stk-code_catmod/lib/irrlicht/source/Irrlicht/CSoftwareDriver2.cpp

2723 lines
77 KiB
C++
Raw Normal View History

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "CSoftwareDriver2.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
#include "SoftwareDriver2_helper.h"
#include "CSoftwareTexture2.h"
#include "CSoftware2MaterialRenderer.h"
#include "S3DVertex.h"
#include "S4DVertex.h"
#include "CBlit.h"
#define MAT_TEXTURE(tex) ( (video::CSoftwareTexture2*) Material.org.getTexture ( tex ) )
namespace irr
{
namespace video
{
namespace glsl
{
typedef sVec4 vec4;
typedef sVec3 vec3;
typedef sVec2 vec2;
#define in
#define uniform
#define attribute
#define varying
#ifdef _MSC_VER
#pragma warning(disable:4244)
#endif
struct mat4{
float m[4][4];
vec4 operator* ( const vec4 &in ) const
{
vec4 out;
return out;
}
};
struct mat3{
float m[3][3];
vec3 operator* ( const vec3 &in ) const
{
vec3 out;
return out;
}
};
const int gl_MaxLights = 8;
inline float dot (float x, float y) { return x * y; }
inline float dot ( const vec2 &x, const vec2 &y) { return x.x * y.x + x.y * y.y; }
inline float dot ( const vec3 &x, const vec3 &y) { return x.x * y.x + x.y * y.y + x.z * y.z; }
inline float dot ( const vec4 &x, const vec4 &y) { return x.x * y.x + x.y * y.y + x.z * y.z + x.w * y.w; }
inline float reflect (float I, float N) { return I - 2.0 * dot (N, I) * N; }
inline vec2 reflect (const vec2 &I, const vec2 &N) { return I - N * 2.0 * dot (N, I); }
inline vec3 reflect (const vec3 &I, const vec3 &N) { return I - N * 2.0 * dot (N, I); }
inline vec4 reflect (const vec4 &I, const vec4 &N) { return I - N * 2.0 * dot (N, I); }
inline float refract (float I, float N, float eta){
const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
if (k < 0.0)
return 0.0;
return eta * I - (eta * dot (N, I) + sqrt (k)) * N;
}
inline vec2 refract (const vec2 &I, const vec2 &N, float eta){
const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
if (k < 0.0)
return vec2 (0.0);
return I * eta - N * (eta * dot (N, I) + sqrt (k));
}
inline vec3 refract (const vec3 &I, const vec3 &N, float eta) {
const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
if (k < 0.0)
return vec3 (0.0);
return I * eta - N * (eta * dot (N, I) + sqrt (k));
}
inline vec4 refract (const vec4 &I, const vec4 &N, float eta) {
const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
if (k < 0.0)
return vec4 (0.0);
return I * eta - N * (eta * dot (N, I) + sqrt (k));
}
inline float length ( const vec3 &v ) { return sqrtf ( v.x * v.x + v.y * v.y + v.z * v.z ); }
vec3 normalize ( const vec3 &v ) { float l = 1.f / length ( v ); return vec3 ( v.x * l, v.y * l, v.z * l ); }
float max ( float a, float b ) { return a > b ? a : b; }
float min ( float a, float b ) { return a < b ? a : b; }
vec4 clamp ( const vec4 &a, f32 low, f32 high ) { return vec4 ( min (max(a.x,low), high), min (max(a.y,low), high), min (max(a.z,low), high), min (max(a.w,low), high) ); }
typedef int sampler2D;
sampler2D texUnit0;
vec4 texture2D (sampler2D sampler, const vec2 &coord) { return vec4 (0.0); }
struct gl_LightSourceParameters {
vec4 ambient; // Acli
vec4 diffuse; // Dcli
vec4 specular; // Scli
vec4 position; // Ppli
vec4 halfVector; // Derived: Hi
vec3 spotDirection; // Sdli
float spotExponent; // Srli
float spotCutoff; // Crli
// (range: [0.0,90.0], 180.0)
float spotCosCutoff; // Derived: cos(Crli)
// (range: [1.0,0.0],-1.0)
float constantAttenuation; // K0
float linearAttenuation; // K1
float quadraticAttenuation;// K2
};
uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];
struct gl_LightModelParameters {
vec4 ambient;
};
uniform gl_LightModelParameters gl_LightModel;
struct gl_LightModelProducts {
vec4 sceneColor;
};
uniform gl_LightModelProducts gl_FrontLightModelProduct;
uniform gl_LightModelProducts gl_BackLightModelProduct;
struct gl_LightProducts {
vec4 ambient;
vec4 diffuse;
vec4 specular;
};
uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights];
uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];
struct gl_MaterialParameters
{
vec4 emission; // Ecm
vec4 ambient; // Acm
vec4 diffuse; // Dcm
vec4 specular; // Scm
float shininess; // Srm
};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;
// GLSL has some built-in attributes in a vertex shader:
attribute vec4 gl_Vertex; // 4D vector representing the vertex position
attribute vec3 gl_Normal; // 3D vector representing the vertex normal
attribute vec4 gl_Color; // 4D vector representing the vertex color
attribute vec4 gl_MultiTexCoord0; // 4D vector representing the texture coordinate of texture unit X
attribute vec4 gl_MultiTexCoord1; // 4D vector representing the texture coordinate of texture unit X
uniform mat4 gl_ModelViewMatrix; //4x4 Matrix representing the model-view matrix.
uniform mat4 gl_ModelViewProjectionMatrix; //4x4 Matrix representing the model-view-projection matrix.
uniform mat3 gl_NormalMatrix; //3x3 Matrix representing the inverse transpose model-view matrix. This matrix is used for normal transformation.
varying vec4 gl_FrontColor; // 4D vector representing the primitives front color
varying vec4 gl_FrontSecondaryColor; // 4D vector representing the primitives second front color
varying vec4 gl_BackColor; // 4D vector representing the primitives back color
varying vec4 gl_TexCoord[4]; // 4D vector representing the Xth texture coordinate
// shader output
varying vec4 gl_Position; // 4D vector representing the final processed vertex position. Only available in vertex shader.
varying vec4 gl_FragColor; // 4D vector representing the final color which is written in the frame buffer. Only available in fragment shader.
varying float gl_FragDepth; // float representing the depth which is written in the depth buffer. Only available in fragment shader.
varying vec4 gl_SecondaryColor;
varying float gl_FogFragCoord;
vec4 ftransform(void)
{
return gl_ModelViewProjectionMatrix * gl_Vertex;
}
vec3 fnormal(void)
{
//Compute the normal
vec3 normal = gl_NormalMatrix * gl_Normal;
normal = normalize(normal);
return normal;
}
struct program1
{
vec4 Ambient;
vec4 Diffuse;
vec4 Specular;
void pointLight(in int i, in vec3 normal, in vec3 eye, in vec3 ecPosition3)
{
float nDotVP; // normal . light direction
float nDotHV; // normal . light half vector
float pf; // power factor
float attenuation; // computed attenuation factor
float d; // distance from surface to light source
vec3 VP; // direction from surface to light position
vec3 halfVector; // direction of maximum highlights
// Compute vector from surface to light position
VP = vec3 (gl_LightSource[i].position) - ecPosition3;
// Compute distance between surface and light position
d = length(VP);
// Normalize the vector from surface to light position
VP = normalize(VP);
// Compute attenuation
attenuation = 1.0 / (gl_LightSource[i].constantAttenuation +
gl_LightSource[i].linearAttenuation * d +
gl_LightSource[i].quadraticAttenuation * d * d);
halfVector = normalize(VP + eye);
nDotVP = max(0.0, dot(normal, VP));
nDotHV = max(0.0, dot(normal, halfVector));
if (nDotVP == 0.0)
{
pf = 0.0;
}
else
{
pf = pow(nDotHV, gl_FrontMaterial.shininess);
}
Ambient += gl_LightSource[i].ambient * attenuation;
Diffuse += gl_LightSource[i].diffuse * nDotVP * attenuation;
Specular += gl_LightSource[i].specular * pf * attenuation;
}
vec3 fnormal(void)
{
//Compute the normal
vec3 normal = gl_NormalMatrix * gl_Normal;
normal = normalize(normal);
return normal;
}
void ftexgen(in vec3 normal, in vec4 ecPosition)
{
gl_TexCoord[0] = gl_MultiTexCoord0;
}
void flight(in vec3 normal, in vec4 ecPosition, float alphaFade)
{
vec4 color;
vec3 ecPosition3;
vec3 eye;
ecPosition3 = (vec3 (ecPosition)) / ecPosition.w;
eye = vec3 (0.0, 0.0, 1.0);
// Clear the light intensity accumulators
Ambient = vec4 (0.0);
Diffuse = vec4 (0.0);
Specular = vec4 (0.0);
pointLight(0, normal, eye, ecPosition3);
pointLight(1, normal, eye, ecPosition3);
color = gl_FrontLightModelProduct.sceneColor +
Ambient * gl_FrontMaterial.ambient +
Diffuse * gl_FrontMaterial.diffuse;
gl_FrontSecondaryColor = Specular * gl_FrontMaterial.specular;
color = clamp( color, 0.0, 1.0 );
gl_FrontColor = color;
gl_FrontColor.a *= alphaFade;
}
void vertexshader_main (void)
{
vec3 transformedNormal;
float alphaFade = 1.0;
// Eye-coordinate position of vertex, needed in various calculations
vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
// Do fixed functionality vertex transform
gl_Position = ftransform();
transformedNormal = fnormal();
flight(transformedNormal, ecPosition, alphaFade);
ftexgen(transformedNormal, ecPosition);
}
void fragmentshader_main (void)
{
vec4 color;
color = gl_Color;
color *= texture2D(texUnit0, vec2(gl_TexCoord[0].x, gl_TexCoord[0].y) );
color += gl_SecondaryColor;
color = clamp(color, 0.0, 1.0);
gl_FragColor = color;
}
};
}
//! constructor
CBurningVideoDriver::CBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter)
: CNullDriver(io, params.WindowSize), BackBuffer(0), Presenter(presenter),
WindowId(0), SceneSourceRect(0),
RenderTargetTexture(0), RenderTargetSurface(0), CurrentShader(0),
DepthBuffer(0), StencilBuffer ( 0 ),
CurrentOut ( 12 * 2, 128 ), Temp ( 12 * 2, 128 )
{
#ifdef _DEBUG
setDebugName("CBurningVideoDriver");
#endif
// create backbuffer
BackBuffer = new CImage(BURNINGSHADER_COLOR_FORMAT, params.WindowSize);
if (BackBuffer)
{
BackBuffer->fill(SColor(0));
// create z buffer
if ( params.ZBufferBits )
DepthBuffer = video::createDepthBuffer(BackBuffer->getDimension());
// create stencil buffer
if ( params.Stencilbuffer )
StencilBuffer = video::createStencilBuffer(BackBuffer->getDimension());
}
DriverAttributes->setAttribute("MaxTextures", 2);
DriverAttributes->setAttribute("MaxIndices", 1<<16);
DriverAttributes->setAttribute("MaxTextureSize", 1024);
DriverAttributes->setAttribute("MaxLights", glsl::gl_MaxLights);
DriverAttributes->setAttribute("MaxTextureLODBias", 16.f);
DriverAttributes->setAttribute("Version", 47);
// create triangle renderers
irr::memset32 ( BurningShader, 0, sizeof ( BurningShader ) );
//BurningShader[ETR_FLAT] = createTRFlat2(DepthBuffer);
//BurningShader[ETR_FLAT_WIRE] = createTRFlatWire2(DepthBuffer);
BurningShader[ETR_GOURAUD] = createTriangleRendererGouraud2(this);
BurningShader[ETR_GOURAUD_ALPHA] = createTriangleRendererGouraudAlpha2(this );
BurningShader[ETR_GOURAUD_ALPHA_NOZ] = createTRGouraudAlphaNoZ2(this );
//BurningShader[ETR_GOURAUD_WIRE] = createTriangleRendererGouraudWire2(DepthBuffer);
//BurningShader[ETR_TEXTURE_FLAT] = createTriangleRendererTextureFlat2(DepthBuffer);
//BurningShader[ETR_TEXTURE_FLAT_WIRE] = createTriangleRendererTextureFlatWire2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD] = createTriangleRendererTextureGouraud2(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M1] = createTriangleRendererTextureLightMap2_M1(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M2] = createTriangleRendererTextureLightMap2_M2(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M4] = createTriangleRendererGTextureLightMap2_M4(this);
BurningShader[ETR_TEXTURE_LIGHTMAP_M4] = createTriangleRendererTextureLightMap2_M4(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD] = createTriangleRendererTextureLightMap2_Add(this);
BurningShader[ETR_TEXTURE_GOURAUD_DETAIL_MAP] = createTriangleRendererTextureDetailMap2(this);
BurningShader[ETR_TEXTURE_GOURAUD_WIRE] = createTriangleRendererTextureGouraudWire2(this);
BurningShader[ETR_TEXTURE_GOURAUD_NOZ] = createTRTextureGouraudNoZ2(this);
BurningShader[ETR_TEXTURE_GOURAUD_ADD] = createTRTextureGouraudAdd2(this);
BurningShader[ETR_TEXTURE_GOURAUD_ADD_NO_Z] = createTRTextureGouraudAddNoZ2(this);
BurningShader[ETR_TEXTURE_GOURAUD_VERTEX_ALPHA] = createTriangleRendererTextureVertexAlpha2 ( this );
BurningShader[ETR_TEXTURE_GOURAUD_ALPHA] = createTRTextureGouraudAlpha(this );
BurningShader[ETR_TEXTURE_GOURAUD_ALPHA_NOZ] = createTRTextureGouraudAlphaNoZ( this );
BurningShader[ETR_NORMAL_MAP_SOLID] = createTRNormalMap ( this );
BurningShader[ETR_STENCIL_SHADOW] = createTRStencilShadow ( this );
BurningShader[ETR_TEXTURE_BLEND] = createTRTextureBlend( this );
BurningShader[ETR_REFERENCE] = createTriangleRendererReference ( this );
// add the same renderer for all solid types
CSoftware2MaterialRenderer_SOLID* smr = new CSoftware2MaterialRenderer_SOLID( this);
CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR* tmr = new CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR( this);
CSoftware2MaterialRenderer_UNSUPPORTED * umr = new CSoftware2MaterialRenderer_UNSUPPORTED ( this );
//!TODO: addMaterialRenderer depends on pushing order....
addMaterialRenderer ( smr ); // EMT_SOLID
addMaterialRenderer ( smr ); // EMT_SOLID_2_LAYER,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP,
addMaterialRenderer ( tmr ); // EMT_LIGHTMAP_ADD,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_M2,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_M4,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING_M2,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING_M4,
addMaterialRenderer ( smr ); // EMT_DETAIL_MAP,
addMaterialRenderer ( umr ); // EMT_SPHERE_MAP,
addMaterialRenderer ( smr ); // EMT_REFLECTION_2_LAYER,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ADD_COLOR,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ALPHA_CHANNEL,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ALPHA_CHANNEL_REF,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer ( smr ); // EMT_TRANSPARENT_REFLECTION_2_LAYER,
addMaterialRenderer ( smr ); // EMT_NORMAL_MAP_SOLID,
addMaterialRenderer ( umr ); // EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR,
addMaterialRenderer ( tmr ); // EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer ( smr ); // EMT_PARALLAX_MAP_SOLID,
addMaterialRenderer ( tmr ); // EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR,
addMaterialRenderer ( tmr ); // EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer ( tmr ); // EMT_ONETEXTURE_BLEND
smr->drop ();
tmr->drop ();
umr->drop ();
// select render target
setRenderTarget(BackBuffer);
//reset Lightspace
LightSpace.reset ();
// select the right renderer
setCurrentShader();
}
//! destructor
CBurningVideoDriver::~CBurningVideoDriver()
{
// delete Backbuffer
if (BackBuffer)
BackBuffer->drop();
// delete triangle renderers
for (s32 i=0; i<ETR2_COUNT; ++i)
{
if (BurningShader[i])
BurningShader[i]->drop();
}
// delete Additional buffer
if (StencilBuffer)
StencilBuffer->drop();
if (DepthBuffer)
DepthBuffer->drop();
if (RenderTargetTexture)
RenderTargetTexture->drop();
if (RenderTargetSurface)
RenderTargetSurface->drop();
}
/*!
selects the right triangle renderer based on the render states.
*/
void CBurningVideoDriver::setCurrentShader()
{
ITexture *texture0 = Material.org.getTexture(0);
ITexture *texture1 = Material.org.getTexture(1);
bool zMaterialTest = Material.org.ZBuffer != ECFN_NEVER &&
Material.org.ZWriteEnable &&
( AllowZWriteOnTransparent || !Material.org.isTransparent() );
EBurningFFShader shader = zMaterialTest ? ETR_TEXTURE_GOURAUD : ETR_TEXTURE_GOURAUD_NOZ;
TransformationFlag[ ETS_TEXTURE_0] &= ~(ETF_TEXGEN_CAMERA_NORMAL|ETF_TEXGEN_CAMERA_REFLECTION);
LightSpace.Flags &= ~VERTEXTRANSFORM;
switch ( Material.org.MaterialType )
{
case EMT_ONETEXTURE_BLEND:
shader = ETR_TEXTURE_BLEND;
break;
case EMT_TRANSPARENT_ALPHA_CHANNEL_REF:
Material.org.MaterialTypeParam = 0.5f;
// fall through
case EMT_TRANSPARENT_ALPHA_CHANNEL:
if ( texture0 && texture0->hasAlpha () )
{
shader = zMaterialTest ? ETR_TEXTURE_GOURAUD_ALPHA : ETR_TEXTURE_GOURAUD_ALPHA_NOZ;
break;
}
// fall through
case EMT_TRANSPARENT_ADD_COLOR:
shader = zMaterialTest ? ETR_TEXTURE_GOURAUD_ADD : ETR_TEXTURE_GOURAUD_ADD_NO_Z;
break;
case EMT_TRANSPARENT_VERTEX_ALPHA:
shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA;
break;
case EMT_LIGHTMAP:
case EMT_LIGHTMAP_LIGHTING:
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M1;
break;
case EMT_LIGHTMAP_M2:
case EMT_LIGHTMAP_LIGHTING_M2:
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M2;
break;
case EMT_LIGHTMAP_LIGHTING_M4:
if ( texture1 )
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M4;
break;
case EMT_LIGHTMAP_M4:
if ( texture1 )
shader = ETR_TEXTURE_LIGHTMAP_M4;
break;
case EMT_LIGHTMAP_ADD:
if ( texture1 )
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD;
break;
case EMT_DETAIL_MAP:
shader = ETR_TEXTURE_GOURAUD_DETAIL_MAP;
break;
case EMT_SPHERE_MAP:
TransformationFlag[ ETS_TEXTURE_0] |= ETF_TEXGEN_CAMERA_REFLECTION; // ETF_TEXGEN_CAMERA_NORMAL;
LightSpace.Flags |= VERTEXTRANSFORM;
break;
case EMT_REFLECTION_2_LAYER:
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M1;
TransformationFlag[ ETS_TEXTURE_1] |= ETF_TEXGEN_CAMERA_REFLECTION;
LightSpace.Flags |= VERTEXTRANSFORM;
break;
case EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA:
case EMT_NORMAL_MAP_SOLID:
case EMT_PARALLAX_MAP_SOLID:
case EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA:
shader = ETR_NORMAL_MAP_SOLID;
LightSpace.Flags |= VERTEXTRANSFORM;
break;
default:
break;
}
if ( !texture0 )
{
shader = ETR_GOURAUD;
}
if ( Material.org.Wireframe )
{
shader = ETR_TEXTURE_GOURAUD_WIRE;
}
//shader = ETR_REFERENCE;
// switchToTriangleRenderer
CurrentShader = BurningShader[shader];
if ( CurrentShader )
{
CurrentShader->setZCompareFunc ( Material.org.ZBuffer );
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort);
CurrentShader->setMaterial ( Material );
switch ( shader )
{
case ETR_TEXTURE_GOURAUD_ALPHA:
case ETR_TEXTURE_GOURAUD_ALPHA_NOZ:
case ETR_TEXTURE_BLEND:
CurrentShader->setParam ( 0, Material.org.MaterialTypeParam );
break;
default:
break;
}
}
}
//! queries the features of the driver, returns true if feature is available
bool CBurningVideoDriver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const
{
if (!FeatureEnabled[feature])
return false;
switch (feature)
{
#ifdef SOFTWARE_DRIVER_2_BILINEAR
case EVDF_BILINEAR_FILTER:
return true;
#endif
#ifdef SOFTWARE_DRIVER_2_MIPMAPPING
case EVDF_MIP_MAP:
return true;
#endif
case EVDF_STENCIL_BUFFER:
case EVDF_RENDER_TO_TARGET:
case EVDF_MULTITEXTURE:
case EVDF_HARDWARE_TL:
case EVDF_TEXTURE_NSQUARE:
return true;
default:
return false;
}
}
//! sets transformation
void CBurningVideoDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
Transformation[state] = mat;
core::setbit_cond ( TransformationFlag[state], mat.isIdentity(), ETF_IDENTITY );
switch ( state )
{
case ETS_VIEW:
Transformation[ETS_VIEW_PROJECTION].setbyproduct_nocheck (
Transformation[ETS_PROJECTION],
Transformation[ETS_VIEW]
);
getCameraPosWorldSpace ();
break;
case ETS_WORLD:
if ( TransformationFlag[state] & ETF_IDENTITY )
{
Transformation[ETS_WORLD_INVERSE] = Transformation[ETS_WORLD];
TransformationFlag[ETS_WORLD_INVERSE] |= ETF_IDENTITY;
Transformation[ETS_CURRENT] = Transformation[ETS_VIEW_PROJECTION];
}
else
{
//Transformation[ETS_WORLD].getInversePrimitive ( Transformation[ETS_WORLD_INVERSE] );
Transformation[ETS_CURRENT].setbyproduct_nocheck (
Transformation[ETS_VIEW_PROJECTION],
Transformation[ETS_WORLD]
);
}
TransformationFlag[ETS_CURRENT] = 0;
//getLightPosObjectSpace ();
break;
case ETS_TEXTURE_0:
case ETS_TEXTURE_1:
case ETS_TEXTURE_2:
case ETS_TEXTURE_3:
if ( 0 == (TransformationFlag[state] & ETF_IDENTITY ) )
LightSpace.Flags |= VERTEXTRANSFORM;
default:
break;
}
}
//! clears the zbuffer
bool CBurningVideoDriver::beginScene(bool backBuffer, bool zBuffer,
SColor color, const SExposedVideoData& videoData,
core::rect<s32>* sourceRect)
{
CNullDriver::beginScene(backBuffer, zBuffer, color, videoData, sourceRect);
WindowId = videoData.D3D9.HWnd;
SceneSourceRect = sourceRect;
if (backBuffer && BackBuffer)
BackBuffer->fill(color);
if (zBuffer && DepthBuffer)
DepthBuffer->clear();
memset ( TransformationFlag, 0, sizeof ( TransformationFlag ) );
return true;
}
//! presents the rendered scene on the screen, returns false if failed
bool CBurningVideoDriver::endScene()
{
CNullDriver::endScene();
return Presenter->present(BackBuffer, WindowId, SceneSourceRect);
}
//! sets a render target
bool CBurningVideoDriver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer,
bool clearZBuffer, SColor color)
{
if (texture && texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
if (RenderTargetTexture)
RenderTargetTexture->drop();
RenderTargetTexture = texture;
if (RenderTargetTexture)
{
RenderTargetTexture->grab();
setRenderTarget(((CSoftwareTexture2*)RenderTargetTexture)->getTexture());
}
else
{
setRenderTarget(BackBuffer);
}
if (RenderTargetSurface && (clearBackBuffer || clearZBuffer))
{
if (clearZBuffer)
DepthBuffer->clear();
if (clearBackBuffer)
RenderTargetSurface->fill( color );
}
return true;
}
//! sets a render target
void CBurningVideoDriver::setRenderTarget(video::CImage* image)
{
if (RenderTargetSurface)
RenderTargetSurface->drop();
RenderTargetSurface = image;
RenderTargetSize.Width = 0;
RenderTargetSize.Height = 0;
if (RenderTargetSurface)
{
RenderTargetSurface->grab();
RenderTargetSize = RenderTargetSurface->getDimension();
}
setViewPort(core::rect<s32>(0,0,RenderTargetSize.Width,RenderTargetSize.Height));
if (DepthBuffer)
DepthBuffer->setSize(RenderTargetSize);
if (StencilBuffer)
StencilBuffer->setSize(RenderTargetSize);
}
//! sets a viewport
void CBurningVideoDriver::setViewPort(const core::rect<s32>& area)
{
ViewPort = area;
core::rect<s32> rendert(0,0,RenderTargetSize.Width,RenderTargetSize.Height);
ViewPort.clipAgainst(rendert);
Transformation [ ETS_CLIPSCALE ].buildNDCToDCMatrix ( ViewPort, 1 );
if (CurrentShader)
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort);
}
/*
generic plane clipping in homogenous coordinates
special case ndc frustum <-w,w>,<-w,w>,<-w,w>
can be rewritten with compares e.q near plane, a.z < -a.w and b.z < -b.w
*/
const sVec4 CBurningVideoDriver::NDCPlane[6] =
{
sVec4( 0.f, 0.f, -1.f, -1.f ), // near
sVec4( 0.f, 0.f, 1.f, -1.f ), // far
sVec4( 1.f, 0.f, 0.f, -1.f ), // left
sVec4( -1.f, 0.f, 0.f, -1.f ), // right
sVec4( 0.f, 1.f, 0.f, -1.f ), // bottom
sVec4( 0.f, -1.f, 0.f, -1.f ) // top
};
/*
test a vertex if it's inside the standard frustum
this is the generic one..
f32 dotPlane;
for ( u32 i = 0; i!= 6; ++i )
{
dotPlane = v->Pos.dotProduct ( NDCPlane[i] );
core::setbit_cond( flag, dotPlane <= 0.f, 1 << i );
}
// this is the base for ndc frustum <-w,w>,<-w,w>,<-w,w>
core::setbit_cond( flag, ( v->Pos.z - v->Pos.w ) <= 0.f, 1 );
core::setbit_cond( flag, (-v->Pos.z - v->Pos.w ) <= 0.f, 2 );
core::setbit_cond( flag, ( v->Pos.x - v->Pos.w ) <= 0.f, 4 );
core::setbit_cond( flag, (-v->Pos.x - v->Pos.w ) <= 0.f, 8 );
core::setbit_cond( flag, ( v->Pos.y - v->Pos.w ) <= 0.f, 16 );
core::setbit_cond( flag, (-v->Pos.y - v->Pos.w ) <= 0.f, 32 );
*/
#ifdef IRRLICHT_FAST_MATH
REALINLINE u32 CBurningVideoDriver::clipToFrustumTest ( const s4DVertex * v ) const
{
f32 test[6];
u32 flag;
const f32 w = - v->Pos.w;
// a conditional move is needed....FCOMI ( but we don't have it )
// so let the fpu calculate and write it back.
// cpu makes the compare, interleaving
test[0] = v->Pos.z + w;
test[1] = -v->Pos.z + w;
test[2] = v->Pos.x + w;
test[3] = -v->Pos.x + w;
test[4] = v->Pos.y + w;
test[5] = -v->Pos.y + w;
flag = (IR ( test[0] ) ) >> 31;
flag |= (IR ( test[1] ) & 0x80000000 ) >> 30;
flag |= (IR ( test[2] ) & 0x80000000 ) >> 29;
flag |= (IR ( test[3] ) & 0x80000000 ) >> 28;
flag |= (IR ( test[4] ) & 0x80000000 ) >> 27;
flag |= (IR ( test[5] ) & 0x80000000 ) >> 26;
/*
flag = F32_LOWER_EQUAL_0 ( test[0] );
flag |= F32_LOWER_EQUAL_0 ( test[1] ) << 1;
flag |= F32_LOWER_EQUAL_0 ( test[2] ) << 2;
flag |= F32_LOWER_EQUAL_0 ( test[3] ) << 3;
flag |= F32_LOWER_EQUAL_0 ( test[4] ) << 4;
flag |= F32_LOWER_EQUAL_0 ( test[5] ) << 5;
*/
return flag;
}
#else
REALINLINE u32 CBurningVideoDriver::clipToFrustumTest ( const s4DVertex * v ) const
{
u32 flag = 0;
if ( v->Pos.z <= v->Pos.w ) flag |= 1;
if (-v->Pos.z <= v->Pos.w ) flag |= 2;
if ( v->Pos.x <= v->Pos.w ) flag |= 4;
if (-v->Pos.x <= v->Pos.w ) flag |= 8;
if ( v->Pos.y <= v->Pos.w ) flag |= 16;
if (-v->Pos.y <= v->Pos.w ) flag |= 32;
/*
for ( u32 i = 0; i!= 6; ++i )
{
core::setbit_cond( flag, v->Pos.dotProduct ( NDCPlane[i] ) <= 0.f, 1 << i );
}
*/
return flag;
}
#endif // _MSC_VER
u32 CBurningVideoDriver::clipToHyperPlane ( s4DVertex * dest, const s4DVertex * source, u32 inCount, const sVec4 &plane )
{
u32 outCount = 0;
s4DVertex * out = dest;
const s4DVertex * a;
const s4DVertex * b = source;
f32 bDotPlane;
bDotPlane = b->Pos.dotProduct ( plane );
for( u32 i = 1; i < inCount + 1; ++i)
{
const s32 condition = i - inCount;
const s32 index = (( ( condition >> 31 ) & ( i ^ condition ) ) ^ condition ) << 1;
a = &source[ index ];
// current point inside
if ( a->Pos.dotProduct ( plane ) <= 0.f )
{
// last point outside
if ( F32_GREATER_0 ( bDotPlane ) )
{
// intersect line segment with plane
out->interpolate ( *b, *a, bDotPlane / (b->Pos - a->Pos).dotProduct ( plane ) );
out += 2;
outCount += 1;
}
// copy current to out
//*out = *a;
irr::memcpy32_small ( out, a, SIZEOF_SVERTEX * 2 );
b = out;
out += 2;
outCount += 1;
}
else
{
// current point outside
if ( F32_LOWER_EQUAL_0 ( bDotPlane ) )
{
// previous was inside
// intersect line segment with plane
out->interpolate ( *b, *a, bDotPlane / (b->Pos - a->Pos).dotProduct ( plane ) );
out += 2;
outCount += 1;
}
// pointer
b = a;
}
bDotPlane = b->Pos.dotProduct ( plane );
}
return outCount;
}
u32 CBurningVideoDriver::clipToFrustum ( s4DVertex *v0, s4DVertex * v1, const u32 vIn )
{
u32 vOut = vIn;
vOut = clipToHyperPlane ( v1, v0, vOut, NDCPlane[0] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v0, v1, vOut, NDCPlane[1] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v1, v0, vOut, NDCPlane[2] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v0, v1, vOut, NDCPlane[3] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v1, v0, vOut, NDCPlane[4] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v0, v1, vOut, NDCPlane[5] );
return vOut;
}
/*!
Part I:
apply Clip Scale matrix
From Normalized Device Coordiante ( NDC ) Space to Device Coordinate Space ( DC )
Part II:
Project homogeneous vector
homogeneous to non-homogenous coordinates ( dividebyW )
Incoming: ( xw, yw, zw, w, u, v, 1, R, G, B, A )
Outgoing: ( xw/w, yw/w, zw/w, w/w, u/w, v/w, 1/w, R/w, G/w, B/w, A/w )
replace w/w by 1/w
*/
inline void CBurningVideoDriver::ndc_2_dc_and_project ( s4DVertex *dest,s4DVertex *source, u32 vIn ) const
{
u32 g;
for ( g = 0; g != vIn; g += 2 )
{
if ( (dest[g].flag & VERTEX4D_PROJECTED ) == VERTEX4D_PROJECTED )
continue;
dest[g].flag = source[g].flag | VERTEX4D_PROJECTED;
const f32 w = source[g].Pos.w;
const f32 iw = core::reciprocal ( w );
// to device coordinates
dest[g].Pos.x = iw * ( source[g].Pos.x * Transformation [ ETS_CLIPSCALE ][ 0] + w * Transformation [ ETS_CLIPSCALE ][12] );
dest[g].Pos.y = iw * ( source[g].Pos.y * Transformation [ ETS_CLIPSCALE ][ 5] + w * Transformation [ ETS_CLIPSCALE ][13] );
#ifndef SOFTWARE_DRIVER_2_USE_WBUFFER
dest[g].Pos.z = iw * source[g].Pos.z;
#endif
#ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dest[g].Color[0] = source[g].Color[0] * iw;
#else
dest[g].Color[0] = source[g].Color[0];
#endif
#endif
dest[g].LightTangent[0] = source[g].LightTangent[0] * iw;
dest[g].Pos.w = iw;
}
}
inline void CBurningVideoDriver::ndc_2_dc_and_project2 ( const s4DVertex **v, const u32 size ) const
{
u32 g;
for ( g = 0; g != size; g += 1 )
{
s4DVertex * a = (s4DVertex*) v[g];
if ( (a[1].flag & VERTEX4D_PROJECTED ) == VERTEX4D_PROJECTED )
continue;
a[1].flag = a->flag | VERTEX4D_PROJECTED;
// project homogenous vertex, store 1/w
const f32 w = a->Pos.w;
const f32 iw = core::reciprocal ( w );
// to device coordinates
const f32 * p = Transformation [ ETS_CLIPSCALE ].pointer();
a[1].Pos.x = iw * ( a->Pos.x * p[ 0] + w * p[12] );
a[1].Pos.y = iw * ( a->Pos.y * p[ 5] + w * p[13] );
#ifndef SOFTWARE_DRIVER_2_USE_WBUFFER
a[1].Pos.z = a->Pos.z * iw;
#endif
#ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
a[1].Color[0] = a->Color[0] * iw;
#else
a[1].Color[0] = a->Color[0];
#endif
#endif
a[1].LightTangent[0] = a[0].LightTangent[0] * iw;
a[1].Pos.w = iw;
}
}
/*!
crossproduct in projected 2D -> screen area triangle
*/
inline f32 CBurningVideoDriver::screenarea ( const s4DVertex *v ) const
{
return ( ( v[3].Pos.x - v[1].Pos.x ) * ( v[5].Pos.y - v[1].Pos.y ) ) -
( ( v[3].Pos.y - v[1].Pos.y ) * ( v[5].Pos.x - v[1].Pos.x ) );
}
/*!
*/
inline f32 CBurningVideoDriver::texelarea ( const s4DVertex *v, int tex ) const
{
f32 z;
z = ( (v[2].Tex[tex].x - v[0].Tex[tex].x ) * (v[4].Tex[tex].y - v[0].Tex[tex].y ) )
- ( (v[4].Tex[tex].x - v[0].Tex[tex].x ) * (v[2].Tex[tex].y - v[0].Tex[tex].y ) );
return MAT_TEXTURE ( tex )->getLODFactor ( z );
}
/*!
crossproduct in projected 2D
*/
inline f32 CBurningVideoDriver::screenarea2 ( const s4DVertex **v ) const
{
return ( (( v[1] + 1 )->Pos.x - (v[0] + 1 )->Pos.x ) * ( (v[2] + 1 )->Pos.y - (v[0] + 1 )->Pos.y ) ) -
( (( v[1] + 1 )->Pos.y - (v[0] + 1 )->Pos.y ) * ( (v[2] + 1 )->Pos.x - (v[0] + 1 )->Pos.x ) );
}
/*!
*/
inline f32 CBurningVideoDriver::texelarea2 ( const s4DVertex **v, s32 tex ) const
{
f32 z;
z = ( (v[1]->Tex[tex].x - v[0]->Tex[tex].x ) * (v[2]->Tex[tex].y - v[0]->Tex[tex].y ) )
- ( (v[2]->Tex[tex].x - v[0]->Tex[tex].x ) * (v[1]->Tex[tex].y - v[0]->Tex[tex].y ) );
return MAT_TEXTURE ( tex )->getLODFactor ( z );
}
/*!
*/
inline void CBurningVideoDriver::select_polygon_mipmap ( s4DVertex *v, u32 vIn, u32 tex, const core::dimension2du& texSize ) const
{
f32 f[2];
f[0] = (f32) texSize.Width - 0.25f;
f[1] = (f32) texSize.Height - 0.25f;
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
for ( u32 g = 0; g != vIn; g += 2 )
{
(v + g + 1 )->Tex[tex].x = (v + g + 0)->Tex[tex].x * ( v + g + 1 )->Pos.w * f[0];
(v + g + 1 )->Tex[tex].y = (v + g + 0)->Tex[tex].y * ( v + g + 1 )->Pos.w * f[1];
}
#else
for ( u32 g = 0; g != vIn; g += 2 )
{
(v + g + 1 )->Tex[tex].x = (v + g + 0)->Tex[tex].x * f[0];
(v + g + 1 )->Tex[tex].y = (v + g + 0)->Tex[tex].y * f[1];
}
#endif
}
inline void CBurningVideoDriver::select_polygon_mipmap2 ( s4DVertex **v, u32 tex, const core::dimension2du& texSize ) const
{
f32 f[2];
f[0] = (f32) texSize.Width - 0.25f;
f[1] = (f32) texSize.Height - 0.25f;
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
(v[0] + 1 )->Tex[tex].x = v[0]->Tex[tex].x * ( v[0] + 1 )->Pos.w * f[0];
(v[0] + 1 )->Tex[tex].y = v[0]->Tex[tex].y * ( v[0] + 1 )->Pos.w * f[1];
(v[1] + 1 )->Tex[tex].x = v[1]->Tex[tex].x * ( v[1] + 1 )->Pos.w * f[0];
(v[1] + 1 )->Tex[tex].y = v[1]->Tex[tex].y * ( v[1] + 1 )->Pos.w * f[1];
(v[2] + 1 )->Tex[tex].x = v[2]->Tex[tex].x * ( v[2] + 1 )->Pos.w * f[0];
(v[2] + 1 )->Tex[tex].y = v[2]->Tex[tex].y * ( v[2] + 1 )->Pos.w * f[1];
#else
(v[0] + 1 )->Tex[tex].x = v[0]->Tex[tex].x * f[0];
(v[0] + 1 )->Tex[tex].y = v[0]->Tex[tex].y * f[1];
(v[1] + 1 )->Tex[tex].x = v[1]->Tex[tex].x * f[0];
(v[1] + 1 )->Tex[tex].y = v[1]->Tex[tex].y * f[1];
(v[2] + 1 )->Tex[tex].x = v[2]->Tex[tex].x * f[0];
(v[2] + 1 )->Tex[tex].y = v[2]->Tex[tex].y * f[1];
#endif
}
// Vertex Cache
const SVSize CBurningVideoDriver::vSize[] =
{
{ VERTEX4D_FORMAT_TEXTURE_1 | VERTEX4D_FORMAT_COLOR_1, sizeof(S3DVertex), 1 },
{ VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1, sizeof(S3DVertex2TCoords),2 },
{ VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1 | VERTEX4D_FORMAT_BUMP_DOT3, sizeof(S3DVertexTangents),2 },
{ VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1, sizeof(S3DVertex), 2 }, // reflection map
{ 0, sizeof(f32) * 3, 0 }, // core::vector3df*
};
/*!
fill a cache line with transformed, light and clipp test triangles
*/
void CBurningVideoDriver::VertexCache_fill(const u32 sourceIndex, const u32 destIndex)
{
u8 * source;
s4DVertex *dest;
source = (u8*) VertexCache.vertices + ( sourceIndex * vSize[VertexCache.vType].Pitch );
// it's a look ahead so we never hit it..
// but give priority...
//VertexCache.info[ destIndex ].hit = hitCount;
// store info
VertexCache.info[ destIndex ].index = sourceIndex;
VertexCache.info[ destIndex ].hit = 0;
// destination Vertex
dest = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( destIndex << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
// transform Model * World * Camera * Projection * NDCSpace matrix
const S3DVertex *base = ((S3DVertex*) source );
Transformation [ ETS_CURRENT].transformVect ( &dest->Pos.x, base->Pos );
//mhm ;-) maybe no goto
if ( VertexCache.vType == 4 ) goto clipandproject;
#if defined (SOFTWARE_DRIVER_2_LIGHTING) || defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM )
// vertex normal in light space
if ( Material.org.Lighting || (LightSpace.Flags & VERTEXTRANSFORM) )
{
if ( TransformationFlag[ETS_WORLD] & ETF_IDENTITY )
{
LightSpace.normal.set ( base->Normal.X, base->Normal.Y, base->Normal.Z, 1.f );
LightSpace.vertex.set ( base->Pos.X, base->Pos.Y, base->Pos.Z, 1.f );
}
else
{
Transformation[ETS_WORLD].rotateVect ( &LightSpace.normal.x, base->Normal );
// vertex in light space
if ( LightSpace.Flags & ( POINTLIGHT | FOG | SPECULAR | VERTEXTRANSFORM) )
Transformation[ETS_WORLD].transformVect ( &LightSpace.vertex.x, base->Pos );
}
if ( LightSpace.Flags & NORMALIZE )
LightSpace.normal.normalize_xyz();
}
#endif
#if defined ( SOFTWARE_DRIVER_2_USE_VERTEX_COLOR )
// apply lighting model
#if defined (SOFTWARE_DRIVER_2_LIGHTING)
if ( Material.org.Lighting )
{
lightVertex ( dest, base->Color.color );
}
else
{
dest->Color[0].setA8R8G8B8 ( base->Color.color );
}
#else
dest->Color[0].setA8R8G8B8 ( base->Color.color );
#endif
#endif
// Texture Transform
#if !defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM )
irr::memcpy32_small ( &dest->Tex[0],&base->TCoords,
vSize[VertexCache.vType].TexSize << 3 // * ( sizeof ( f32 ) * 2 )
);
#else
if ( 0 == (LightSpace.Flags & VERTEXTRANSFORM) )
{
irr::memcpy32_small ( &dest->Tex[0],&base->TCoords,
vSize[VertexCache.vType].TexSize << 3 // * ( sizeof ( f32 ) * 2 )
);
}
else
{
/*
Generate texture coordinates as linear functions so that:
u = Ux*x + Uy*y + Uz*z + Uw
v = Vx*x + Vy*y + Vz*z + Vw
The matrix M for this case is:
Ux Vx 0 0
Uy Vy 0 0
Uz Vz 0 0
Uw Vw 0 0
*/
u32 t;
sVec4 n;
sVec2 srcT;
for ( t = 0; t != vSize[VertexCache.vType].TexSize; ++t )
{
const core::matrix4& M = Transformation [ ETS_TEXTURE_0 + t ];
// texgen
if ( TransformationFlag [ ETS_TEXTURE_0 + t ] & (ETF_TEXGEN_CAMERA_NORMAL|ETF_TEXGEN_CAMERA_REFLECTION) )
{
n.x = LightSpace.campos.x - LightSpace.vertex.x;
n.y = LightSpace.campos.x - LightSpace.vertex.y;
n.z = LightSpace.campos.x - LightSpace.vertex.z;
n.normalize_xyz();
n.x += LightSpace.normal.x;
n.y += LightSpace.normal.y;
n.z += LightSpace.normal.z;
n.normalize_xyz();
const f32 *view = Transformation[ETS_VIEW].pointer();
if ( TransformationFlag [ ETS_TEXTURE_0 + t ] & ETF_TEXGEN_CAMERA_REFLECTION )
{
srcT.x = 0.5f * ( 1.f + (n.x * view[0] + n.y * view[4] + n.z * view[8] ));
srcT.y = 0.5f * ( 1.f + (n.x * view[1] + n.y * view[5] + n.z * view[9] ));
}
else
{
srcT.x = 0.5f * ( 1.f + (n.x * view[0] + n.y * view[1] + n.z * view[2] ));
srcT.y = 0.5f * ( 1.f + (n.x * view[4] + n.y * view[5] + n.z * view[6] ));
}
}
else
{
irr::memcpy32_small ( &srcT,(&base->TCoords) + t,
sizeof ( f32 ) * 2 );
}
switch ( Material.org.TextureLayer[t].TextureWrapU )
{
case ETC_CLAMP:
case ETC_CLAMP_TO_EDGE:
case ETC_CLAMP_TO_BORDER:
dest->Tex[t].x = core::clamp ( (f32) ( M[0] * srcT.x + M[4] * srcT.y + M[8] ), 0.f, 1.f );
break;
case ETC_MIRROR:
dest->Tex[t].x = M[0] * srcT.x + M[4] * srcT.y + M[8];
if (core::fract(dest->Tex[t].x)>0.5f)
dest->Tex[t].x=1.f-dest->Tex[t].x;
break;
case ETC_MIRROR_CLAMP:
case ETC_MIRROR_CLAMP_TO_EDGE:
case ETC_MIRROR_CLAMP_TO_BORDER:
dest->Tex[t].x = core::clamp ( (f32) ( M[0] * srcT.x + M[4] * srcT.y + M[8] ), 0.f, 1.f );
if (core::fract(dest->Tex[t].x)>0.5f)
dest->Tex[t].x=1.f-dest->Tex[t].x;
break;
case ETC_REPEAT:
default:
dest->Tex[t].x = M[0] * srcT.x + M[4] * srcT.y + M[8];
break;
}
switch ( Material.org.TextureLayer[t].TextureWrapV )
{
case ETC_CLAMP:
case ETC_CLAMP_TO_EDGE:
case ETC_CLAMP_TO_BORDER:
dest->Tex[t].y = core::clamp ( (f32) ( M[1] * srcT.x + M[5] * srcT.y + M[9] ), 0.f, 1.f );
break;
case ETC_MIRROR:
dest->Tex[t].y = M[1] * srcT.x + M[5] * srcT.y + M[9];
if (core::fract(dest->Tex[t].y)>0.5f)
dest->Tex[t].y=1.f-dest->Tex[t].y;
break;
case ETC_MIRROR_CLAMP:
case ETC_MIRROR_CLAMP_TO_EDGE:
case ETC_MIRROR_CLAMP_TO_BORDER:
dest->Tex[t].y = core::clamp ( (f32) ( M[1] * srcT.x + M[5] * srcT.y + M[9] ), 0.f, 1.f );
if (core::fract(dest->Tex[t].y)>0.5f)
dest->Tex[t].y=1.f-dest->Tex[t].y;
break;
case ETC_REPEAT:
default:
dest->Tex[t].y = M[1] * srcT.x + M[5] * srcT.y + M[9];
break;
}
}
}
#if 0
// tangent space light vector, emboss
if ( Lights.size () && ( vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_BUMP_DOT3 ) )
{
const S3DVertexTangents *tangent = ((S3DVertexTangents*) source );
const SBurningShaderLight &light = LightSpace.Light[0];
sVec4 vp;
vp.x = light.pos.x - LightSpace.vertex.x;
vp.y = light.pos.y - LightSpace.vertex.y;
vp.z = light.pos.z - LightSpace.vertex.z;
vp.normalize_xyz();
LightSpace.tangent.x = vp.x * tangent->Tangent.X + vp.y * tangent->Tangent.Y + vp.z * tangent->Tangent.Z;
LightSpace.tangent.y = vp.x * tangent->Binormal.X + vp.y * tangent->Binormal.Y + vp.z * tangent->Binormal.Z;
//LightSpace.tangent.z = vp.x * tangent->Normal.X + vp.y * tangent->Normal.Y + vp.z * tangent->Normal.Z;
LightSpace.tangent.z = 0.f;
LightSpace.tangent.normalize_xyz();
f32 scale = 1.f / 128.f;
if ( Material.org.MaterialTypeParam > 0.f )
scale = Material.org.MaterialTypeParam;
// emboss, shift coordinates
dest->Tex[1].x = dest->Tex[0].x + LightSpace.tangent.x * scale;
dest->Tex[1].y = dest->Tex[0].y + LightSpace.tangent.y * scale;
//dest->Tex[1].z = LightSpace.tangent.z * scale;
}
#endif
if ( LightSpace.Light.size () && ( vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_BUMP_DOT3 ) )
{
const S3DVertexTangents *tangent = ((S3DVertexTangents*) source );
sVec4 vp;
dest->LightTangent[0].x = 0.f;
dest->LightTangent[0].y = 0.f;
dest->LightTangent[0].z = 0.f;
for ( u32 i = 0; i < 2 && i < LightSpace.Light.size (); ++i )
{
const SBurningShaderLight &light = LightSpace.Light[i];
if ( !light.LightIsOn )
continue;
vp.x = light.pos.x - LightSpace.vertex.x;
vp.y = light.pos.y - LightSpace.vertex.y;
vp.z = light.pos.z - LightSpace.vertex.z;
/*
vp.x = light.pos_objectspace.x - base->Pos.X;
vp.y = light.pos_objectspace.y - base->Pos.Y;
vp.z = light.pos_objectspace.z - base->Pos.Z;
*/
vp.normalize_xyz();
// transform by tangent matrix
sVec3 l;
#if 1
l.x = (vp.x * tangent->Tangent.X + vp.y * tangent->Tangent.Y + vp.z * tangent->Tangent.Z );
l.y = (vp.x * tangent->Binormal.X + vp.y * tangent->Binormal.Y + vp.z * tangent->Binormal.Z );
l.z = (vp.x * tangent->Normal.X + vp.y * tangent->Normal.Y + vp.z * tangent->Normal.Z );
#else
l.x = (vp.x * tangent->Tangent.X + vp.y * tangent->Binormal.X + vp.z * tangent->Normal.X );
l.y = (vp.x * tangent->Tangent.Y + vp.y * tangent->Binormal.Y + vp.z * tangent->Normal.Y );
l.z = (vp.x * tangent->Tangent.Z + vp.y * tangent->Binormal.Z + vp.z * tangent->Normal.Z );
#endif
/*
f32 scale = 1.f / 128.f;
scale /= dest->LightTangent[0].b;
// emboss, shift coordinates
dest->Tex[1].x = dest->Tex[0].x + l.r * scale;
dest->Tex[1].y = dest->Tex[0].y + l.g * scale;
*/
dest->Tex[1].x = dest->Tex[0].x;
dest->Tex[1].y = dest->Tex[0].y;
// scale bias
dest->LightTangent[0].x += l.x;
dest->LightTangent[0].y += l.y;
dest->LightTangent[0].z += l.z;
}
dest->LightTangent[0].setLength ( 0.5f );
dest->LightTangent[0].x += 0.5f;
dest->LightTangent[0].y += 0.5f;
dest->LightTangent[0].z += 0.5f;
}
#endif
clipandproject:
dest[0].flag = dest[1].flag = vSize[VertexCache.vType].Format;
// test vertex
dest[0].flag |= clipToFrustumTest ( dest);
// to DC Space, project homogenous vertex
if ( (dest[0].flag & VERTEX4D_CLIPMASK ) == VERTEX4D_INSIDE )
{
ndc_2_dc_and_project2 ( (const s4DVertex**) &dest, 1 );
}
//return dest;
}
//
REALINLINE s4DVertex * CBurningVideoDriver::VertexCache_getVertex ( const u32 sourceIndex )
{
for ( s32 i = 0; i < VERTEXCACHE_ELEMENT; ++i )
{
if ( VertexCache.info[ i ].index == sourceIndex )
{
return (s4DVertex *) ( (u8*) VertexCache.mem.data + ( i << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
}
}
return 0;
}
/*
Cache based on linear walk indices
fill blockwise on the next 16(Cache_Size) unique vertices in indexlist
merge the next 16 vertices with the current
*/
REALINLINE void CBurningVideoDriver::VertexCache_get(const s4DVertex ** face)
{
SCacheInfo info[VERTEXCACHE_ELEMENT];
// next primitive must be complete in cache
if ( VertexCache.indicesIndex - VertexCache.indicesRun < 3 &&
VertexCache.indicesIndex < VertexCache.indexCount
)
{
// rewind to start of primitive
VertexCache.indicesIndex = VertexCache.indicesRun;
irr::memset32 ( info, VERTEXCACHE_MISS, sizeof ( info ) );
// get the next unique vertices cache line
u32 fillIndex = 0;
u32 dIndex;
u32 i;
u32 sourceIndex;
while ( VertexCache.indicesIndex < VertexCache.indexCount &&
fillIndex < VERTEXCACHE_ELEMENT
)
{
switch ( VertexCache.iType )
{
case 1:
sourceIndex = ((u16*)VertexCache.indices) [ VertexCache.indicesIndex ];
break;
case 2:
sourceIndex = ((u32*)VertexCache.indices) [ VertexCache.indicesIndex ];
break;
case 4:
sourceIndex = VertexCache.indicesIndex;
break;
}
VertexCache.indicesIndex += 1;
// if not exist, push back
s32 exist = 0;
for ( dIndex = 0; dIndex < fillIndex; ++dIndex )
{
if ( info[ dIndex ].index == sourceIndex )
{
exist = 1;
break;
}
}
if ( 0 == exist )
{
info[fillIndex++].index = sourceIndex;
}
}
// clear marks
for ( i = 0; i!= VERTEXCACHE_ELEMENT; ++i )
{
VertexCache.info[i].hit = 0;
}
// mark all existing
for ( i = 0; i!= fillIndex; ++i )
{
for ( dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex )
{
if ( VertexCache.info[ dIndex ].index == info[i].index )
{
info[i].hit = dIndex;
VertexCache.info[ dIndex ].hit = 1;
break;
}
}
}
// fill new
for ( i = 0; i!= fillIndex; ++i )
{
if ( info[i].hit != VERTEXCACHE_MISS )
continue;
for ( dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex )
{
if ( 0 == VertexCache.info[dIndex].hit )
{
VertexCache_fill ( info[i].index, dIndex );
VertexCache.info[dIndex].hit += 1;
info[i].hit = dIndex;
break;
}
}
}
}
const u32 i0 = core::if_c_a_else_0 ( VertexCache.pType != scene::EPT_TRIANGLE_FAN, VertexCache.indicesRun );
switch ( VertexCache.iType )
{
case 1:
{
const u16 *p = (const u16 *) VertexCache.indices;
face[0] = VertexCache_getVertex ( p[ i0 ] );
face[1] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 1] );
face[2] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 2] );
}
break;
case 2:
{
const u32 *p = (const u32 *) VertexCache.indices;
face[0] = VertexCache_getVertex ( p[ i0 ] );
face[1] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 1] );
face[2] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 2] );
}
break;
case 4:
face[0] = VertexCache_getVertex ( VertexCache.indicesRun + 0 );
face[1] = VertexCache_getVertex ( VertexCache.indicesRun + 1 );
face[2] = VertexCache_getVertex ( VertexCache.indicesRun + 2 );
break;
default:
face[0] = face[1] = face[2] = VertexCache_getVertex(VertexCache.indicesRun + 0);
break;
}
VertexCache.indicesRun += VertexCache.primitivePitch;
}
/*!
*/
REALINLINE void CBurningVideoDriver::VertexCache_getbypass ( s4DVertex ** face )
{
const u32 i0 = core::if_c_a_else_0 ( VertexCache.pType != scene::EPT_TRIANGLE_FAN, VertexCache.indicesRun );
if ( VertexCache.iType == 1 )
{
const u16 *p = (const u16 *) VertexCache.indices;
VertexCache_fill ( p[ i0 ], 0 );
VertexCache_fill ( p[ VertexCache.indicesRun + 1], 1 );
VertexCache_fill ( p[ VertexCache.indicesRun + 2], 2 );
}
else
{
const u32 *p = (const u32 *) VertexCache.indices;
VertexCache_fill ( p[ i0 ], 0 );
VertexCache_fill ( p[ VertexCache.indicesRun + 1], 1 );
VertexCache_fill ( p[ VertexCache.indicesRun + 2], 2 );
}
VertexCache.indicesRun += VertexCache.primitivePitch;
face[0] = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( 0 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
face[1] = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( 1 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
face[2] = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( 2 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
}
/*!
*/
void CBurningVideoDriver::VertexCache_reset ( const void* vertices, u32 vertexCount,
const void* indices, u32 primitiveCount,
E_VERTEX_TYPE vType,
scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType)
{
VertexCache.vertices = vertices;
VertexCache.vertexCount = vertexCount;
VertexCache.indices = indices;
VertexCache.indicesIndex = 0;
VertexCache.indicesRun = 0;
if ( Material.org.MaterialType == video::EMT_REFLECTION_2_LAYER )
VertexCache.vType = 3;
else
VertexCache.vType = vType;
VertexCache.pType = pType;
switch ( iType )
{
case EIT_16BIT: VertexCache.iType = 1; break;
case EIT_32BIT: VertexCache.iType = 2; break;
default:
VertexCache.iType = iType; break;
}
switch ( VertexCache.pType )
{
// most types here will not work as expected, only triangles/triangle_fan
// is known to work.
case scene::EPT_POINTS:
VertexCache.indexCount = primitiveCount;
VertexCache.primitivePitch = 1;
break;
case scene::EPT_LINE_STRIP:
VertexCache.indexCount = primitiveCount+1;
VertexCache.primitivePitch = 1;
break;
case scene::EPT_LINE_LOOP:
VertexCache.indexCount = primitiveCount+1;
VertexCache.primitivePitch = 1;
break;
case scene::EPT_LINES:
VertexCache.indexCount = 2*primitiveCount;
VertexCache.primitivePitch = 2;
break;
case scene::EPT_TRIANGLE_STRIP:
VertexCache.indexCount = primitiveCount+2;
VertexCache.primitivePitch = 1;
break;
case scene::EPT_TRIANGLES:
VertexCache.indexCount = primitiveCount + primitiveCount + primitiveCount;
VertexCache.primitivePitch = 3;
break;
case scene::EPT_TRIANGLE_FAN:
VertexCache.indexCount = primitiveCount + 2;
VertexCache.primitivePitch = 1;
break;
case scene::EPT_QUAD_STRIP:
VertexCache.indexCount = 2*primitiveCount + 2;
VertexCache.primitivePitch = 2;
break;
case scene::EPT_QUADS:
VertexCache.indexCount = 4*primitiveCount;
VertexCache.primitivePitch = 4;
break;
case scene::EPT_POLYGON:
VertexCache.indexCount = primitiveCount+1;
VertexCache.primitivePitch = 1;
break;
case scene::EPT_POINT_SPRITES:
VertexCache.indexCount = primitiveCount;
VertexCache.primitivePitch = 1;
break;
}
irr::memset32 ( VertexCache.info, VERTEXCACHE_MISS, sizeof ( VertexCache.info ) );
}
void CBurningVideoDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
// These calls would lead to crashes due to wrong index usage.
// The vertex cache needs to be rewritten for these primitives.
if (pType==scene::EPT_POINTS || pType==scene::EPT_LINE_STRIP ||
pType==scene::EPT_LINE_LOOP || pType==scene::EPT_LINES || pType==scene::EPT_POLYGON ||
pType==scene::EPT_POINT_SPRITES)
return;
if ( 0 == CurrentShader )
return;
VertexCache_reset ( vertices, vertexCount, indexList, primitiveCount, vType, pType, iType );
const s4DVertex * face[3];
f32 dc_area;
s32 lodLevel;
u32 i;
u32 g;
u32 m;
video::CSoftwareTexture2* tex;
for ( i = 0; i < (u32) primitiveCount; ++i )
{
VertexCache_get(face);
// if fully outside or outside on same side
if ( ( (face[0]->flag | face[1]->flag | face[2]->flag) & VERTEX4D_CLIPMASK )
!= VERTEX4D_INSIDE
)
continue;
// if fully inside
if ( ( face[0]->flag & face[1]->flag & face[2]->flag & VERTEX4D_CLIPMASK ) == VERTEX4D_INSIDE )
{
dc_area = screenarea2 ( face );
if ( Material.org.BackfaceCulling && F32_LOWER_EQUAL_0( dc_area ) )
continue;
else
if ( Material.org.FrontfaceCulling && F32_GREATER_EQUAL_0( dc_area ) )
continue;
// select mipmap
dc_area = core::reciprocal ( dc_area );
for ( m = 0; m != vSize[VertexCache.vType].TexSize; ++m )
{
if ( 0 == (tex = MAT_TEXTURE ( m )) )
{
CurrentShader->setTextureParam(m, 0, 0);
continue;
}
lodLevel = s32_log2_f32 ( texelarea2 ( face, m ) * dc_area );
CurrentShader->setTextureParam(m, tex, lodLevel );
select_polygon_mipmap2 ( (s4DVertex**) face, m, tex->getSize() );
}
// rasterize
CurrentShader->drawTriangle ( face[0] + 1, face[1] + 1, face[2] + 1 );
continue;
}
// else if not complete inside clipping necessary
irr::memcpy32_small ( ( (u8*) CurrentOut.data + ( 0 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ), face[0], SIZEOF_SVERTEX * 2 );
irr::memcpy32_small ( ( (u8*) CurrentOut.data + ( 1 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ), face[1], SIZEOF_SVERTEX * 2 );
irr::memcpy32_small ( ( (u8*) CurrentOut.data + ( 2 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ), face[2], SIZEOF_SVERTEX * 2 );
const u32 flag = CurrentOut.data->flag & VERTEX4D_FORMAT_MASK;
for ( g = 0; g != CurrentOut.ElementSize; ++g )
{
CurrentOut.data[g].flag = flag;
Temp.data[g].flag = flag;
}
u32 vOut;
vOut = clipToFrustum ( CurrentOut.data, Temp.data, 3 );
if ( vOut < 3 )
continue;
vOut <<= 1;
// to DC Space, project homogenous vertex
ndc_2_dc_and_project ( CurrentOut.data + 1, CurrentOut.data, vOut );
/*
// TODO: don't stick on 32 Bit Pointer
#define PointerAsValue(x) ( (u32) (u32*) (x) )
// if not complete inside clipping necessary
if ( ( test & VERTEX4D_INSIDE ) != VERTEX4D_INSIDE )
{
u32 v[2] = { PointerAsValue ( Temp ) , PointerAsValue ( CurrentOut ) };
for ( g = 0; g != 6; ++g )
{
vOut = clipToHyperPlane ( (s4DVertex*) v[0], (s4DVertex*) v[1], vOut, NDCPlane[g] );
if ( vOut < 3 )
break;
v[0] ^= v[1];
v[1] ^= v[0];
v[0] ^= v[1];
}
if ( vOut < 3 )
continue;
}
*/
// check 2d backface culling on first
dc_area = screenarea ( CurrentOut.data );
if ( Material.org.BackfaceCulling && F32_LOWER_EQUAL_0 ( dc_area ) )
continue;
else if ( Material.org.FrontfaceCulling && F32_GREATER_EQUAL_0( dc_area ) )
continue;
// select mipmap
dc_area = core::reciprocal ( dc_area );
for ( m = 0; m != vSize[VertexCache.vType].TexSize; ++m )
{
if ( 0 == (tex = MAT_TEXTURE ( m )) )
{
CurrentShader->setTextureParam(m, 0, 0);
continue;
}
lodLevel = s32_log2_f32 ( texelarea ( CurrentOut.data, m ) * dc_area );
CurrentShader->setTextureParam(m, tex, lodLevel );
select_polygon_mipmap ( CurrentOut.data, vOut, m, tex->getSize() );
}
// re-tesselate ( triangle-fan, 0-1-2,0-2-3.. )
for ( g = 0; g <= vOut - 6; g += 2 )
{
// rasterize
CurrentShader->drawTriangle ( CurrentOut.data + 0 + 1,
CurrentOut.data + g + 3,
CurrentOut.data + g + 5);
}
}
// dump statistics
/*
char buf [64];
sprintf ( buf,"VCount:%d PCount:%d CacheMiss: %d",
vertexCount, primitiveCount,
VertexCache.CacheMiss
);
os::Printer::log( buf );
*/
}
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
void CBurningVideoDriver::setAmbientLight(const SColorf& color)
{
LightSpace.Global_AmbientLight.setColorf ( color );
}
//! adds a dynamic light
s32 CBurningVideoDriver::addDynamicLight(const SLight& dl)
{
(void) CNullDriver::addDynamicLight( dl );
SBurningShaderLight l;
// l.org = dl;
l.Type = dl.Type;
l.LightIsOn = true;
l.AmbientColor.setColorf ( dl.AmbientColor );
l.DiffuseColor.setColorf ( dl.DiffuseColor );
l.SpecularColor.setColorf ( dl.SpecularColor );
switch ( dl.Type )
{
case video::ELT_DIRECTIONAL:
l.pos.x = -dl.Direction.X;
l.pos.y = -dl.Direction.Y;
l.pos.z = -dl.Direction.Z;
l.pos.w = 1.f;
break;
case ELT_POINT:
case ELT_SPOT:
LightSpace.Flags |= POINTLIGHT;
l.pos.x = dl.Position.X;
l.pos.y = dl.Position.Y;
l.pos.z = dl.Position.Z;
l.pos.w = 1.f;
/*
l.radius = (1.f / dl.Attenuation.Y) * (1.f / dl.Attenuation.Y);
l.constantAttenuation = dl.Attenuation.X;
l.linearAttenuation = dl.Attenuation.Y;
l.quadraticAttenuation = dl.Attenuation.Z;
*/
l.radius = dl.Radius * dl.Radius;
l.constantAttenuation = dl.Attenuation.X;
l.linearAttenuation = 1.f / dl.Radius;
l.quadraticAttenuation = dl.Attenuation.Z;
break;
default:
break;
}
LightSpace.Light.push_back ( l );
return LightSpace.Light.size() - 1;
}
//! Turns a dynamic light on or off
void CBurningVideoDriver::turnLightOn(s32 lightIndex, bool turnOn)
{
if(lightIndex > -1 && lightIndex < (s32)LightSpace.Light.size())
{
LightSpace.Light[lightIndex].LightIsOn = turnOn;
}
}
//! deletes all dynamic lights there are
void CBurningVideoDriver::deleteAllDynamicLights()
{
LightSpace.reset ();
CNullDriver::deleteAllDynamicLights();
}
//! returns the maximal amount of dynamic lights the device can handle
u32 CBurningVideoDriver::getMaximalDynamicLightAmount() const
{
return 8;
}
//! sets a material
void CBurningVideoDriver::setMaterial(const SMaterial& material)
{
Material.org = material;
#ifdef SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM
for (u32 i = 0; i < 2; ++i)
{
setTransform((E_TRANSFORMATION_STATE) (ETS_TEXTURE_0 + i),
material.getTextureMatrix(i));
}
#endif
#ifdef SOFTWARE_DRIVER_2_LIGHTING
Material.AmbientColor.setR8G8B8 ( Material.org.AmbientColor.color );
Material.DiffuseColor.setR8G8B8 ( Material.org.DiffuseColor.color );
Material.EmissiveColor.setR8G8B8 ( Material.org.EmissiveColor.color );
Material.SpecularColor.setR8G8B8 ( Material.org.SpecularColor.color );
core::setbit_cond ( LightSpace.Flags, Material.org.Shininess != 0.f, SPECULAR );
core::setbit_cond ( LightSpace.Flags, Material.org.FogEnable, FOG );
core::setbit_cond ( LightSpace.Flags, Material.org.NormalizeNormals, NORMALIZE );
#endif
setCurrentShader();
}
/*!
Camera Position in World Space
*/
void CBurningVideoDriver::getCameraPosWorldSpace ()
{
Transformation[ETS_VIEW_INVERSE] = Transformation[ ETS_VIEW ];
Transformation[ETS_VIEW_INVERSE].makeInverse ();
TransformationFlag[ETS_VIEW_INVERSE] = 0;
const f32 *M = Transformation[ETS_VIEW_INVERSE].pointer ();
/* The viewpoint is at (0., 0., 0.) in eye space.
Turning this into a vector [0 0 0 1] and multiply it by
the inverse of the view matrix, the resulting vector is the
object space location of the camera.
*/
LightSpace.campos.x = M[12];
LightSpace.campos.y = M[13];
LightSpace.campos.z = M[14];
LightSpace.campos.w = 1.f;
}
void CBurningVideoDriver::getLightPosObjectSpace ()
{
if ( TransformationFlag[ETS_WORLD] & ETF_IDENTITY )
{
Transformation[ETS_WORLD_INVERSE] = Transformation[ETS_WORLD];
TransformationFlag[ETS_WORLD_INVERSE] |= ETF_IDENTITY;
}
else
{
Transformation[ETS_WORLD].getInverse ( Transformation[ETS_WORLD_INVERSE] );
TransformationFlag[ETS_WORLD_INVERSE] &= ~ETF_IDENTITY;
}
for ( u32 i = 0; i < 1 && i < LightSpace.Light.size(); ++i )
{
SBurningShaderLight &l = LightSpace.Light[i];
Transformation[ETS_WORLD_INVERSE].transformVec3 ( &l.pos_objectspace.x, &l.pos.x );
}
}
#ifdef SOFTWARE_DRIVER_2_LIGHTING
//! Sets the fog mode.
void CBurningVideoDriver::setFog(SColor color, E_FOG_TYPE fogType, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog)
{
CNullDriver::setFog(color, fogType, start, end, density, pixelFog, rangeFog);
LightSpace.FogColor.setA8R8G8B8 ( color.color );
}
/*!
applies lighting model
*/
void CBurningVideoDriver::lightVertex ( s4DVertex *dest, u32 vertexargb )
{
sVec3 dColor;
dColor = LightSpace.Global_AmbientLight;
dColor.add ( Material.EmissiveColor );
if ( Lights.size () == 0 )
{
dColor.saturate( dest->Color[0], vertexargb);
return;
}
sVec3 ambient;
sVec3 diffuse;
sVec3 specular;
// the universe started in darkness..
ambient.set ( 0.f, 0.f, 0.f );
diffuse.set ( 0.f, 0.f, 0.f );
specular.set ( 0.f, 0.f, 0.f );
u32 i;
f32 dot;
f32 len;
f32 attenuation;
sVec4 vp; // unit vector vertex to light
sVec4 lightHalf; // blinn-phong reflection
for ( i = 0; i!= LightSpace.Light.size (); ++i )
{
const SBurningShaderLight &light = LightSpace.Light[i];
if ( !light.LightIsOn )
continue;
// accumulate ambient
ambient.add ( light.AmbientColor );
switch ( light.Type )
{
case video::ELT_SPOT:
case video::ELT_POINT:
// surface to light
vp.x = light.pos.x - LightSpace.vertex.x;
vp.y = light.pos.y - LightSpace.vertex.y;
vp.z = light.pos.z - LightSpace.vertex.z;
//vp.x = light.pos_objectspace.x - LightSpace.vertex.x;
//vp.y = light.pos_objectspace.y - LightSpace.vertex.x;
//vp.z = light.pos_objectspace.z - LightSpace.vertex.x;
len = vp.get_length_xyz_square();
if ( light.radius < len )
continue;
len = core::reciprocal_squareroot ( len );
// build diffuse reflection
//angle between normal and light vector
vp.mul ( len );
dot = LightSpace.normal.dot_xyz ( vp );
if ( dot < 0.f )
continue;
attenuation = light.constantAttenuation + ( 1.f - ( len * light.linearAttenuation ) );
// diffuse component
diffuse.mulAdd ( light.DiffuseColor, 3.f * dot * attenuation );
if ( !(LightSpace.Flags & SPECULAR) )
continue;
// build specular
// surface to view
lightHalf.x = LightSpace.campos.x - LightSpace.vertex.x;
lightHalf.y = LightSpace.campos.y - LightSpace.vertex.y;
lightHalf.z = LightSpace.campos.z - LightSpace.vertex.z;
lightHalf.normalize_xyz();
lightHalf += vp;
lightHalf.normalize_xyz();
// specular
dot = LightSpace.normal.dot_xyz ( lightHalf );
if ( dot < 0.f )
continue;
//specular += light.SpecularColor * ( powf ( Material.org.Shininess ,dot ) * attenuation );
specular.mulAdd ( light.SpecularColor, dot * attenuation );
break;
case video::ELT_DIRECTIONAL:
//angle between normal and light vector
dot = LightSpace.normal.dot_xyz ( light.pos );
if ( dot < 0.f )
continue;
// diffuse component
diffuse.mulAdd ( light.DiffuseColor, dot );
break;
default:
break;
}
}
// sum up lights
dColor.mulAdd (ambient, Material.AmbientColor );
dColor.mulAdd (diffuse, Material.DiffuseColor);
dColor.mulAdd (specular, Material.SpecularColor);
dColor.saturate ( dest->Color[0], vertexargb );
}
#endif
//! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (texture)
{
if (texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR);
return;
}
#if 0
// 2d methods don't use viewPort
core::position2di dest = destPos;
core::recti clip=ViewPort;
if (ViewPort.getSize().Width != ScreenSize.Width)
{
dest.X=ViewPort.UpperLeftCorner.X+core::round32(destPos.X*ViewPort.getWidth()/(f32)ScreenSize.Width);
dest.Y=ViewPort.UpperLeftCorner.Y+core::round32(destPos.Y*ViewPort.getHeight()/(f32)ScreenSize.Height);
if (clipRect)
{
clip.constrainTo(*clipRect);
}
clipRect = &clip;
}
#endif
if (useAlphaChannelOfTexture)
((CSoftwareTexture2*)texture)->getImage()->copyToWithAlpha(
RenderTargetSurface, destPos, sourceRect, color, clipRect);
else
((CSoftwareTexture2*)texture)->getImage()->copyTo(
RenderTargetSurface, destPos, sourceRect, clipRect);
}
}
//! Draws a part of the texture into the rectangle.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
const video::SColor* const colors, bool useAlphaChannelOfTexture)
{
if (texture)
{
if (texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR);
return;
}
if (useAlphaChannelOfTexture)
StretchBlit(BLITTER_TEXTURE_ALPHA_BLEND, RenderTargetSurface, &destRect, &sourceRect,
((CSoftwareTexture2*)texture)->getImage(), (colors ? colors[0].color : 0));
else
StretchBlit(BLITTER_TEXTURE, RenderTargetSurface, &destRect, &sourceRect,
((CSoftwareTexture2*)texture)->getImage(), (colors ? colors[0].color : 0));
}
}
//! Draws a 2d line.
void CBurningVideoDriver::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color)
{
drawLine(BackBuffer, start, end, color );
}
//! Draws a pixel
void CBurningVideoDriver::drawPixel(u32 x, u32 y, const SColor & color)
{
BackBuffer->setPixel(x, y, color, true);
}
//! draw an 2d rectangle
void CBurningVideoDriver::draw2DRectangle(SColor color, const core::rect<s32>& pos,
const core::rect<s32>* clip)
{
if (clip)
{
core::rect<s32> p(pos);
p.clipAgainst(*clip);
if(!p.isValid())
return;
drawRectangle(BackBuffer, p, color);
}
else
{
if(!pos.isValid())
return;
drawRectangle(BackBuffer, pos, color);
}
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void CBurningVideoDriver::OnResize(const core::dimension2d<u32>& size)
{
// make sure width and height are multiples of 2
core::dimension2d<u32> realSize(size);
if (realSize.Width % 2)
realSize.Width += 1;
if (realSize.Height % 2)
realSize.Height += 1;
if (ScreenSize != realSize)
{
if (ViewPort.getWidth() == (s32)ScreenSize.Width &&
ViewPort.getHeight() == (s32)ScreenSize.Height)
{
ViewPort.UpperLeftCorner.X = 0;
ViewPort.UpperLeftCorner.Y = 0;
ViewPort.LowerRightCorner.X = realSize.Width;
ViewPort.LowerRightCorner.X = realSize.Height;
}
ScreenSize = realSize;
bool resetRT = (RenderTargetSurface == BackBuffer);
if (BackBuffer)
BackBuffer->drop();
BackBuffer = new CImage(BURNINGSHADER_COLOR_FORMAT, realSize);
if (resetRT)
setRenderTarget(BackBuffer);
}
}
//! returns the current render target size
const core::dimension2d<u32>& CBurningVideoDriver::getCurrentRenderTargetSize() const
{
return RenderTargetSize;
}
//!Draws an 2d rectangle with a gradient.
void CBurningVideoDriver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
#ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
const core::dimension2d<s32> renderTargetSize ( ViewPort.getSize() );
const s32 xPlus = -(renderTargetSize.Width>>1);
const f32 xFact = 1.0f / (renderTargetSize.Width>>1);
const s32 yPlus = renderTargetSize.Height-(renderTargetSize.Height>>1);
const f32 yFact = 1.0f / (renderTargetSize.Height>>1);
// fill VertexCache direct
s4DVertex *v;
VertexCache.vertexCount = 4;
VertexCache.info[0].index = 0;
VertexCache.info[1].index = 1;
VertexCache.info[2].index = 2;
VertexCache.info[3].index = 3;
v = &VertexCache.mem.data [ 0 ];
v[0].Pos.set ( (f32)(pos.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-pos.UpperLeftCorner.Y) * yFact, 0.f, 1.f );
v[0].Color[0].setA8R8G8B8 ( colorLeftUp.color );
v[2].Pos.set ( (f32)(pos.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus- pos.UpperLeftCorner.Y) * yFact, 0.f, 1.f );
v[2].Color[0].setA8R8G8B8 ( colorRightUp.color );
v[4].Pos.set ( (f32)(pos.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus-pos.LowerRightCorner.Y) * yFact, 0.f ,1.f );
v[4].Color[0].setA8R8G8B8 ( colorRightDown.color );
v[6].Pos.set ( (f32)(pos.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-pos.LowerRightCorner.Y) * yFact, 0.f, 1.f );
v[6].Color[0].setA8R8G8B8 ( colorLeftDown.color );
s32 i;
u32 g;
for ( i = 0; i!= 8; i += 2 )
{
v[i + 0].flag = clipToFrustumTest ( v + i );
v[i + 1].flag = 0;
if ( (v[i].flag & VERTEX4D_INSIDE ) == VERTEX4D_INSIDE )
{
ndc_2_dc_and_project ( v + i + 1, v + i, 2 );
}
}
IBurningShader * render;
render = BurningShader [ ETR_GOURAUD_ALPHA_NOZ ];
render->setRenderTarget(RenderTargetSurface, ViewPort);
static const s16 indexList[6] = {0,1,2,0,2,3};
s4DVertex * face[3];
for ( i = 0; i!= 6; i += 3 )
{
face[0] = VertexCache_getVertex ( indexList [ i + 0 ] );
face[1] = VertexCache_getVertex ( indexList [ i + 1 ] );
face[2] = VertexCache_getVertex ( indexList [ i + 2 ] );
// test clipping
u32 test = face[0]->flag & face[1]->flag & face[2]->flag & VERTEX4D_INSIDE;
if ( test == VERTEX4D_INSIDE )
{
render->drawTriangle ( face[0] + 1, face[1] + 1, face[2] + 1 );
continue;
}
// Todo: all vertices are clipped in 2d..
// is this true ?
u32 vOut = 6;
memcpy ( CurrentOut.data + 0, face[0], sizeof ( s4DVertex ) * 2 );
memcpy ( CurrentOut.data + 2, face[1], sizeof ( s4DVertex ) * 2 );
memcpy ( CurrentOut.data + 4, face[2], sizeof ( s4DVertex ) * 2 );
vOut = clipToFrustum ( CurrentOut.data, Temp.data, 3 );
if ( vOut < 3 )
continue;
vOut <<= 1;
// to DC Space, project homogenous vertex
ndc_2_dc_and_project ( CurrentOut.data + 1, CurrentOut.data, vOut );
// re-tesselate ( triangle-fan, 0-1-2,0-2-3.. )
for ( g = 0; g <= vOut - 6; g += 2 )
{
// rasterize
render->drawTriangle ( CurrentOut.data + 1, &CurrentOut.data[g + 3], &CurrentOut.data[g + 5] );
}
}
#else
draw2DRectangle ( colorLeftUp, position, clip );
#endif
}
//! Draws a 3d line.
void CBurningVideoDriver::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color)
{
Transformation [ ETS_CURRENT].transformVect ( &CurrentOut.data[0].Pos.x, start );
Transformation [ ETS_CURRENT].transformVect ( &CurrentOut.data[2].Pos.x, end );
u32 g;
u32 vOut;
// no clipping flags
for ( g = 0; g != CurrentOut.ElementSize; ++g )
{
CurrentOut.data[g].flag = 0;
Temp.data[g].flag = 0;
}
// vertices count per line
vOut = clipToFrustum ( CurrentOut.data, Temp.data, 2 );
if ( vOut < 2 )
return;
vOut <<= 1;
IBurningShader * line;
line = BurningShader [ ETR_TEXTURE_GOURAUD_WIRE ];
line->setRenderTarget(RenderTargetSurface, ViewPort);
// to DC Space, project homogenous vertex
ndc_2_dc_and_project ( CurrentOut.data + 1, CurrentOut.data, vOut );
// unproject vertex color
#ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
for ( g = 0; g != vOut; g+= 2 )
{
CurrentOut.data[ g + 1].Color[0].setA8R8G8B8 ( color.color );
}
#endif
for ( g = 0; g <= vOut - 4; g += 2 )
{
// rasterize
line->drawLine ( CurrentOut.data + 1, CurrentOut.data + g + 3 );
}
}
//! \return Returns the name of the video driver. Example: In case of the DirectX8
//! driver, it would return "Direct3D8.1".
const wchar_t* CBurningVideoDriver::getName() const
{
#ifdef BURNINGVIDEO_RENDERER_BEAUTIFUL
return L"Burning's Video 0.47 beautiful";
#elif defined ( BURNINGVIDEO_RENDERER_ULTRA_FAST )
return L"Burning's Video 0.47 ultra fast";
#elif defined ( BURNINGVIDEO_RENDERER_FAST )
return L"Burning's Video 0.47 fast";
#else
return L"Burning's Video 0.47";
#endif
}
//! Returns the graphics card vendor name.
core::stringc CBurningVideoDriver::getVendorInfo()
{
return "Burning's Video: Ing. Thomas Alten (c) 2006-2012";
}
//! Returns type of video driver
E_DRIVER_TYPE CBurningVideoDriver::getDriverType() const
{
return EDT_BURNINGSVIDEO;
}
//! returns color format
ECOLOR_FORMAT CBurningVideoDriver::getColorFormat() const
{
return BURNINGSHADER_COLOR_FORMAT;
}
//! Returns the transformation set by setTransform
const core::matrix4& CBurningVideoDriver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Transformation[state];
}
//! Creates a render target texture.
ITexture* CBurningVideoDriver::addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name, const ECOLOR_FORMAT format)
{
IImage* img = createImage(BURNINGSHADER_COLOR_FORMAT, size);
ITexture* tex = new CSoftwareTexture2(img, name, CSoftwareTexture2::IS_RENDERTARGET );
img->drop();
addTexture(tex);
tex->drop();
return tex;
}
//! Clears the DepthBuffer.
void CBurningVideoDriver::clearZBuffer()
{
if (DepthBuffer)
DepthBuffer->clear();
}
//! Returns an image created from the last rendered frame.
IImage* CBurningVideoDriver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target)
{
if (target != video::ERT_FRAME_BUFFER)
return 0;
if (BackBuffer)
{
IImage* tmp = createImage(BackBuffer->getColorFormat(), BackBuffer->getDimension());
BackBuffer->copyTo(tmp);
return tmp;
}
else
return 0;
}
//! returns a device dependent texture from a software surface (IImage)
//! THIS METHOD HAS TO BE OVERRIDDEN BY DERIVED DRIVERS WITH OWN TEXTURES
ITexture* CBurningVideoDriver::createDeviceDependentTexture(IImage* surface, const io::path& name, void* mipmapData)
{
return new CSoftwareTexture2(
surface, name,
(getTextureCreationFlag(ETCF_CREATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP : 0 ) |
(getTextureCreationFlag(ETCF_ALLOW_NON_POWER_2) ? 0 : CSoftwareTexture2::NP2_SIZE ), mipmapData);
}
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
u32 CBurningVideoDriver::getMaximalPrimitiveCount() const
{
return 0xFFFFFFFF;
}
//! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do
//! this: First, draw all geometry. Then use this method, to draw the shadow
//! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow.
void CBurningVideoDriver::drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail, u32 debugDataVisible)
{
const u32 count = triangles.size();
IBurningShader *shader = BurningShader [ ETR_STENCIL_SHADOW ];
CurrentShader = shader;
shader->setRenderTarget(RenderTargetSurface, ViewPort);
Material.org.MaterialType = video::EMT_SOLID;
Material.org.Lighting = false;
Material.org.ZWriteEnable = false;
Material.org.ZBuffer = ECFN_LESSEQUAL;
LightSpace.Flags &= ~VERTEXTRANSFORM;
//glStencilMask(~0);
//glStencilFunc(GL_ALWAYS, 0, ~0);
if (true)// zpass does not work yet
{
Material.org.BackfaceCulling = true;
Material.org.FrontfaceCulling = false;
shader->setParam ( 0, 0 );
shader->setParam ( 1, 1 );
shader->setParam ( 2, 0 );
drawVertexPrimitiveList (triangles.const_pointer(), count, 0, count/3, (video::E_VERTEX_TYPE) 4, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) 4 );
//glStencilOp(GL_KEEP, incr, GL_KEEP);
//glDrawArrays(GL_TRIANGLES,0,count);
Material.org.BackfaceCulling = false;
Material.org.FrontfaceCulling = true;
shader->setParam ( 0, 0 );
shader->setParam ( 1, 2 );
shader->setParam ( 2, 0 );
drawVertexPrimitiveList (triangles.const_pointer(), count, 0, count/3, (video::E_VERTEX_TYPE) 4, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) 4 );
//glStencilOp(GL_KEEP, decr, GL_KEEP);
//glDrawArrays(GL_TRIANGLES,0,count);
}
else // zpass
{
Material.org.BackfaceCulling = true;
Material.org.FrontfaceCulling = false;
shader->setParam ( 0, 0 );
shader->setParam ( 1, 0 );
shader->setParam ( 2, 1 );
//glStencilOp(GL_KEEP, GL_KEEP, incr);
//glDrawArrays(GL_TRIANGLES,0,count);
Material.org.BackfaceCulling = false;
Material.org.FrontfaceCulling = true;
shader->setParam ( 0, 0 );
shader->setParam ( 1, 0 );
shader->setParam ( 2, 2 );
//glStencilOp(GL_KEEP, GL_KEEP, decr);
//glDrawArrays(GL_TRIANGLES,0,count);
}
}
//! Fills the stencil shadow with color. After the shadow volume has been drawn
//! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this
//! to draw the color of the shadow.
void CBurningVideoDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge,
video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge)
{
if (!StencilBuffer)
return;
// draw a shadow rectangle covering the entire screen using stencil buffer
const u32 h = RenderTargetSurface->getDimension().Height;
const u32 w = RenderTargetSurface->getDimension().Width;
tVideoSample *dst;
u32 *stencil;
u32* const stencilBase=(u32*) StencilBuffer->lock();
for ( u32 y = 0; y < h; ++y )
{
dst = (tVideoSample*)RenderTargetSurface->lock() + ( y * w );
stencil = stencilBase + ( y * w );
for ( u32 x = 0; x < w; ++x )
{
if ( stencil[x] > 1 )
{
dst[x] = PixelBlend32 ( dst[x], leftUpEdge.color );
}
}
}
StencilBuffer->clear();
}
core::dimension2du CBurningVideoDriver::getMaxTextureSize() const
{
return core::dimension2du(SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE, SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE);
}
} // end namespace video
} // end namespace irr
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
namespace irr
{
namespace video
{
//! creates a video driver
IVideoDriver* createBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter)
{
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CBurningVideoDriver(params, io, presenter);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
} // end namespace video
} // end namespace irr