mesh that was hit.
* \param normal The intrapolated normal at that position. * \param normal The intrapolated normal at that position.
@ -300,7 +302,11 @@ bool TriangleMesh::castRay(const btVector3 &from, const btVector3 &to,
trans_to.setOrigin(to); trans_to.setOrigin(to);
btTransform world_trans; btTransform world_trans;
world_trans.setIdentity(); // If there is a body, take the current transform from the body.
if(m_body)
world_trans = m_body->getWorldTransform();
else
world_trans.setIdentity();
btCollisionWorld::ClosestRayResultCallback result(from, to); btCollisionWorld::ClosestRayResultCallback result(from, to);
@ -334,8 +340,7 @@ bool TriangleMesh::castRay(const btVector3 &from, const btVector3 &to,
// If this is a rigid body, m_collision_object is NULL, and the // If this is a rigid body, m_collision_object is NULL, and the
// rigid body is the actual collision object. // rigid body is the actual collision object.
btCollisionWorld::rayTestSingle(trans_from, trans_to, btCollisionWorld::rayTestSingle(trans_from, trans_to,
m_collision_object ? m_collision_object m_collision_object ? m_collision_object : m_body,
: m_body,
m_collision_shape, world_trans, m_collision_shape, world_trans,
ray_callback); ray_callback);
// Get the index of the triangle hit // Get the index of the triangle hit

View File

@ -37,6 +37,9 @@ private:
UserPointer m_user_pointer; UserPointer m_user_pointer;
std::vector<const Material*> m_triangleIndex2Material; std::vector<const Material*> m_triangleIndex2Material;
btRigidBody *m_body; btRigidBody *m_body;
/** Keep track if the physical body was created here or not. */
bool m_free_body;
btCollisionObject *m_collision_object; btCollisionObject *m_collision_object;
btTriangleMesh m_mesh; btTriangleMesh m_mesh;
btVector3 dummy1, dummy2; btVector3 dummy1, dummy2;
@ -60,6 +63,20 @@ public:
btVector3 getInterpolatedNormal(unsigned int index, btVector3 getInterpolatedNormal(unsigned int index,
const btVector3 &position) const; const btVector3 &position) const;
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------
/** In case of physical objects of shape 'exact', the physical body is
* created outside of the mesh. Since raycasts need the body's world
* transform, the body can be set using this function. This will also
* cause the body not to be freed (since it will be freed as part of
* the physical object). */
void setBody(btRigidBody *body)
{
assert(!m_body);
// Mark that the body should not be deleted when this object is
// deleted, since the body is managed elsewhere.
m_free_body = false;
m_body = body;
}
// ------------------------------------------------------------------------
const Material* getMaterial(int n) const const Material* getMaterial(int n) const
{return m_triangleIndex2Material[n];} {return m_triangleIndex2Material[n];}
// ------------------------------------------------------------------------ // ------------------------------------------------------------------------

View File

@ -216,6 +216,9 @@ void GPInfoScreen::init()
addTracks(); addTracks();
addScreenshot(); addScreenshot();
RibbonWidget* bt_start = getWidget<GUIEngine::RibbonWidget>("buttons");
bt_start->setFocusForPlayer(PLAYER_ID_GAME_MASTER);
} // init } // init
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------

View File

@ -18,14 +18,16 @@
#include "tracks/terrain_info.hpp" #include "tracks/terrain_info.hpp"
#include <math.h>
#include "modes/world.hpp" #include "modes/world.hpp"
#include "physics/triangle_mesh.hpp" #include "physics/triangle_mesh.hpp"
#include "race/race_manager.hpp" #include "race/race_manager.hpp"
#include "tracks/track.hpp" #include "tracks/track.hpp"
#include "tracks/track_manager.hpp"
#include "tracks/track_object_manager.hpp"
#include "utils/constants.hpp" #include "utils/constants.hpp"
#include <math.h>
/** Constructor to initialise terrain data. /** Constructor to initialise terrain data.
*/ */
TerrainInfo::TerrainInfo() TerrainInfo::TerrainInfo()
@ -59,6 +61,10 @@ void TerrainInfo::update(const Vec3 &from)
const TriangleMesh &tm = World::getWorld()->getTrack()->getTriangleMesh(); const TriangleMesh &tm = World::getWorld()->getTrack()->getTriangleMesh();
tm.castRay(from, to, &m_hit_point, &m_material, &m_normal, tm.castRay(from, to, &m_hit_point, &m_material, &m_normal,
/*interpolate*/false); /*interpolate*/false);
// Now also raycast against all track objects (that are driveable).
World::getWorld()->getTrack()->getTrackObjectManager()
->castRay(from, to, &m_hit_point, &m_material,
&m_normal, /*interpolate*/false);
} // update } // update
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
/** Update the terrain information based on the latest position. /** Update the terrain information based on the latest position.
@ -74,6 +80,13 @@ void TerrainInfo::update(const btTransform &trans, const Vec3 &offset)
const TriangleMesh &tm = World::getWorld()->getTrack()->getTriangleMesh(); const TriangleMesh &tm = World::getWorld()->getTrack()->getTriangleMesh();
tm.castRay(from, to, &m_hit_point, &m_material, &m_normal, tm.castRay(from, to, &m_hit_point, &m_material, &m_normal,
/*interpolate*/true); /*interpolate*/true);
// Now also raycast against all track objects (that are driveable). If
// there should be a closer result (than the one against the main track
// mesh), its data will be returned.
World::getWorld()->getTrack()->getTrackObjectManager()
->castRay(from, to, &m_hit_point, &m_material,
&m_normal, /*interpolate*/true);
} // update } // update
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------

View File

@ -2398,7 +2398,7 @@ std::vector< std::vector<float> > Track::buildHeightMap()
} }
return out; return out;
} } // buildHeightMap
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
/** Returns the rotation of the sun. */ /** Returns the rotation of the sun. */

View File

@ -42,7 +42,7 @@ TrackObject::TrackObject(const XMLNode &xml_node, scene::ISceneNode* parent,
ModelDefinitionLoader& model_def_loader) ModelDefinitionLoader& model_def_loader)
{ {
init(xml_node, parent, model_def_loader); init(xml_node, parent, model_def_loader);
} } // TrackObject
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
/** /**
@ -56,29 +56,33 @@ TrackObject::TrackObject(const core::vector3df& xyz, const core::vector3df& hpr,
bool is_dynamic, bool is_dynamic,
const PhysicalObject::Settings* physics_settings) const PhysicalObject::Settings* physics_settings)
{ {
m_init_xyz = xyz; m_init_xyz = xyz;
m_init_hpr = hpr; m_init_hpr = hpr;
m_init_scale = scale; m_init_scale = scale;
m_enabled = true; m_enabled = true;
m_presentation = NULL; m_presentation = NULL;
m_animator = NULL; m_animator = NULL;
m_physical_object = NULL; m_physical_object = NULL;
m_interaction = interaction; m_interaction = interaction;
m_presentation = presentation;
m_presentation = presentation;
if (m_interaction != "ghost" && m_interaction != "none" && if (m_interaction != "ghost" && m_interaction != "none" &&
physics_settings ) physics_settings )
{ {
m_physical_object = new PhysicalObject(is_dynamic, m_physical_object = new PhysicalObject(is_dynamic,
*physics_settings, *physics_settings,
this); this);
} }
reset(); reset();
} // TrackObject } // TrackObject
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
/** Initialises the track object based on the specified XML data.
* \param xml_node The XML data.
* \param parent The parent scene node.
* \param model_def_loader Used to load level-of-detail nodes.
*/
void TrackObject::init(const XMLNode &xml_node, scene::ISceneNode* parent, void TrackObject::init(const XMLNode &xml_node, scene::ISceneNode* parent,
ModelDefinitionLoader& model_def_loader) ModelDefinitionLoader& model_def_loader)
{ {
@ -102,6 +106,9 @@ void TrackObject::init(const XMLNode &xml_node, scene::ISceneNode* parent,
xml_node.get("interaction", &m_interaction); xml_node.get("interaction", &m_interaction);
xml_node.get("lod_group", &m_lod_group); xml_node.get("lod_group", &m_lod_group);
m_is_driveable = false;
xml_node.get("driveable", &m_is_driveable);
bool lod_instance = false; bool lod_instance = false;
xml_node.get("lod_instance", &lod_instance); xml_node.get("lod_instance", &lod_instance);
@ -256,14 +263,42 @@ void TrackObject::setEnable(bool mode)
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
void TrackObject::update(float dt) void TrackObject::update(float dt)
{ {
if (m_presentation != NULL) m_presentation->update(dt); if (m_presentation) m_presentation->update(dt);
if (m_physical_object != NULL) m_physical_object->update(dt); if (m_physical_object) m_physical_object->update(dt);
if (m_animator != NULL) m_animator->update(dt); if (m_animator) m_animator->update(dt);
} // update } // update
// ----------------------------------------------------------------------------
/** Does a raycast against the track object. The object must have a physical
* object.
* \param from/to The from and to position for the raycast.
* \param xyz The position in world where the ray hit.
* \param material The material of the mesh that was hit.
* \param normal The intrapolated normal at that position.
* \param interpolate_normal If true, the returned normal is the interpolated
* based on the three normals of the triangle and the location of the
* hit point (which is more compute intensive, but results in much
* smoother results).
* \return True if a triangle was hit, false otherwise (and no output
* variable will be set.
*/
bool TrackObject::castRay(const btVector3 &from,
const btVector3 &to, btVector3 *hit_point,
const Material **material, btVector3 *normal,
bool interpolate_normal) const
{
if(!m_physical_object)
{
Log::warn("TrackObject", "Can't raycast on non-physical object.");
return false;
}
return m_physical_object->castRay(from, to, hit_point, material, normal,
interpolate_normal);
} // castRay
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
void TrackObject::move(const core::vector3df& xyz, const core::vector3df& hpr, void TrackObject::move(const core::vector3df& xyz, const core::vector3df& hpr,

View File

@ -80,7 +80,10 @@ protected:
bool m_soccer_ball; bool m_soccer_ball;
bool m_garage; bool m_garage;
/** True if a kart can drive on this object. This will */
bool m_is_driveable;
float m_distance; float m_distance;
PhysicalObject* m_physical_object; PhysicalObject* m_physical_object;
@ -101,46 +104,64 @@ public:
const PhysicalObject::Settings* physicsSettings); const PhysicalObject::Settings* physicsSettings);
virtual ~TrackObject(); virtual ~TrackObject();
virtual void update(float dt); virtual void update(float dt);
virtual void reset();
/** To finish object constructions. Called after the track model
* is ready. */
virtual void init() {};
/** Called when an explosion happens. As a default does nothing, will
* e.g. be overwritten by physical objects etc. */
virtual void handleExplosion(const Vec3& pos, bool directHit) {};
void setEnable(bool mode);
void setID(std::string obj_id) { m_id = obj_id; }
const std::string& getLodGroup() const { return m_lod_group; }
const std::string& getType() const { return m_type; }
const std::string getName() const { return m_name; }
const std::string getID() const { return m_id; }
const std::string getInteraction() const { return m_interaction; }
bool isEnabled() const { return m_enabled; }
bool isSoccerBall() const { return m_soccer_ball; }
bool isGarage() const { return m_garage; }
float getDistance() const { return m_distance; }
const PhysicalObject* getPhysicalObject() const { return m_physical_object; }
PhysicalObject* getPhysicalObject() { return m_physical_object; }
//Due to above overload AngelScript cannot decide which function to bind
PhysicalObject* getPhysicalObjectForScript() { return m_physical_object; }
const core::vector3df getInitXYZ() const { return m_init_xyz; }
const core::vector3df getInitRotation() const { return m_init_hpr; }
const core::vector3df getInitScale() const { return m_init_scale; }
void move(const core::vector3df& xyz, const core::vector3df& hpr, void move(const core::vector3df& xyz, const core::vector3df& hpr,
const core::vector3df& scale, bool updateRigidBody); const core::vector3df& scale, bool updateRigidBody);
virtual void reset();
void setEnable(bool mode);
const core::vector3df& getPosition() const;
const core::vector3df getAbsolutePosition() const;
const core::vector3df& getRotation() const;
const core::vector3df& getScale() const;
bool castRay(const btVector3 &from,
const btVector3 &to, btVector3 *hit_point,
const Material **material, btVector3 *normal,
bool interpolate_normal) const;
// ------------------------------------------------------------------------
/** To finish object constructions. Called after the track model
* is ready. */
virtual void init() {};
// ------------------------------------------------------------------------
/** Called when an explosion happens. As a default does nothing, will
* e.g. be overwritten by physical objects etc. */
virtual void handleExplosion(const Vec3& pos, bool directHit) {};
void setID(std::string obj_id) { m_id = obj_id; }
// ------------------------------------------------------------------------
const std::string& getLodGroup() const { return m_lod_group; }
// ------------------------------------------------------------------------
const std::string& getType() const { return m_type; }
// ------------------------------------------------------------------------
const std::string getName() const { return m_name; }
// ------------------------------------------------------------------------
const std::string getID() const { return m_id; }
// ------------------------------------------------------------------------
const std::string getInteraction() const { return m_interaction; }
// ------------------------------------------------------------------------
bool isEnabled() const { return m_enabled; }
// ------------------------------------------------------------------------
bool isSoccerBall() const { return m_soccer_ball; }
// ------------------------------------------------------------------------
bool isGarage() const { return m_garage; }
// ------------------------------------------------------------------------
float getDistance() const { return m_distance; }
// ------------------------------------------------------------------------
const PhysicalObject* getPhysicalObject() const { return m_physical_object; }
// ------------------------------------------------------------------------
PhysicalObject* getPhysicalObject() { return m_physical_object; }
//Due to above overload AngelScript cannot decide which function to bind
PhysicalObject* getPhysicalObjectForScript() { return m_physical_object; }
// ------------------------------------------------------------------------
const core::vector3df getInitXYZ() const { return m_init_xyz; }
// ------------------------------------------------------------------------
const core::vector3df getInitRotation() const { return m_init_hpr; }
// ------------------------------------------------------------------------
const core::vector3df getInitScale() const { return m_init_scale; }
// ------------------------------------------------------------------------
template<typename T> template<typename T>
T* getPresentation() { return dynamic_cast<T*>(m_presentation); } T* getPresentation() { return dynamic_cast<T*>(m_presentation); }
// ------------------------------------------------------------------------
template<typename T> template<typename T>
const T* getPresentation() const { return dynamic_cast<T*>(m_presentation); } const T* getPresentation() const { return dynamic_cast<T*>(m_presentation); }
@ -151,17 +172,17 @@ public:
TrackObjectPresentationSound* getSound(){ return getPresentation<TrackObjectPresentationSound>(); } TrackObjectPresentationSound* getSound(){ return getPresentation<TrackObjectPresentationSound>(); }
// ------------------------------------------------------------------------
ThreeDAnimation* getAnimator() { return m_animator; } ThreeDAnimation* getAnimator() { return m_animator; }
// ------------------------------------------------------------------------
const ThreeDAnimation* getAnimator() const { return m_animator; } const ThreeDAnimation* getAnimator() const { return m_animator; }
//Due to above overload AngelScript cannot decide which function to bind //Due to above overload AngelScript cannot decide which function to bind
ThreeDAnimation* getAnimatorForScript() { return m_animator; } ThreeDAnimation* getAnimatorForScript() { return m_animator; }
// ------------------------------------------------------------------------
void setPaused(bool mode){ m_animator->setPaused(mode); } void setPaused(bool mode){ m_animator->setPaused(mode); }
// ------------------------------------------------------------------------
const core::vector3df& getPosition() const; /** Returns if a kart can drive on this object. */
const core::vector3df getAbsolutePosition() const; bool isDriveable() const { return m_is_driveable; }
const core::vector3df& getRotation() const;
const core::vector3df& getScale() const;
LEAK_CHECK() LEAK_CHECK()
}; // TrackObject }; // TrackObject

View File

@ -50,11 +50,15 @@ TrackObjectManager::~TrackObjectManager()
* in a separate section that's read before everything and remove all this * in a separate section that's read before everything and remove all this
* crap * crap
*/ */
void TrackObjectManager::add(const XMLNode &xml_node, scene::ISceneNode* parent, ModelDefinitionLoader& model_def_loader) void TrackObjectManager::add(const XMLNode &xml_node, scene::ISceneNode* parent,
ModelDefinitionLoader& model_def_loader)
{ {
try try
{ {
m_all_objects.push_back(new TrackObject(xml_node, parent, model_def_loader)); TrackObject *obj = new TrackObject(xml_node, parent, model_def_loader);
m_all_objects.push_back(obj);
if(obj->isDriveable())
m_driveable_objects.push_back(obj);
} }
catch (std::exception& e) catch (std::exception& e)
{ {
@ -213,6 +217,61 @@ void TrackObjectManager::update(float dt)
} }
} // update } // update
// ----------------------------------------------------------------------------
/** Does a raycast against all driveable objects. This way part of the track
* can be a physical object, and can e.g. be animated. A separate list of all
* driveable objects is maintained (in one case there were over 2000 bodies,
* but only one is driveable). The result of the raycast against the track
* mesh are the input parameter. It is then tested if the raycast against
* a track object gives a 'closer' result. If so, the parameters hit_point,
* normal, and material will be updated.
* \param from/to The from and to position for the raycast.
* \param xyz The position in world where the ray hit.
* \param material The material of the mesh that was hit.
* \param normal The intrapolated normal at that position.
* \param interpolate_normal If true, the returned normal is the interpolated
* based on the three normals of the triangle and the location of the
* hit point (which is more compute intensive, but results in much
* smoother results).
* \return True if a triangle was hit, false otherwise (and no output
* variable will be set.
*/
void TrackObjectManager::castRay(const btVector3 &from,
const btVector3 &to, btVector3 *hit_point,
const Material **material,
btVector3 *normal,
bool interpolate_normal) const
{
float distance = 9999.9f;
// If there was a hit already, compute the current distance
if(*material)
{
distance = hit_point->distance(from);
}
const TrackObject* curr;
for_in (curr, m_driveable_objects)
{
btVector3 new_hit_point;
const Material *new_material;
btVector3 new_normal;
if(curr->castRay(from, to, &new_hit_point, &new_material, &new_normal,
interpolate_normal))
{
float new_distance = new_hit_point.distance(from);
// If the new hit is closer than the current hit, save
// the data.
if (new_distance < distance)
{
*material = new_material;
*hit_point = new_hit_point;
*normal = new_normal;
distance = new_distance;
} // if new_distance < distance
} // if hit
} // for all track objects.
} // castRay
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
/** Enables or disables fog for a given scene node. /** Enables or disables fog for a given scene node.
* \param node The node to adjust. * \param node The node to adjust.

View File

@ -44,20 +44,30 @@ protected:
* eye candy (to reduce work for physics), ... * eye candy (to reduce work for physics), ...
*/ */
enum TrackObjectType {TO_PHYSICAL, TO_GRAPHICAL}; enum TrackObjectType {TO_PHYSICAL, TO_GRAPHICAL};
/** The list of all track objects. */
PtrVector<TrackObject> m_all_objects; PtrVector<TrackObject> m_all_objects;
/** A second list which holds all objects that karts can drive on. */
PtrVector<TrackObject, REF> m_driveable_objects;
public: public:
TrackObjectManager(); TrackObjectManager();
~TrackObjectManager(); ~TrackObjectManager();
void add(const XMLNode &xml_node, scene::ISceneNode* parent, ModelDefinitionLoader& model_def_loader); void reset();
void init();
void add(const XMLNode &xml_node, scene::ISceneNode* parent,
ModelDefinitionLoader& model_def_loader);
void update(float dt); void update(float dt);
void handleExplosion(const Vec3 &pos, const PhysicalObject *mp, void handleExplosion(const Vec3 &pos, const PhysicalObject *mp,
bool secondary_hits=true); bool secondary_hits=true);
void reset();
void init();
void disable(std::string name); void disable(std::string name);
void enable (std::string name); void enable (std::string name);
bool getStatus(std::string name); bool getStatus(std::string name);
void castRay(const btVector3 &from,
const btVector3 &to, btVector3 *hit_point,
const Material **material, btVector3 *normal = NULL,
bool interpolate_normal = false) const;
/** Enable or disable fog on objects */ /** Enable or disable fog on objects */
void enableFog(bool enable); void enableFog(bool enable);