stk-code_catmod/lib/angelscript/source/as_array.h

517 lines
10 KiB
C
Raw Normal View History

/*
AngelCode Scripting Library
Copyright (c) 2003-2012 Andreas Jonsson
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.
Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you
must not claim that you wrote the original software. If you use
this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
The original version of this library can be located at:
http://www.angelcode.com/angelscript/
Andreas Jonsson
andreas@angelcode.com
*/
#ifndef AS_ARRAY_H
#define AS_ARRAY_H
#if !defined(AS_NO_MEMORY_H)
#include <memory.h>
#endif
#include <string.h> // some compilers declare memcpy() here
#ifdef _MSC_VER
#pragma warning(disable:4345) // warning about a change in how the code is handled in this version
#endif
BEGIN_AS_NAMESPACE
template <class T> class asCArray
{
public:
asCArray();
asCArray(const asCArray<T> &);
asCArray(size_t reserve);
~asCArray();
void Allocate(size_t numElements, bool keepData);
void AllocateNoConstruct(size_t numElements, bool keepData);
size_t GetCapacity() const;
void PushLast(const T &element);
T PopLast();
bool SetLength(size_t numElements);
bool SetLengthNoConstruct(size_t numElements);
size_t GetLength() const;
void Copy(const T*, size_t count);
asCArray<T> &operator =(const asCArray<T> &);
void SwapWith(asCArray<T> &other);
const T &operator [](size_t index) const;
T &operator [](size_t index);
T *AddressOf();
const T *AddressOf() const;
void Concatenate(const asCArray<T> &);
void Concatenate(T*, unsigned int count);
bool Exists(const T &element) const;
int IndexOf(const T &element) const;
void RemoveIndex(size_t index); // Removes the entry without reordering the array
void RemoveValue(const T &element); // Removes the value without reordering the array
void RemoveIndexUnordered(size_t index); // Removes the entry without keeping the order
bool operator==(const asCArray<T> &) const;
bool operator!=(const asCArray<T> &) const;
protected:
T *array;
size_t length;
size_t maxLength;
char buf[8];
};
// Implementation
template <class T>
T *asCArray<T>::AddressOf()
{
return array;
}
template <class T>
const T *asCArray<T>::AddressOf() const
{
return array;
}
template <class T>
asCArray<T>::asCArray(void)
{
array = 0;
length = 0;
maxLength = 0;
}
template <class T>
asCArray<T>::asCArray(const asCArray<T> &copy)
{
array = 0;
length = 0;
maxLength = 0;
*this = copy;
}
template <class T>
asCArray<T>::asCArray(size_t reserve)
{
array = 0;
length = 0;
maxLength = 0;
Allocate(reserve, false);
}
template <class T>
asCArray<T>::~asCArray(void)
{
// Allocating a zero length array will free all memory
Allocate(0,0);
}
template <class T>
size_t asCArray<T>::GetLength() const
{
return length;
}
template <class T>
const T &asCArray<T>::operator [](size_t index) const
{
asASSERT(index < length);
return array[index];
}
template <class T>
T &asCArray<T>::operator [](size_t index)
{
asASSERT(index < length);
return array[index];
}
template <class T>
void asCArray<T>::PushLast(const T &element)
{
if( length == maxLength )
{
if( maxLength == 0 )
Allocate(1, false);
else
Allocate(2*maxLength, true);
if( length == maxLength )
{
// Out of memory. Return without doing anything
return;
}
}
array[length++] = element;
}
template <class T>
T asCArray<T>::PopLast()
{
asASSERT(length > 0);
return array[--length];
}
template <class T>
void asCArray<T>::Allocate(size_t numElements, bool keepData)
{
// We have 4 situations
// 1. The previous array is 8 bytes or smaller and the new array is also 8 bytes or smaller
// 2. The previous array is 8 bytes or smaller and the new array is larger than 8 bytes
// 3. The previous array is larger than 8 bytes and the new array is 8 bytes or smaller
// 4. The previous array is larger than 8 bytes and the new array is also larger than 8 bytes
T *tmp = 0;
if( numElements )
{
if( sizeof(T)*numElements <= 8 )
// Use the internal buffer
tmp = reinterpret_cast<T*>(buf);
else
{
// Allocate the array and construct each of the elements
tmp = asNEWARRAY(T,numElements);
if( tmp == 0 )
{
// Out of memory. Return without doing anything
return;
}
}
if( array == tmp )
{
// Construct only the newly allocated elements
for( size_t n = length; n < numElements; n++ )
new (&tmp[n]) T();
}
else
{
// Construct all elements
for( size_t n = 0; n < numElements; n++ )
new (&tmp[n]) T();
}
}
if( array )
{
size_t oldLength = length;
if( array == tmp )
{
if( keepData )
{
if( length > numElements )
length = numElements;
}
else
length = 0;
// Call the destructor for elements that are no longer used
for( size_t n = length; n < oldLength; n++ )
array[n].~T();
}
else
{
if( keepData )
{
if( length > numElements )
length = numElements;
for( size_t n = 0; n < length; n++ )
tmp[n] = array[n];
}
else
length = 0;
// Call the destructor for all elements
for( size_t n = 0; n < oldLength; n++ )
array[n].~T();
if( array != reinterpret_cast<T*>(buf) )
asDELETEARRAY(array);
}
}
array = tmp;
maxLength = numElements;
}
template <class T>
void asCArray<T>::AllocateNoConstruct(size_t numElements, bool keepData)
{
// We have 4 situations
// 1. The previous array is 8 bytes or smaller and the new array is also 8 bytes or smaller
// 2. The previous array is 8 bytes or smaller and the new array is larger than 8 bytes
// 3. The previous array is larger than 8 bytes and the new array is 8 bytes or smaller
// 4. The previous array is larger than 8 bytes and the new array is also larger than 8 bytes
T *tmp = 0;
if( numElements )
{
if( sizeof(T)*numElements <= 8 )
// Use the internal buffer
tmp = reinterpret_cast<T*>(buf);
else
{
// Allocate the array and construct each of the elements
tmp = asNEWARRAY(T,numElements);
if( tmp == 0 )
{
// Out of memory. Return without doing anything
return;
}
}
}
if( array )
{
if( array == tmp )
{
if( keepData )
{
if( length > numElements )
length = numElements;
}
else
length = 0;
}
else
{
if( keepData )
{
if( length > numElements )
length = numElements;
memcpy(tmp, array, sizeof(T)*length);
}
else
length = 0;
if( array != reinterpret_cast<T*>(buf) )
asDELETEARRAY(array);
}
}
array = tmp;
maxLength = numElements;
}
template <class T>
size_t asCArray<T>::GetCapacity() const
{
return maxLength;
}
template <class T>
bool asCArray<T>::SetLength(size_t numElements)
{
if( numElements > maxLength )
{
Allocate(numElements, true);
if( numElements > maxLength )
{
// Out of memory. Return without doing anything
return false;
}
}
length = numElements;
return true;
}
template <class T>
bool asCArray<T>::SetLengthNoConstruct(size_t numElements)
{
if( numElements > maxLength )
{
AllocateNoConstruct(numElements, true);
if( numElements > maxLength )
{
// Out of memory. Return without doing anything
return false;
}
}
length = numElements;
return true;
}
template <class T>
void asCArray<T>::Copy(const T *data, size_t count)
{
if( maxLength < count )
{
Allocate(count, false);
if( maxLength < count )
{
// Out of memory. Return without doing anything
return;
}
}
for( size_t n = 0; n < count; n++ )
array[n] = data[n];
length = count;
}
template <class T>
asCArray<T> &asCArray<T>::operator =(const asCArray<T> &copy)
{
Copy(copy.array, copy.length);
return *this;
}
template <class T>
void asCArray<T>::SwapWith(asCArray<T> &other)
{
T *tmpArray = array;
size_t tmpLength = length;
size_t tmpMaxLength = maxLength;
char tmpBuf[sizeof(buf)];
memcpy(tmpBuf, buf, sizeof(buf));
array = other.array;
length = other.length;
maxLength = other.maxLength;
memcpy(buf, other.buf, sizeof(buf));
other.array = tmpArray;
other.length = tmpLength;
other.maxLength = tmpMaxLength;
memcpy(other.buf, tmpBuf, sizeof(buf));
// If the data is in the internal buffer, then the array pointer must refer to it
if( array == reinterpret_cast<T*>(other.buf) )
array = reinterpret_cast<T*>(buf);
if( other.array == reinterpret_cast<T*>(buf) )
other.array = reinterpret_cast<T*>(other.buf);
}
template <class T>
bool asCArray<T>::operator ==(const asCArray<T> &other) const
{
if( length != other.length ) return false;
for( size_t n = 0; n < length; n++ )
if( array[n] != other.array[n] )
return false;
return true;
}
template <class T>
bool asCArray<T>::operator !=(const asCArray<T> &other) const
{
return !(*this == other);
}
template <class T>
void asCArray<T>::Concatenate(const asCArray<T> &other)
{
if( maxLength < length + other.length )
Allocate(length + other.length, true);
for( size_t n = 0; n < other.length; n++ )
array[length+n] = other.array[n];
length += other.length;
}
template <class T>
void asCArray<T>::Concatenate(T* array, unsigned int count)
{
for( unsigned int c = 0; c < count; c++ )
PushLast(array[c]);
}
template <class T>
bool asCArray<T>::Exists(const T &e) const
{
return IndexOf(e) == -1 ? false : true;
}
template <class T>
int asCArray<T>::IndexOf(const T &e) const
{
for( size_t n = 0; n < length; n++ )
if( array[n] == e ) return static_cast<int>(n);
return -1;
}
template <class T>
void asCArray<T>::RemoveIndex(size_t index)
{
if( index < length )
{
for( size_t n = index; n < length-1; n++ )
array[n] = array[n+1];
PopLast();
}
}
template <class T>
void asCArray<T>::RemoveValue(const T &e)
{
for( size_t n = 0; n < length; n++ )
{
if( array[n] == e )
{
RemoveIndex(n);
break;
}
}
}
template <class T>
void asCArray<T>::RemoveIndexUnordered(size_t index)
{
if( index == length - 1 )
PopLast();
else if( index < length )
array[index] = PopLast();
}
END_AS_NAMESPACE
#endif