stk-code_catmod/lib/angelscript/source/as_scriptengine.cpp

5662 lines
166 KiB
C++
Raw Normal View History

/*
AngelCode Scripting Library
Copyright (c) 2003-2014 Andreas Jonsson
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.
Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you
must not claim that you wrote the original software. If you use
this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
The original version of this library can be located at:
http://www.angelcode.com/angelscript/
Andreas Jonsson
andreas@angelcode.com
*/
//
// as_scriptengine.cpp
//
// The implementation of the script engine interface
//
#include <stdlib.h>
#include "as_config.h"
#include "as_scriptengine.h"
#include "as_builder.h"
#include "as_context.h"
#include "as_string_util.h"
#include "as_tokenizer.h"
#include "as_texts.h"
#include "as_module.h"
#include "as_callfunc.h"
#include "as_generic.h"
#include "as_scriptobject.h"
#include "as_compiler.h"
#include "as_bytecode.h"
#include "as_debug.h"
BEGIN_AS_NAMESPACE
#ifdef AS_PROFILE
// Instanciate the profiler once
CProfiler g_profiler;
#endif
extern "C"
{
AS_API const char * asGetLibraryVersion()
{
#ifdef _DEBUG
return ANGELSCRIPT_VERSION_STRING " DEBUG";
#else
return ANGELSCRIPT_VERSION_STRING;
#endif
}
AS_API const char * asGetLibraryOptions()
{
const char *string = " "
// Options
#ifdef AS_MAX_PORTABILITY
"AS_MAX_PORTABILITY "
#endif
#ifdef AS_DEBUG
"AS_DEBUG "
#endif
#ifdef AS_NO_CLASS_METHODS
"AS_NO_CLASS_METHODS "
#endif
#ifdef AS_USE_DOUBLE_AS_FLOAT
"AS_USE_DOUBLE_AS_FLOAT "
#endif
#ifdef AS_64BIT_PTR
"AS_64BIT_PTR "
#endif
#ifdef AS_NO_THREADS
"AS_NO_THREADS "
#endif
#ifdef AS_NO_ATOMIC
"AS_NO_ATOMIC "
#endif
#ifdef AS_NO_COMPILER
"AS_NO_COMPILER "
#endif
#ifdef AS_NO_MEMBER_INIT
"AS_NO_MEMBER_INIT "
#endif
// Target system
#ifdef AS_WIN
"AS_WIN "
#endif
#ifdef AS_LINUX
"AS_LINUX "
#endif
#ifdef AS_MAC
"AS_MAC "
#endif
#ifdef AS_BSD
"AS_BSD "
#endif
#ifdef AS_XBOX
"AS_XBOX "
#endif
#ifdef AS_XBOX360
"AS_XBOX360 "
#endif
#ifdef AS_PSP
"AS_PSP "
#endif
#ifdef AS_PS2
"AS_PS2 "
#endif
#ifdef AS_PS3
"AS_PS3 "
#endif
#ifdef AS_DC
"AS_DC "
#endif
#ifdef AS_GC
"AS_GC "
#endif
#ifdef AS_WII
"AS_WII "
#endif
#ifdef AS_WIIU
"AS_WIIU "
#endif
#ifdef AS_IPHONE
"AS_IPHONE "
#endif
#ifdef AS_ANDROID
"AS_ANDROID "
#endif
#ifdef AS_HAIKU
"AS_HAIKU "
#endif
#ifdef AS_ILLUMOS
"AS_ILLUMOS "
#endif
#ifdef AS_MARMALADE
"AS_MARMALADE "
#endif
// CPU family
#ifdef AS_PPC
"AS_PPC "
#endif
#ifdef AS_PPC_64
"AS_PPC_64 "
#endif
#ifdef AS_X86
"AS_X86 "
#endif
#ifdef AS_MIPS
"AS_MIPS "
#endif
#ifdef AS_SH4
"AS_SH4 "
#endif
#ifdef AS_XENON
"AS_XENON "
#endif
#ifdef AS_ARM
"AS_ARM "
#endif
#ifdef AS_SOFTFP
"AS_SOFTFP "
#endif
#ifdef AS_X64_GCC
"AS_X64_GCC "
#endif
#ifdef AS_X64_MSVC
"AS_X64_MSVC "
#endif
;
return string;
}
AS_API asIScriptEngine *asCreateScriptEngine(asDWORD version)
{
// Verify the version that the application expects
if( (version/10000) != (ANGELSCRIPT_VERSION/10000) )
return 0;
if( (version/100)%100 != (ANGELSCRIPT_VERSION/100)%100 )
return 0;
if( (version%100) > (ANGELSCRIPT_VERSION%100) )
return 0;
// Verify the size of the types
asASSERT( sizeof(asBYTE) == 1 );
asASSERT( sizeof(asWORD) == 2 );
asASSERT( sizeof(asDWORD) == 4 );
asASSERT( sizeof(asQWORD) == 8 );
asASSERT( sizeof(asPWORD) == sizeof(void*) );
// Verify the boolean type
asASSERT( sizeof(bool) == AS_SIZEOF_BOOL );
asASSERT( true == VALUE_OF_BOOLEAN_TRUE );
// Verify endianess
#ifdef AS_BIG_ENDIAN
asASSERT( *(asDWORD*)"\x00\x01\x02\x03" == 0x00010203 );
asASSERT( *(asQWORD*)"\x00\x01\x02\x03\x04\x05\x06\x07" == ((asQWORD(0x00010203)<<32)|asQWORD(0x04050607)) );
#else
asASSERT( *(asDWORD*)"\x00\x01\x02\x03" == 0x03020100 );
// C++ didn't have a standard way of declaring 64bit literal constants until C++11, so
// I'm forced to do it like this to avoid compilers warnings when compiling with the full
// C++ compliance.
asASSERT( *(asQWORD*)"\x00\x01\x02\x03\x04\x05\x06\x07" == ((asQWORD(0x07060504)<<32)|asQWORD(0x03020100)) );
#endif
return asNEW(asCScriptEngine)();
}
} // extern "C"
// interface
int asCScriptEngine::SetEngineProperty(asEEngineProp property, asPWORD value)
{
switch( property )
{
case asEP_ALLOW_UNSAFE_REFERENCES:
ep.allowUnsafeReferences = value ? true : false;
break;
case asEP_OPTIMIZE_BYTECODE:
ep.optimizeByteCode = value ? true : false;
break;
case asEP_COPY_SCRIPT_SECTIONS:
ep.copyScriptSections = value ? true : false;
break;
case asEP_MAX_STACK_SIZE:
if( value == 0 )
{
// Restore default: no limit and initially size 4KB
ep.maximumContextStackSize = 0;
initialContextStackSize = 1024;
}
else
{
// The size is given in bytes, but we only store dwords
ep.maximumContextStackSize = (asUINT)value/4;
if( initialContextStackSize > ep.maximumContextStackSize )
{
initialContextStackSize = ep.maximumContextStackSize;
if( initialContextStackSize == 0 )
initialContextStackSize = 1;
}
}
break;
case asEP_USE_CHARACTER_LITERALS:
ep.useCharacterLiterals = value ? true : false;
break;
case asEP_ALLOW_MULTILINE_STRINGS:
ep.allowMultilineStrings = value ? true : false;
break;
case asEP_ALLOW_IMPLICIT_HANDLE_TYPES:
ep.allowImplicitHandleTypes = value ? true : false;
break;
case asEP_BUILD_WITHOUT_LINE_CUES:
ep.buildWithoutLineCues = value ? true : false;
break;
case asEP_INIT_GLOBAL_VARS_AFTER_BUILD:
ep.initGlobalVarsAfterBuild = value ? true : false;
break;
case asEP_REQUIRE_ENUM_SCOPE:
ep.requireEnumScope = value ? true : false;
break;
case asEP_SCRIPT_SCANNER:
if( value <= 1 )
ep.scanner = (int)value;
else
return asINVALID_ARG;
break;
case asEP_INCLUDE_JIT_INSTRUCTIONS:
ep.includeJitInstructions = value ? true : false;
break;
case asEP_STRING_ENCODING:
if( value <= 1 )
ep.stringEncoding = (int)value;
else
return asINVALID_ARG;
break;
case asEP_PROPERTY_ACCESSOR_MODE:
if( value <= 2 )
ep.propertyAccessorMode = (int)value;
else
return asINVALID_ARG;
break;
case asEP_EXPAND_DEF_ARRAY_TO_TMPL:
ep.expandDefaultArrayToTemplate = value ? true : false;
break;
case asEP_AUTO_GARBAGE_COLLECT:
ep.autoGarbageCollect = value ? true : false;
break;
case asEP_DISALLOW_GLOBAL_VARS:
ep.disallowGlobalVars = value ? true : false;
break;
case asEP_ALWAYS_IMPL_DEFAULT_CONSTRUCT:
ep.alwaysImplDefaultConstruct = value ? true : false;
break;
case asEP_COMPILER_WARNINGS:
if( value <= 2 )
ep.compilerWarnings = (int)value;
else
return asINVALID_ARG;
break;
case asEP_DISALLOW_VALUE_ASSIGN_FOR_REF_TYPE:
ep.disallowValueAssignForRefType = value ? true : false;
break;
default:
return asINVALID_ARG;
}
return asSUCCESS;
}
// interface
asPWORD asCScriptEngine::GetEngineProperty(asEEngineProp property) const
{
switch( property )
{
case asEP_ALLOW_UNSAFE_REFERENCES:
return ep.allowUnsafeReferences;
case asEP_OPTIMIZE_BYTECODE:
return ep.optimizeByteCode;
case asEP_COPY_SCRIPT_SECTIONS:
return ep.copyScriptSections;
case asEP_MAX_STACK_SIZE:
return ep.maximumContextStackSize*4;
case asEP_USE_CHARACTER_LITERALS:
return ep.useCharacterLiterals;
case asEP_ALLOW_MULTILINE_STRINGS:
return ep.allowMultilineStrings;
case asEP_ALLOW_IMPLICIT_HANDLE_TYPES:
return ep.allowImplicitHandleTypes;
case asEP_BUILD_WITHOUT_LINE_CUES:
return ep.buildWithoutLineCues;
case asEP_INIT_GLOBAL_VARS_AFTER_BUILD:
return ep.initGlobalVarsAfterBuild;
case asEP_REQUIRE_ENUM_SCOPE:
return ep.requireEnumScope;
case asEP_SCRIPT_SCANNER:
return ep.scanner;
case asEP_INCLUDE_JIT_INSTRUCTIONS:
return ep.includeJitInstructions;
case asEP_STRING_ENCODING:
return ep.stringEncoding;
case asEP_PROPERTY_ACCESSOR_MODE:
return ep.propertyAccessorMode;
case asEP_EXPAND_DEF_ARRAY_TO_TMPL:
return ep.expandDefaultArrayToTemplate;
case asEP_AUTO_GARBAGE_COLLECT:
return ep.autoGarbageCollect;
case asEP_DISALLOW_GLOBAL_VARS:
return ep.disallowGlobalVars;
case asEP_ALWAYS_IMPL_DEFAULT_CONSTRUCT:
return ep.alwaysImplDefaultConstruct;
case asEP_COMPILER_WARNINGS:
return ep.compilerWarnings;
case asEP_DISALLOW_VALUE_ASSIGN_FOR_REF_TYPE:
return ep.disallowValueAssignForRefType;
default:
return 0;
}
return 0;
}
// interface
asIScriptFunction *asCScriptEngine::CreateDelegate(asIScriptFunction *func, void *obj)
{
if( func == 0 || obj == 0 )
return 0;
// The function must be a class method
asIObjectType *type = func->GetObjectType();
if( type == 0 )
return 0;
// The object type must allow handles
if( (type->GetFlags() & asOBJ_REF) == 0 || (type->GetFlags() & (asOBJ_SCOPED | asOBJ_NOHANDLE)) )
return 0;
// Create the delegate the same way it would be created by the scripts
return AS_NAMESPACE_QUALIFIER CreateDelegate(reinterpret_cast<asCScriptFunction*>(func), obj);
}
asCScriptEngine::asCScriptEngine()
{
asCThreadManager::Prepare(0);
shuttingDown = false;
// Engine properties
{
ep.allowUnsafeReferences = false;
ep.optimizeByteCode = true;
ep.copyScriptSections = true;
ep.maximumContextStackSize = 0; // no limit
ep.useCharacterLiterals = false;
ep.allowMultilineStrings = false;
ep.allowImplicitHandleTypes = false;
// TODO: optimize: Maybe this should be turned off by default? If a debugger is not used
// then this is just slowing down the execution.
ep.buildWithoutLineCues = false;
ep.initGlobalVarsAfterBuild = true;
ep.requireEnumScope = false;
ep.scanner = 1; // utf8. 0 = ascii
ep.includeJitInstructions = false;
ep.stringEncoding = 0; // utf8. 1 = utf16
ep.propertyAccessorMode = 2; // 0 = disable, 1 = app registered only, 2 = app and script created
ep.expandDefaultArrayToTemplate = false;
ep.autoGarbageCollect = true;
ep.disallowGlobalVars = false;
ep.alwaysImplDefaultConstruct = false;
ep.compilerWarnings = 1; // 0 = no warnings, 1 = warning, 2 = treat as error
// TODO: 3.0.0: disallowValueAssignForRefType should be true by default
ep.disallowValueAssignForRefType = false;
}
gc.engine = this;
tok.engine = this;
refCount.set(1);
stringFactory = 0;
configFailed = false;
isPrepared = false;
isBuilding = false;
deferValidationOfTemplateTypes = false;
lastModule = 0;
// User data
cleanModuleFunc = 0;
cleanContextFunc = 0;
cleanFunctionFunc = 0;
initialContextStackSize = 1024; // 4 KB (1024 * sizeof(asDWORD)
typeIdSeqNbr = 0;
currentGroup = &defaultGroup;
defaultAccessMask = 1;
msgCallback = 0;
jitCompiler = 0;
// Create the global namespace
defaultNamespace = AddNameSpace("");
// We must set the namespace in the built-in types explicitly as
// this wasn't done by the default constructor. If we do not do
// this we will get null pointer access in other parts of the code
scriptTypeBehaviours.nameSpace = defaultNamespace;
functionBehaviours.nameSpace = defaultNamespace;
objectTypeBehaviours.nameSpace = defaultNamespace;
globalPropertyBehaviours.nameSpace = defaultNamespace;
// Reserve function id 0 for no function
scriptFunctions.PushLast(0);
// Make sure typeId for the built-in primitives are defined according to asETypeIdFlags
int id = 0;
UNUSED_VAR(id); // It is only used in debug mode
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttVoid, false)); asASSERT( id == asTYPEID_VOID );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttBool, false)); asASSERT( id == asTYPEID_BOOL );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttInt8, false)); asASSERT( id == asTYPEID_INT8 );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttInt16, false)); asASSERT( id == asTYPEID_INT16 );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttInt, false)); asASSERT( id == asTYPEID_INT32 );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttInt64, false)); asASSERT( id == asTYPEID_INT64 );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttUInt8, false)); asASSERT( id == asTYPEID_UINT8 );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttUInt16, false)); asASSERT( id == asTYPEID_UINT16 );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttUInt, false)); asASSERT( id == asTYPEID_UINT32 );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttUInt64, false)); asASSERT( id == asTYPEID_UINT64 );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttFloat, false)); asASSERT( id == asTYPEID_FLOAT );
id = GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttDouble, false)); asASSERT( id == asTYPEID_DOUBLE );
defaultArrayObjectType = 0;
RegisterScriptObject(this);
RegisterScriptFunction(this);
RegisterObjectTypeGCBehaviours(this);
asCGlobalProperty::RegisterGCBehaviours(this);
}
asCScriptEngine::~asCScriptEngine()
{
shuttingDown = true;
asASSERT(refCount.get() == 0);
asUINT n;
// The modules must be deleted first, as they may use
// object types from the config groups
for( n = (asUINT)scriptModules.GetLength(); n-- > 0; )
if( scriptModules[n] )
scriptModules[n]->Discard();
scriptModules.SetLength(0);
GarbageCollect();
// Delete the functions for template types that may references object types
for( n = 0; n < templateInstanceTypes.GetLength(); n++ )
{
if( templateInstanceTypes[n] )
{
asUINT f;
asCObjectType *templateType = templateInstanceTypes[n];
// Delete the factory stubs first
for( f = 0; f < templateType->beh.factories.GetLength(); f++ )
scriptFunctions[templateType->beh.factories[f]]->Release();
templateType->beh.factories.Allocate(0, false);
// The list factory is not stored in the list with the rest of the factories
if( templateType->beh.listFactory )
{
scriptFunctions[templateType->beh.listFactory]->Release();
templateType->beh.listFactory = 0;
}
// Delete the specialized functions
for( f = 1; f < templateType->beh.operators.GetLength(); f += 2 )
{
if( scriptFunctions[templateType->beh.operators[f]]->objectType == templateType )
{
scriptFunctions[templateType->beh.operators[f]]->Release();
templateType->beh.operators[f] = 0;
}
}
for( f = 0; f < templateType->methods.GetLength(); f++ )
{
if( scriptFunctions[templateType->methods[f]]->objectType == templateType )
{
scriptFunctions[templateType->methods[f]]->Release();
templateType->methods[f] = 0;
}
}
}
}
// Do one more garbage collect to free gc objects that were global variables
GarbageCollect();
FreeUnusedGlobalProperties();
ClearUnusedTypes();
// Break all relationship between remaining class types and functions
for( n = 0; n < classTypes.GetLength(); n++ )
{
if( classTypes[n] )
classTypes[n]->ReleaseAllFunctions();
if( classTypes[n]->derivedFrom )
{
classTypes[n]->derivedFrom->Release();
classTypes[n]->derivedFrom = 0;
}
}
GarbageCollect(asGC_FULL_CYCLE);
FreeUnusedGlobalProperties();
ClearUnusedTypes();
// Destroy internals of script functions that may still be kept alive outside of engine
for( n = 0; n < scriptFunctions.GetLength(); n++ )
if( scriptFunctions[n] && scriptFunctions[n]->funcType == asFUNC_SCRIPT )
scriptFunctions[n]->DestroyInternal();
// There may be instances where one more gc cycle must be run
GarbageCollect(asGC_FULL_CYCLE);
ClearUnusedTypes();
// If the application hasn't registered GC behaviours for all types
// that can form circular references with script types, then there
// may still be objects in the GC.
if( gc.ReportAndReleaseUndestroyedObjects() > 0 )
{
// Some items cannot be destroyed because the application is still holding on to them
// Make sure the script functions won't attempt to access the engine if they are destroyed later on
for( n = 0; n < scriptFunctions.GetLength(); n++ )
if( scriptFunctions[n] && scriptFunctions[n]->funcType == asFUNC_SCRIPT )
scriptFunctions[n]->engine = 0;
}
asSMapNode<int,asCDataType*> *cursor = 0;
while( mapTypeIdToDataType.MoveFirst(&cursor) )
{
asDELETE(mapTypeIdToDataType.GetValue(cursor),asCDataType);
mapTypeIdToDataType.Erase(cursor);
}
// First remove what is not used, so that other groups can be deleted safely
defaultGroup.RemoveConfiguration(this, true);
while( configGroups.GetLength() )
{
// Delete config groups in the right order
asCConfigGroup *grp = configGroups.PopLast();
if( grp )
{
grp->RemoveConfiguration(this);
asDELETE(grp,asCConfigGroup);
}
}
// Remove what is remaining
defaultGroup.RemoveConfiguration(this);
asCSymbolTable<asCGlobalProperty>::iterator it = registeredGlobalProps.List();
for( ; it; it++ )
(*it)->Release();
registeredGlobalProps.Clear();
FreeUnusedGlobalProperties();
for( n = 0; n < templateInstanceTypes.GetLength(); n++ )
{
if( templateInstanceTypes[n] )
{
// Clear the sub types before deleting the template type so that the sub types aren't freed to soon
templateInstanceTypes[n]->templateSubTypes.SetLength(0);
asDELETE(templateInstanceTypes[n],asCObjectType);
}
}
templateInstanceTypes.SetLength(0);
asSMapNode<asSNameSpaceNamePair, asCObjectType *> *cursor2;
allRegisteredTypes.MoveFirst(&cursor2);
while( cursor2 )
{
// Clear the sub types before deleting the template type so that the sub types aren't freed to soon
cursor2->value->templateSubTypes.SetLength(0);
asDELETE(cursor2->value, asCObjectType);
allRegisteredTypes.MoveNext(&cursor2, cursor2);
}
allRegisteredTypes.EraseAll();
for( n = 0; n < templateSubTypes.GetLength(); n++ )
{
if( templateSubTypes[n] )
asDELETE(templateSubTypes[n], asCObjectType);
}
templateSubTypes.SetLength(0);
registeredTypeDefs.SetLength(0);
registeredEnums.SetLength(0);
registeredObjTypes.SetLength(0);
asCSymbolTable<asCScriptFunction>::iterator funcIt = registeredGlobalFuncs.List();
for( ; funcIt; funcIt++ )
(*funcIt)->Release();
registeredGlobalFuncs.Clear();
scriptTypeBehaviours.ReleaseAllFunctions();
functionBehaviours.ReleaseAllFunctions();
objectTypeBehaviours.ReleaseAllFunctions();
globalPropertyBehaviours.ReleaseAllFunctions();
// Destroy the funcdefs
// As funcdefs are shared between modules it shouldn't be a problem to keep the objects until the engine is released
// TODO: refactor: This really should be done by ClearUnusedTypes() as soon as the funcdef is no longer is use.
// Perhaps to make it easier to manage the memory for funcdefs each function definition should
// have it's own object type. That would make the funcdef much more similar to the other types
// and could then be handled in much the same way. When this is done the funcdef should also be
// changed so that it doesn't take up a function id, i.e. don't keep a reference to it in scriptFunctions.
for( n = 0; n < funcDefs.GetLength(); n++ )
if( funcDefs[n] )
{
asASSERT( funcDefs[n]->GetRefCount() == 0 );
asDELETE(funcDefs[n], asCScriptFunction);
}
funcDefs.SetLength(0);
// Free string constants
for( n = 0; n < stringConstants.GetLength(); n++ )
asDELETE(stringConstants[n],asCString);
stringConstants.SetLength(0);
stringToIdMap.EraseAll();
// Free the script section names
for( n = 0; n < scriptSectionNames.GetLength(); n++ )
asDELETE(scriptSectionNames[n],asCString);
scriptSectionNames.SetLength(0);
// Clean the user data
for( n = 0; n < userData.GetLength(); n += 2 )
{
if( userData[n+1] )
{
for( asUINT c = 0; c < cleanEngineFuncs.GetLength(); c++ )
if( cleanEngineFuncs[c].type == userData[n] )
cleanEngineFuncs[c].cleanFunc(this);
}
}
// Free namespaces
for( n = 0; n < nameSpaces.GetLength(); n++ )
asDELETE(nameSpaces[n], asSNameSpace);
nameSpaces.SetLength(0);
asCThreadManager::Unprepare();
}
// internal
void asCScriptEngine::CleanupAfterDiscardModule()
{
// Skip this when shutting down as it will be done anyway by the engine destructor
if( shuttingDown ) return;
if( ep.autoGarbageCollect )
GarbageCollect();
FreeUnusedGlobalProperties();
ClearUnusedTypes();
}
// interface
int asCScriptEngine::AddRef() const
{
return refCount.atomicInc();
}
// interface
int asCScriptEngine::Release() const
{
int r = refCount.atomicDec();
if( r == 0 )
{
asDELETE(const_cast<asCScriptEngine*>(this),asCScriptEngine);
return 0;
}
return r;
}
// internal
asSNameSpace *asCScriptEngine::AddNameSpace(const char *name)
{
// First check if it doesn't exist already
asSNameSpace *ns = FindNameSpace(name);
if( ns ) return ns;
ns = asNEW(asSNameSpace);
if( ns == 0 )
{
// Out of memory
return 0;
}
ns->name = name;
nameSpaces.PushLast(ns);
return ns;
}
// internal
asSNameSpace *asCScriptEngine::FindNameSpace(const char *name)
{
// TODO: optimize: Improve linear search
for( asUINT n = 0; n < nameSpaces.GetLength(); n++ )
if( nameSpaces[n]->name == name )
return nameSpaces[n];
return 0;
}
// interface
const char *asCScriptEngine::GetDefaultNamespace() const
{
return defaultNamespace->name.AddressOf();
}
// interface
int asCScriptEngine::SetDefaultNamespace(const char *nameSpace)
{
if( nameSpace == 0 )
return ConfigError(asINVALID_ARG, "SetDefaultNamespace", nameSpace, 0);
asCString ns = nameSpace;
if( ns != "" )
{
// Make sure the namespace is composed of alternating identifier and ::
size_t pos = 0;
bool expectIdentifier = true;
size_t len;
eTokenType t = ttIdentifier;
for( ; pos < ns.GetLength(); pos += len)
{
t = tok.GetToken(ns.AddressOf() + pos, ns.GetLength() - pos, &len);
if( (expectIdentifier && t != ttIdentifier) || (!expectIdentifier && t != ttScope) )
return ConfigError(asINVALID_DECLARATION, "SetDefaultNamespace", nameSpace, 0);
expectIdentifier = !expectIdentifier;
}
// If the namespace ends with :: then strip it off
if( t == ttScope )
ns.SetLength(ns.GetLength()-2);
}
defaultNamespace = AddNameSpace(ns.AddressOf());
return 0;
}
// interface
void *asCScriptEngine::SetUserData(void *data, asPWORD type)
{
// As a thread might add a new new user data at the same time as another
// it is necessary to protect both read and write access to the userData member
ACQUIREEXCLUSIVE(engineRWLock);
// It is not intended to store a lot of different types of userdata,
// so a more complex structure like a associative map would just have
// more overhead than a simple array.
for( asUINT n = 0; n < userData.GetLength(); n += 2 )
{
if( userData[n] == type )
{
void *oldData = reinterpret_cast<void*>(userData[n+1]);
userData[n+1] = reinterpret_cast<asPWORD>(data);
RELEASEEXCLUSIVE(engineRWLock);
return oldData;
}
}
userData.PushLast(type);
userData.PushLast(reinterpret_cast<asPWORD>(data));
RELEASEEXCLUSIVE(engineRWLock);
return 0;
}
// interface
void *asCScriptEngine::GetUserData(asPWORD type) const
{
// There may be multiple threads reading, but when
// setting the user data nobody must be reading.
ACQUIRESHARED(engineRWLock);
for( asUINT n = 0; n < userData.GetLength(); n += 2 )
{
if( userData[n] == type )
{
RELEASESHARED(engineRWLock);
return reinterpret_cast<void*>(userData[n+1]);
}
}
RELEASESHARED(engineRWLock);
return 0;
}
// interface
int asCScriptEngine::SetMessageCallback(const asSFuncPtr &callback, void *obj, asDWORD callConv)
{
msgCallback = true;
msgCallbackObj = obj;
bool isObj = false;
if( (unsigned)callConv == asCALL_GENERIC )
{
msgCallback = false;
return asNOT_SUPPORTED;
}
if( (unsigned)callConv >= asCALL_THISCALL )
{
isObj = true;
if( obj == 0 )
{
msgCallback = false;
return asINVALID_ARG;
}
}
int r = DetectCallingConvention(isObj, callback, callConv, 0, &msgCallbackFunc);
if( r < 0 ) msgCallback = false;
return r;
}
// interface
int asCScriptEngine::ClearMessageCallback()
{
msgCallback = false;
return 0;
}
// interface
int asCScriptEngine::WriteMessage(const char *section, int row, int col, asEMsgType type, const char *message)
{
// Validate input parameters
if( section == 0 ||
message == 0 )
return asINVALID_ARG;
// If there is no callback then there's nothing to do
if( !msgCallback )
return 0;
asSMessageInfo msg;
msg.section = section;
msg.row = row;
msg.col = col;
msg.type = type;
msg.message = message;
if( msgCallbackFunc.callConv < ICC_THISCALL )
CallGlobalFunction(&msg, msgCallbackObj, &msgCallbackFunc, 0);
else
CallObjectMethod(msgCallbackObj, &msg, &msgCallbackFunc, 0);
return 0;
}
int asCScriptEngine::SetJITCompiler(asIJITCompiler *compiler)
{
jitCompiler = compiler;
return asSUCCESS;
}
asIJITCompiler *asCScriptEngine::GetJITCompiler() const
{
return jitCompiler;
}
// interface
asETokenClass asCScriptEngine::ParseToken(const char *string, size_t stringLength, int *tokenLength) const
{
if( stringLength == 0 )
stringLength = strlen(string);
size_t len;
asETokenClass tc;
tok.GetToken(string, stringLength, &len, &tc);
if( tokenLength )
*tokenLength = (int)len;
return tc;
}
// interface
asIScriptModule *asCScriptEngine::GetModule(const char *module, asEGMFlags flag)
{
asCModule *mod = GetModule(module, false);
if( flag == asGM_ALWAYS_CREATE )
{
if( mod != 0 )
mod->Discard();
return GetModule(module, true);
}
if( mod == 0 && flag == asGM_CREATE_IF_NOT_EXISTS )
return GetModule(module, true);
return mod;
}
// interface
int asCScriptEngine::DiscardModule(const char *module)
{
asCModule *mod = GetModule(module, false);
if( mod == 0 ) return asNO_MODULE;
mod->Discard();
return 0;
}
// interface
asUINT asCScriptEngine::GetModuleCount() const
{
return asUINT(scriptModules.GetLength());
}
// interface
asIScriptModule *asCScriptEngine::GetModuleByIndex(asUINT index) const
{
if( index >= scriptModules.GetLength() )
return 0;
return scriptModules[index];
}
// internal
int asCScriptEngine::ClearUnusedTypes()
{
int clearCount = 0;
// Build a list of all types to check for
asCArray<asCObjectType*> types;
types = classTypes;
types.Concatenate(generatedTemplateTypes);
// Go through all modules
asUINT n;
for( n = 0; n < scriptModules.GetLength() && types.GetLength(); n++ )
{
asCModule *mod = scriptModules[n];
if( mod )
{
// Functions/Methods/Globals are handled after this
// Go through all type declarations
asUINT m;
for( m = 0; m < mod->classTypes.GetLength() && types.GetLength(); m++ )
RemoveTypeAndRelatedFromList(types, mod->classTypes[m]);
for( m = 0; m < mod->enumTypes.GetLength() && types.GetLength(); m++ )
RemoveTypeAndRelatedFromList(types, mod->enumTypes[m]);
for( m = 0; m < mod->typeDefs.GetLength() && types.GetLength(); m++ )
RemoveTypeAndRelatedFromList(types, mod->typeDefs[m]);
}
}
// Go through all function parameters and remove used types
for( n = 0; n < scriptFunctions.GetLength() && types.GetLength(); n++ )
{
asCScriptFunction *func = scriptFunctions[n];
if( func )
{
// Ignore factory stubs
if( func->name == "factstub" )
continue;
// Ignore funcdefs because these will only be destroyed when the engine is released
if( func->funcType == asFUNC_FUNCDEF )
continue;
asCObjectType *ot = func->returnType.GetObjectType();
if( ot != 0 && ot != func->objectType )
if( func->name != ot->name )
RemoveTypeAndRelatedFromList(types, ot);
for( asUINT p = 0; p < func->parameterTypes.GetLength(); p++ )
{
ot = func->parameterTypes[p].GetObjectType();
if( ot != 0 && ot != func->objectType )
if( func->name != ot->name )
RemoveTypeAndRelatedFromList(types, ot);
}
}
}
// Go through all global properties
for( n = 0; n < globalProperties.GetLength() && types.GetLength(); n++ )
{
if( globalProperties[n] && globalProperties[n]->type.GetObjectType() )
RemoveTypeAndRelatedFromList(types, globalProperties[n]->type.GetObjectType());
}
// All that remains in the list after this can be discarded, since they are no longer used
for(;;)
{
bool didClearTemplateInstanceType = false;
for( n = 0; n < types.GetLength(); n++ )
{
int refCount = 0;
asCObjectType *type = types[n];
// Template types and script classes will have two references for each factory stub
if( (type->flags & asOBJ_TEMPLATE) )
{
refCount = 2*(int)type->beh.factories.GetLength();
if( type->beh.listFactory )
refCount += 2;
}
if( type->GetRefCount() == refCount )
{
if( type->flags & asOBJ_TEMPLATE )
{
didClearTemplateInstanceType = true;
RemoveTemplateInstanceType(type);
clearCount++;
}
else
{
RemoveFromTypeIdMap(type);
asDELETE(type,asCObjectType);
clearCount++;
classTypes.RemoveIndexUnordered(classTypes.IndexOf(type));
}
// Remove the type from the array
types.RemoveIndexUnordered(n);
n--;
}
}
if( didClearTemplateInstanceType == false )
break;
}
// Clear the list pattern types that are no longer used
for( n = 0; n < listPatternTypes.GetLength(); n++ )
{
if( listPatternTypes[n]->refCount.get() == 0 )
{
asDELETE(listPatternTypes[n], asCObjectType);
listPatternTypes.RemoveIndexUnordered(n);
n--;
}
}
return clearCount;
}
// internal
void asCScriptEngine::RemoveTypeAndRelatedFromList(asCArray<asCObjectType*> &types, asCObjectType *ot)
{
// Remove the type from the list
int i = types.IndexOf(ot);
if( i == -1 ) return;
types.RemoveIndexUnordered(i);
// If the type is an template type then remove all sub types as well
for( asUINT n = 0; n < ot->templateSubTypes.GetLength(); n++ )
{
if( ot->templateSubTypes[n].GetObjectType() )
RemoveTypeAndRelatedFromList(types, ot->templateSubTypes[n].GetObjectType());
}
// If the type is a class then remove all properties types as well
if( ot->properties.GetLength() )
{
for( asUINT n = 0; n < ot->properties.GetLength(); n++ )
RemoveTypeAndRelatedFromList(types, ot->properties[n]->type.GetObjectType());
}
}
// internal
int asCScriptEngine::GetFactoryIdByDecl(const asCObjectType *ot, const char *decl)
{
asCModule *mod = 0;
// Is this a script class?
if( ot->flags & asOBJ_SCRIPT_OBJECT && ot->size > 0 )
mod = scriptFunctions[ot->beh.factories[0]]->module;
asCBuilder bld(this, mod);
// Don't write parser errors to the message callback
bld.silent = true;
asCScriptFunction func(this, mod, asFUNC_DUMMY);
int r = bld.ParseFunctionDeclaration(0, decl, &func, false, 0, 0, defaultNamespace);
if( r < 0 )
return asINVALID_DECLARATION;
// Search for matching factory function
int id = -1;
for( size_t n = 0; n < ot->beh.factories.GetLength(); n++ )
{
asCScriptFunction *f = scriptFunctions[ot->beh.factories[n]];
if( f->IsSignatureEqual(&func) )
{
id = ot->beh.factories[n];
break;
}
}
if( id == -1 ) return asNO_FUNCTION;
return id;
}
// internal
int asCScriptEngine::GetMethodIdByDecl(const asCObjectType *ot, const char *decl, asCModule *mod)
{
asCBuilder bld(this, mod);
// Don't write parser errors to the message callback
bld.silent = true;
asCScriptFunction func(this, mod, asFUNC_DUMMY);
// Set the object type so that the signature can be properly compared
// This cast is OK, it will only be used for comparison
func.objectType = const_cast<asCObjectType*>(ot);
int r = bld.ParseFunctionDeclaration(func.objectType, decl, &func, false);
if( r < 0 )
return asINVALID_DECLARATION;
// Search script functions for matching interface
int id = -1;
for( size_t n = 0; n < ot->methods.GetLength(); ++n )
{
if( func.IsSignatureEqual(scriptFunctions[ot->methods[n]]) )
{
if( id == -1 )
id = ot->methods[n];
else
return asMULTIPLE_FUNCTIONS;
}
}
if( id == -1 ) return asNO_FUNCTION;
return id;
}
// internal
asCString asCScriptEngine::GetFunctionDeclaration(int funcId)
{
asCString str;
asCScriptFunction *func = GetScriptFunction(funcId);
if( func )
str = func->GetDeclarationStr();
return str;
}
// internal
asCScriptFunction *asCScriptEngine::GetScriptFunction(int funcId) const
{
if( funcId < 0 || funcId >= (int)scriptFunctions.GetLength() )
return 0;
return scriptFunctions[funcId];
}
// interface
asIScriptContext *asCScriptEngine::CreateContext()
{
asIScriptContext *ctx = 0;
CreateContext(&ctx, false);
return ctx;
}
// internal
int asCScriptEngine::CreateContext(asIScriptContext **context, bool isInternal)
{
*context = asNEW(asCContext)(this, !isInternal);
if( *context == 0 )
return asOUT_OF_MEMORY;
// We need to make sure the engine has been
// prepared before any context is executed
PrepareEngine();
return 0;
}
// interface
int asCScriptEngine::RegisterObjectProperty(const char *obj, const char *declaration, int byteOffset)
{
int r;
asCDataType dt;
asCBuilder bld(this, 0);
r = bld.ParseDataType(obj, &dt, defaultNamespace);
if( r < 0 )
return ConfigError(r, "RegisterObjectProperty", obj, declaration);
// Verify that the correct config group is used
if( currentGroup->FindType(dt.GetObjectType()->name.AddressOf()) == 0 )
return ConfigError(asWRONG_CONFIG_GROUP, "RegisterObjectProperty", obj, declaration);
asCDataType type;
asCString name;
if( (r = bld.VerifyProperty(&dt, declaration, name, type, 0)) < 0 )
return ConfigError(r, "RegisterObjectProperty", obj, declaration);
// Store the property info
if( dt.GetObjectType() == 0 || dt.IsObjectHandle() )
return ConfigError(asINVALID_OBJECT, "RegisterObjectProperty", obj, declaration);
// The VM currently only supports 16bit offsets
// TODO: The VM needs to have support for 32bit offsets. Probably with a second ADDSi instruction
// However, when implementing this it is necessary for the bytecode serialization to support
// the switch between the instructions upon loading bytecode as the offset may not be the
// same on all platforms
if( byteOffset > 32767 || byteOffset < -32768 )
return ConfigError(asINVALID_ARG, "RegisterObjectProperty", obj, declaration);
asCObjectProperty *prop = asNEW(asCObjectProperty);
if( prop == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterObjectProperty", obj, declaration);
prop->name = name;
prop->type = type;
prop->byteOffset = byteOffset;
prop->isPrivate = false;
prop->accessMask = defaultAccessMask;
dt.GetObjectType()->properties.PushLast(prop);
// Add references to template instances so they are not released too early
if( type.GetObjectType() && (type.GetObjectType()->flags & asOBJ_TEMPLATE) )
{
if( !currentGroup->objTypes.Exists(type.GetObjectType()) )
{
type.GetObjectType()->AddRef();
currentGroup->objTypes.PushLast(type.GetObjectType());
}
}
currentGroup->RefConfigGroup(FindConfigGroupForObjectType(type.GetObjectType()));
return asSUCCESS;
}
// interface
int asCScriptEngine::RegisterInterface(const char *name)
{
if( name == 0 ) return ConfigError(asINVALID_NAME, "RegisterInterface", 0, 0);
// Verify if the name has been registered as a type already
// TODO: Must check against registered funcdefs too
if( GetRegisteredObjectType(name, defaultNamespace) )
return asALREADY_REGISTERED;
// Use builder to parse the datatype
asCDataType dt;
asCBuilder bld(this, 0);
bool oldMsgCallback = msgCallback; msgCallback = false;
int r = bld.ParseDataType(name, &dt, defaultNamespace);
msgCallback = oldMsgCallback;
if( r >= 0 ) return ConfigError(asERROR, "RegisterInterface", name, 0);
// Make sure the name is not a reserved keyword
size_t tokenLen;
int token = tok.GetToken(name, strlen(name), &tokenLen);
if( token != ttIdentifier || strlen(name) != tokenLen )
return ConfigError(asINVALID_NAME, "RegisterInterface", name, 0);
r = bld.CheckNameConflict(name, 0, 0, defaultNamespace);
if( r < 0 )
return ConfigError(asNAME_TAKEN, "RegisterInterface", name, 0);
// Don't have to check against members of object
// types as they are allowed to use the names
// Register the object type for the interface
asCObjectType *st = asNEW(asCObjectType)(this);
if( st == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterInterface", name, 0);
st->flags = asOBJ_REF | asOBJ_SCRIPT_OBJECT | asOBJ_SHARED;
st->size = 0; // Cannot be instanciated
st->name = name;
st->nameSpace = defaultNamespace;
// Use the default script class behaviours
st->beh.factory = 0;
st->beh.addref = scriptTypeBehaviours.beh.addref;
scriptFunctions[st->beh.addref]->AddRef();
st->beh.release = scriptTypeBehaviours.beh.release;
scriptFunctions[st->beh.release]->AddRef();
st->beh.copy = 0;
allRegisteredTypes.Insert(asSNameSpaceNamePair(st->nameSpace, st->name), st);
registeredObjTypes.PushLast(st);
currentGroup->objTypes.PushLast(st);
return asSUCCESS;
}
// interface
int asCScriptEngine::RegisterInterfaceMethod(const char *intf, const char *declaration)
{
// Verify that the correct config group is set.
if( currentGroup->FindType(intf) == 0 )
return ConfigError(asWRONG_CONFIG_GROUP, "RegisterInterfaceMethod", intf, declaration);
asCDataType dt;
asCBuilder bld(this, 0);
int r = bld.ParseDataType(intf, &dt, defaultNamespace);
if( r < 0 )
return ConfigError(r, "RegisterInterfaceMethod", intf, declaration);
asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_INTERFACE);
if( func == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterInterfaceMethod", intf, declaration);
func->objectType = dt.GetObjectType();
r = bld.ParseFunctionDeclaration(func->objectType, declaration, func, false);
if( r < 0 )
{
asDELETE(func,asCScriptFunction);
return ConfigError(asINVALID_DECLARATION, "RegisterInterfaceMethod", intf, declaration);
}
// Check name conflicts
r = bld.CheckNameConflictMember(dt.GetObjectType(), func->name.AddressOf(), 0, 0, false);
if( r < 0 )
{
asDELETE(func,asCScriptFunction);
return ConfigError(asNAME_TAKEN, "RegisterInterfaceMethod", intf, declaration);
}
func->id = GetNextScriptFunctionId();
SetScriptFunction(func);
// The index into the interface's vftable chunk should be
// its index in the methods array.
func->vfTableIdx = int(func->objectType->methods.GetLength());
func->objectType->methods.PushLast(func->id);
func->ComputeSignatureId();
// If parameter type from other groups are used, add references
// TODO: The code for adding references to config groups is repeated in a lot of places
if( func->returnType.GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(func->returnType.GetObjectType());
currentGroup->RefConfigGroup(group);
}
for( asUINT n = 0; n < func->parameterTypes.GetLength(); n++ )
{
if( func->parameterTypes[n].GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(func->parameterTypes[n].GetObjectType());
currentGroup->RefConfigGroup(group);
}
}
// Return function id as success
return func->id;
}
int asCScriptEngine::RegisterObjectType(const char *name, int byteSize, asDWORD flags)
{
int r;
isPrepared = false;
// Verify flags
// Must have either asOBJ_REF or asOBJ_VALUE
if( flags & asOBJ_REF )
{
// Can optionally have the asOBJ_GC, asOBJ_NOHANDLE, asOBJ_SCOPED, or asOBJ_TEMPLATE flag set, but nothing else
if( flags & ~(asOBJ_REF | asOBJ_GC | asOBJ_NOHANDLE | asOBJ_SCOPED | asOBJ_TEMPLATE | asOBJ_NOCOUNT) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
// flags are exclusive
if( (flags & asOBJ_GC) && (flags & (asOBJ_NOHANDLE|asOBJ_SCOPED|asOBJ_NOCOUNT)) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
if( (flags & asOBJ_NOHANDLE) && (flags & (asOBJ_GC|asOBJ_SCOPED|asOBJ_NOCOUNT)) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
if( (flags & asOBJ_SCOPED) && (flags & (asOBJ_GC|asOBJ_NOHANDLE|asOBJ_NOCOUNT)) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
if( (flags & asOBJ_NOCOUNT) && (flags & (asOBJ_GC|asOBJ_NOHANDLE|asOBJ_SCOPED)) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
}
else if( flags & asOBJ_VALUE )
{
// Cannot use reference flags
// TODO: template: Should be possible to register a value type as template type
if( flags & (asOBJ_REF | asOBJ_GC | asOBJ_NOHANDLE | asOBJ_SCOPED | asOBJ_TEMPLATE | asOBJ_NOCOUNT) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
// flags are exclusive
if( (flags & asOBJ_POD) && (flags & asOBJ_ASHANDLE) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
// If the app type is given, we must validate the flags
if( flags & asOBJ_APP_CLASS )
{
// Must not set the primitive or float flag
if( flags & (asOBJ_APP_PRIMITIVE | asOBJ_APP_FLOAT) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
}
else if( flags & asOBJ_APP_PRIMITIVE )
{
// Must not set the class flags nor the float flag
if( flags & (asOBJ_APP_CLASS |
asOBJ_APP_CLASS_CONSTRUCTOR |
asOBJ_APP_CLASS_DESTRUCTOR |
asOBJ_APP_CLASS_ASSIGNMENT |
asOBJ_APP_CLASS_COPY_CONSTRUCTOR |
asOBJ_APP_FLOAT |
asOBJ_APP_CLASS_ALLINTS |
asOBJ_APP_CLASS_ALLFLOATS) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
}
else if( flags & asOBJ_APP_FLOAT )
{
// Must not set the class flags nor the primitive flag
if( flags & (asOBJ_APP_CLASS |
asOBJ_APP_CLASS_CONSTRUCTOR |
asOBJ_APP_CLASS_DESTRUCTOR |
asOBJ_APP_CLASS_ASSIGNMENT |
asOBJ_APP_CLASS_COPY_CONSTRUCTOR |
asOBJ_APP_PRIMITIVE |
asOBJ_APP_CLASS_ALLINTS |
asOBJ_APP_CLASS_ALLFLOATS) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
}
else if( flags & (asOBJ_APP_CLASS_CONSTRUCTOR |
asOBJ_APP_CLASS_DESTRUCTOR |
asOBJ_APP_CLASS_ASSIGNMENT |
asOBJ_APP_CLASS_COPY_CONSTRUCTOR |
asOBJ_APP_CLASS_ALLINTS |
asOBJ_APP_CLASS_ALLFLOATS) )
{
// Must not set the class properties, without the class flag
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
}
}
else
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
// Don't allow anything else than the defined flags
if( flags - (flags & asOBJ_MASK_VALID_FLAGS) )
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
// Value types must have a defined size
if( (flags & asOBJ_VALUE) && byteSize == 0 )
{
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_VALUE_TYPE_MUST_HAVE_SIZE);
return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0);
}
// Verify type name
if( name == 0 )
return ConfigError(asINVALID_NAME, "RegisterObjectType", name, 0);
asCString typeName;
asCBuilder bld(this, 0);
if( flags & asOBJ_TEMPLATE )
{
asCArray<asCString> subtypeNames;
r = bld.ParseTemplateDecl(name, &typeName, subtypeNames);
if( r < 0 )
return ConfigError(r, "RegisterObjectType", name, 0);
// Verify that the template name hasn't been registered as a type already
// TODO: Must check against registered funcdefs too
if( GetRegisteredObjectType(typeName, defaultNamespace) )
// This is not an irrepairable error, as it may just be that the same type is registered twice
return asALREADY_REGISTERED;
asCObjectType *type = asNEW(asCObjectType)(this);
if( type == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterObjectType", name, 0);
type->name = typeName;
type->nameSpace = defaultNamespace;
type->size = byteSize;
type->flags = flags;
type->accessMask = defaultAccessMask;
// Store it in the object types
allRegisteredTypes.Insert(asSNameSpaceNamePair(type->nameSpace, type->name), type);
currentGroup->objTypes.PushLast(type);
registeredObjTypes.PushLast(type);
registeredTemplateTypes.PushLast(type);
// Define the template subtypes
for( asUINT subTypeIdx = 0; subTypeIdx < subtypeNames.GetLength(); subTypeIdx++ )
{
asCObjectType *subtype = 0;
for( asUINT n = 0; n < templateSubTypes.GetLength(); n++ )
{
if( templateSubTypes[n]->name == subtypeNames[subTypeIdx] )
{
subtype = templateSubTypes[n];
break;
}
}
if( subtype == 0 )
{
// Create the new subtype if not already existing
subtype = asNEW(asCObjectType)(this);
if( subtype == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterObjectType", name, 0);
subtype->name = subtypeNames[subTypeIdx];
subtype->size = 0;
subtype->flags = asOBJ_TEMPLATE_SUBTYPE;
templateSubTypes.PushLast(subtype);
subtype->AddRef();
}
type->templateSubTypes.PushLast(asCDataType::CreateObject(subtype, false));
subtype->AddRef();
}
}
else
{
typeName = name;
// Verify if the name has been registered as a type already
// TODO: Must check against registered funcdefs too
if( GetRegisteredObjectType(typeName, defaultNamespace) )
// This is not an irrepairable error, as it may just be that the same type is registered twice
return asALREADY_REGISTERED;
// TODO: clean up: Is it really necessary to check here?
for( asUINT n = 0; n < templateInstanceTypes.GetLength(); n++ )
{
if( templateInstanceTypes[n] &&
templateInstanceTypes[n]->name == typeName &&
templateInstanceTypes[n]->nameSpace == defaultNamespace )
// This is not an irrepairable error, as it may just be that the same type is registered twice
return asALREADY_REGISTERED;
}
// Keep the most recent template generated instance type, so we know what it was before parsing the datatype
asCObjectType *mostRecentTemplateInstanceType = 0;
if( generatedTemplateTypes.GetLength() )
mostRecentTemplateInstanceType = generatedTemplateTypes[generatedTemplateTypes.GetLength()-1];
// Use builder to parse the datatype
asCDataType dt;
bool oldMsgCallback = msgCallback; msgCallback = false;
r = bld.ParseDataType(name, &dt, defaultNamespace);
msgCallback = oldMsgCallback;
// If the builder fails or the namespace is different than the default
// namespace, then the type name is new and it should be registered
if( r < 0 || dt.GetObjectType()->nameSpace != defaultNamespace )
{
// Make sure the name is not a reserved keyword
size_t tokenLen;
int token = tok.GetToken(name, typeName.GetLength(), &tokenLen);
if( token != ttIdentifier || typeName.GetLength() != tokenLen )
return ConfigError(asINVALID_NAME, "RegisterObjectType", name, 0);
int r = bld.CheckNameConflict(name, 0, 0, defaultNamespace);
if( r < 0 )
return ConfigError(asNAME_TAKEN, "RegisterObjectType", name, 0);
// Don't have to check against members of object
// types as they are allowed to use the names
// Put the data type in the list
asCObjectType *type = asNEW(asCObjectType)(this);
if( type == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterObjectType", name, 0);
type->name = typeName;
type->nameSpace = defaultNamespace;
type->size = byteSize;
type->flags = flags;
type->accessMask = defaultAccessMask;
allRegisteredTypes.Insert(asSNameSpaceNamePair(type->nameSpace, type->name), type);
registeredObjTypes.PushLast(type);
currentGroup->objTypes.PushLast(type);
}
else
{
// The application is registering a template specialization so we
// need to replace the template instance type with the new type.
// TODO: Template: We don't require the lower dimensions to be registered first for registered template types
// int[][] must not be allowed to be registered
// if int[] hasn't been registered first
if( dt.GetSubType().IsTemplate() )
return ConfigError(asLOWER_ARRAY_DIMENSION_NOT_REGISTERED, "RegisterObjectType", name, 0);
if( dt.IsReadOnly() ||
dt.IsReference() )
return ConfigError(asINVALID_TYPE, "RegisterObjectType", name, 0);
// Was the template instance type created before?
if( (generatedTemplateTypes.GetLength() &&
generatedTemplateTypes[generatedTemplateTypes.GetLength()-1] == mostRecentTemplateInstanceType) ||
mostRecentTemplateInstanceType == dt.GetObjectType() )
// TODO: Should have a better error message
return ConfigError(asNOT_SUPPORTED, "RegisterObjectType", name, 0);
// If this is not a template instance type, then it means it is an
// already registered template specialization
if( !generatedTemplateTypes.Exists(dt.GetObjectType()) )
return ConfigError(asALREADY_REGISTERED, "RegisterObjectType", name, 0);
// TODO: Add this again. The type is used by the factory stubs so we need to discount that
// Is the template instance type already being used?
// if( dt.GetObjectType()->GetRefCount() > 1 )
// return ConfigError(asNOT_SUPPORTED, "RegisterObjectType", name, 0);
// Put the data type in the list
asCObjectType *type = asNEW(asCObjectType)(this);
if( type == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterObjectType", name, 0);
type->name = dt.GetObjectType()->name;
// The namespace will be the same as the original template type
type->nameSpace = dt.GetObjectType()->nameSpace;
// TODO: template: Support multiple subtypes
type->templateSubTypes.PushLast(dt.GetSubType());
if( type->templateSubTypes[0].GetObjectType() ) type->templateSubTypes[0].GetObjectType()->AddRef();
type->size = byteSize;
type->flags = flags;
type->accessMask = defaultAccessMask;
templateInstanceTypes.PushLast(type);
currentGroup->objTypes.PushLast(type);
// Remove the template instance type, which will no longer be used.
RemoveTemplateInstanceType(dt.GetObjectType());
}
}
// Return the type id as the success (except for template types)
if( flags & asOBJ_TEMPLATE )
return asSUCCESS;
return GetTypeIdByDecl(name);
}
// interface
int asCScriptEngine::RegisterObjectBehaviour(const char *datatype, asEBehaviours behaviour, const char *decl, const asSFuncPtr &funcPointer, asDWORD callConv, void *objForThiscall)
{
if( datatype == 0 ) return ConfigError(asINVALID_ARG, "RegisterObjectBehaviour", datatype, decl);
// Determine the object type
asCBuilder bld(this, 0);
asCDataType type;
int r = bld.ParseDataType(datatype, &type, defaultNamespace);
if( r < 0 )
return ConfigError(r, "RegisterObjectBehaviour", datatype, decl);
if( type.GetObjectType() == 0 || type.IsObjectHandle() )
return ConfigError(asINVALID_TYPE, "RegisterObjectBehaviour", datatype, decl);
// Don't allow application to modify built-in types
if( type.GetObjectType() == &functionBehaviours ||
type.GetObjectType() == &objectTypeBehaviours ||
type.GetObjectType() == &globalPropertyBehaviours ||
type.GetObjectType() == &scriptTypeBehaviours )
return ConfigError(asINVALID_TYPE, "RegisterObjectBehaviour", datatype, decl);
if( type.IsReadOnly() || type.IsReference() )
return ConfigError(asINVALID_TYPE, "RegisterObjectBehaviour", datatype, decl);
return RegisterBehaviourToObjectType(type.GetObjectType(), behaviour, decl, funcPointer, callConv, objForThiscall);
}
// internal
int asCScriptEngine::RegisterBehaviourToObjectType(asCObjectType *objectType, asEBehaviours behaviour, const char *decl, const asSFuncPtr &funcPointer, asDWORD callConv, void *objForThiscall)
{
asSSystemFunctionInterface internal;
if( behaviour == asBEHAVE_FACTORY ||
behaviour == asBEHAVE_LIST_FACTORY ||
behaviour == asBEHAVE_TEMPLATE_CALLBACK )
{
#ifdef AS_MAX_PORTABILITY
if( callConv != asCALL_GENERIC )
return ConfigError(asNOT_SUPPORTED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
#endif
int r = DetectCallingConvention(false, funcPointer, callConv, objForThiscall, &internal);
if( r < 0 )
return ConfigError(r, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
else
{
#ifdef AS_MAX_PORTABILITY
if( callConv != asCALL_GENERIC )
return ConfigError(asNOT_SUPPORTED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
#else
if( callConv != asCALL_THISCALL &&
callConv != asCALL_CDECL_OBJLAST &&
callConv != asCALL_CDECL_OBJFIRST &&
callConv != asCALL_GENERIC )
return ConfigError(asNOT_SUPPORTED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
#endif
int r = DetectCallingConvention(true, funcPointer, callConv, objForThiscall, &internal);
if( r < 0 )
return ConfigError(r, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
isPrepared = false;
asSTypeBehaviour *beh = &objectType->beh;
// Verify function declaration
asCScriptFunction func(this, 0, asFUNC_DUMMY);
bool expectListPattern = behaviour == asBEHAVE_LIST_FACTORY || behaviour == asBEHAVE_LIST_CONSTRUCT;
asCScriptNode *listPattern = 0;
asCBuilder bld(this, 0);
int r = bld.ParseFunctionDeclaration(objectType, decl, &func, true, &internal.paramAutoHandles, &internal.returnAutoHandle, 0, expectListPattern ? &listPattern : 0);
if( r < 0 )
{
if( listPattern )
listPattern->Destroy(this);
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
func.name.Format("_beh_%d_", behaviour);
if( behaviour != asBEHAVE_FACTORY && behaviour != asBEHAVE_LIST_FACTORY )
func.objectType = objectType;
// Check if the method restricts that use of the template to value types or reference types
if( objectType->flags & asOBJ_TEMPLATE )
{
for( asUINT subTypeIdx = 0; subTypeIdx < objectType->templateSubTypes.GetLength(); subTypeIdx++ )
{
if( func.returnType.GetObjectType() == objectType->templateSubTypes[subTypeIdx].GetObjectType() )
{
if( func.returnType.IsObjectHandle() )
objectType->acceptValueSubType = false;
else if( !func.returnType.IsReference() )
objectType->acceptRefSubType = false;
}
for( asUINT n = 0; n < func.parameterTypes.GetLength(); n++ )
{
if( func.parameterTypes[n].GetObjectType() == objectType->templateSubTypes[subTypeIdx].GetObjectType() )
{
// TODO: If unsafe references are allowed, then inout references allow value types
if( func.parameterTypes[n].IsObjectHandle() || (func.parameterTypes[n].IsReference() && func.inOutFlags[n] == asTM_INOUTREF) )
objectType->acceptValueSubType = false;
else if( !func.parameterTypes[n].IsReference() )
objectType->acceptRefSubType = false;
}
}
}
}
if( behaviour == asBEHAVE_CONSTRUCT )
{
// Verify that the return type is void
if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
if( objectType->flags & asOBJ_SCRIPT_OBJECT )
{
// The script object is a special case
asASSERT(func.parameterTypes.GetLength() == 1);
beh->construct = AddBehaviourFunction(func, internal);
beh->factory = beh->construct;
scriptFunctions[beh->factory]->AddRef();
beh->constructors.PushLast(beh->construct);
beh->factories.PushLast(beh->factory);
func.id = beh->construct;
}
else
{
// Verify that it is a value type
if( !(func.objectType->flags & asOBJ_VALUE) )
{
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// TODO: Verify that the same constructor hasn't been registered already
// Store all constructors in a list
func.id = AddBehaviourFunction(func, internal);
beh->constructors.PushLast(func.id);
if( func.parameterTypes.GetLength() == 0 )
{
beh->construct = func.id;
}
else if( func.parameterTypes.GetLength() == 1 )
{
// Is this the copy constructor?
asCDataType paramType = func.parameterTypes[0];
// If the parameter is object, and const reference for input or inout,
// and same type as this class, then this is a copy constructor.
if( paramType.IsObject() && paramType.IsReference() && paramType.IsReadOnly() &&
(func.inOutFlags[0] & asTM_INREF) && paramType.GetObjectType() == objectType )
beh->copyconstruct = func.id;
}
}
}
else if( behaviour == asBEHAVE_DESTRUCT )
{
// Must be a value type
if( !(func.objectType->flags & asOBJ_VALUE) )
{
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
if( beh->destruct )
return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that the return type is void
if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that there are no parameters
if( func.parameterTypes.GetLength() > 0 )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
func.id = beh->destruct = AddBehaviourFunction(func, internal);
}
else if( behaviour == asBEHAVE_LIST_CONSTRUCT )
{
// Verify that the return type is void
if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) )
{
if( listPattern )
listPattern->Destroy(this);
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// Verify that it is a value type
if( !(func.objectType->flags & asOBJ_VALUE) )
{
if( listPattern )
listPattern->Destroy(this);
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// Verify the parameters
if( func.parameterTypes.GetLength() != 1 || !func.parameterTypes[0].IsReference() )
{
if( listPattern )
listPattern->Destroy(this);
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_LIST_FACTORY_EXPECTS_1_REF_PARAM);
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// Don't accept duplicates
if( beh->listFactory )
{
if( listPattern )
listPattern->Destroy(this);
return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// Add the function
func.id = AddBehaviourFunction(func, internal);
// Re-use the listFactory member, as it is not possible to have both anyway
beh->listFactory = func.id;
// Store the list pattern for this function
int r = scriptFunctions[func.id]->RegisterListPattern(decl, listPattern);
if( listPattern )
listPattern->Destroy(this);
if( r < 0 )
return ConfigError(r, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
else if( behaviour == asBEHAVE_FACTORY || behaviour == asBEHAVE_LIST_FACTORY )
{
// Must be a ref type and must not have asOBJ_NOHANDLE
if( !(objectType->flags & asOBJ_REF) || (objectType->flags & asOBJ_NOHANDLE) )
{
if( listPattern )
listPattern->Destroy(this);
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// Verify that the return type is a handle to the type
if( func.returnType != asCDataType::CreateObjectHandle(objectType, false) )
{
if( listPattern )
listPattern->Destroy(this);
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// The templates take a hidden parameter with the object type
if( (objectType->flags & asOBJ_TEMPLATE) &&
(func.parameterTypes.GetLength() == 0 ||
!func.parameterTypes[0].IsReference()) )
{
if( listPattern )
listPattern->Destroy(this);
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_FIRST_PARAM_MUST_BE_REF_FOR_TEMPLATE_FACTORY);
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// TODO: Verify that the same factory function hasn't been registered already
// Don't accept duplicates
if( behaviour == asBEHAVE_LIST_FACTORY && beh->listFactory )
{
if( listPattern )
listPattern->Destroy(this);
return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// Store all factory functions in a list
func.id = AddBehaviourFunction(func, internal);
// The list factory is a special factory and isn't stored together with the rest
if( behaviour != asBEHAVE_LIST_FACTORY )
beh->factories.PushLast(func.id);
if( (func.parameterTypes.GetLength() == 0) ||
(func.parameterTypes.GetLength() == 1 && (objectType->flags & asOBJ_TEMPLATE)) )
{
beh->factory = func.id;
}
else if( (func.parameterTypes.GetLength() == 1) ||
(func.parameterTypes.GetLength() == 2 && (objectType->flags & asOBJ_TEMPLATE)) )
{
if( behaviour == asBEHAVE_LIST_FACTORY )
{
beh->listFactory = func.id;
// Make sure the factory takes a reference as its last parameter
if( objectType->flags & asOBJ_TEMPLATE )
{
if( func.parameterTypes.GetLength() != 2 || !func.parameterTypes[1].IsReference() )
{
if( listPattern )
listPattern->Destroy(this);
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_TEMPLATE_LIST_FACTORY_EXPECTS_2_REF_PARAMS);
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
}
else
{
if( func.parameterTypes.GetLength() != 1 || !func.parameterTypes[0].IsReference() )
{
if( listPattern )
listPattern->Destroy(this);
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_LIST_FACTORY_EXPECTS_1_REF_PARAM);
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
}
// Store the list pattern for this function
int r = scriptFunctions[func.id]->RegisterListPattern(decl, listPattern);
if( listPattern )
listPattern->Destroy(this);
if( r < 0 )
return ConfigError(r, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
else
{
// Is this the copy factory?
asCDataType paramType = func.parameterTypes[func.parameterTypes.GetLength()-1];
// If the parameter is object, and const reference for input,
// and same type as this class, then this is a copy constructor.
if( paramType.IsObject() && paramType.IsReference() && paramType.IsReadOnly() && func.inOutFlags[func.parameterTypes.GetLength()-1] == asTM_INREF && paramType.GetObjectType() == objectType )
beh->copyfactory = func.id;
}
}
}
else if( behaviour == asBEHAVE_ADDREF )
{
// Must be a ref type and must not have asOBJ_NOHANDLE, nor asOBJ_SCOPED
if( !(func.objectType->flags & asOBJ_REF) ||
(func.objectType->flags & asOBJ_NOHANDLE) ||
(func.objectType->flags & asOBJ_SCOPED) ||
(func.objectType->flags & asOBJ_NOCOUNT) )
{
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
if( beh->addref )
return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that the return type is void
if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that there are no parameters
if( func.parameterTypes.GetLength() > 0 )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
func.id = beh->addref = AddBehaviourFunction(func, internal);
}
else if( behaviour == asBEHAVE_RELEASE )
{
// Must be a ref type and must not have asOBJ_NOHANDLE
if( !(func.objectType->flags & asOBJ_REF) ||
(func.objectType->flags & asOBJ_NOHANDLE) ||
(func.objectType->flags & asOBJ_NOCOUNT) )
{
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
if( beh->release )
return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that the return type is void
if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that there are no parameters
if( func.parameterTypes.GetLength() > 0 )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
func.id = beh->release = AddBehaviourFunction(func, internal);
}
else if( behaviour == asBEHAVE_TEMPLATE_CALLBACK )
{
// Must be a template type
if( !(func.objectType->flags & asOBJ_TEMPLATE) )
{
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
if( beh->templateCallback )
return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that the return type is bool
if( func.returnType != asCDataType::CreatePrimitive(ttBool, false) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that there are two parameters
if( func.parameterTypes.GetLength() != 2 )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// The first parameter must be an inref (to receive the object type), and
// the second must be a bool out ref (to return if the type should or shouldn't be garbage collected)
if( func.inOutFlags[0] != asTM_INREF || func.inOutFlags[1] != asTM_OUTREF || !func.parameterTypes[1].IsEqualExceptRef(asCDataType::CreatePrimitive(ttBool, false)) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
func.id = beh->templateCallback = AddBehaviourFunction(func, internal);
}
else if( behaviour >= asBEHAVE_FIRST_GC &&
behaviour <= asBEHAVE_LAST_GC )
{
// Only allow GC behaviours for types registered to be garbage collected
if( !(func.objectType->flags & asOBJ_GC) )
{
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// Verify parameter count
if( (behaviour == asBEHAVE_GETREFCOUNT ||
behaviour == asBEHAVE_SETGCFLAG ||
behaviour == asBEHAVE_GETGCFLAG) &&
func.parameterTypes.GetLength() != 0 )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
if( (behaviour == asBEHAVE_ENUMREFS ||
behaviour == asBEHAVE_RELEASEREFS) &&
func.parameterTypes.GetLength() != 1 )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify return type
if( behaviour == asBEHAVE_GETREFCOUNT &&
func.returnType != asCDataType::CreatePrimitive(ttInt, false) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
if( behaviour == asBEHAVE_GETGCFLAG &&
func.returnType != asCDataType::CreatePrimitive(ttBool, false) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
if( (behaviour == asBEHAVE_SETGCFLAG ||
behaviour == asBEHAVE_ENUMREFS ||
behaviour == asBEHAVE_RELEASEREFS) &&
func.returnType != asCDataType::CreatePrimitive(ttVoid, false) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
if( behaviour == asBEHAVE_GETREFCOUNT )
func.id = beh->gcGetRefCount = AddBehaviourFunction(func, internal);
else if( behaviour == asBEHAVE_SETGCFLAG )
func.id = beh->gcSetFlag = AddBehaviourFunction(func, internal);
else if( behaviour == asBEHAVE_GETGCFLAG )
func.id = beh->gcGetFlag = AddBehaviourFunction(func, internal);
else if( behaviour == asBEHAVE_ENUMREFS )
func.id = beh->gcEnumReferences = AddBehaviourFunction(func, internal);
else if( behaviour == asBEHAVE_RELEASEREFS )
func.id = beh->gcReleaseAllReferences = AddBehaviourFunction(func, internal);
}
else if( behaviour == asBEHAVE_IMPLICIT_VALUE_CAST ||
behaviour == asBEHAVE_VALUE_CAST )
{
// Verify parameter count
if( func.parameterTypes.GetLength() != 0 )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify return type
if( func.returnType.IsEqualExceptRefAndConst(asCDataType::CreatePrimitive(ttBool, false)) )
return ConfigError(asNOT_SUPPORTED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
if( func.returnType.IsEqualExceptRefAndConst(asCDataType::CreatePrimitive(ttVoid, false)) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// TODO: verify that the same cast is not registered already (const or non-const is treated the same for the return type)
beh->operators.PushLast(behaviour);
func.id = AddBehaviourFunction(func, internal);
beh->operators.PushLast(func.id);
}
else if( behaviour == asBEHAVE_REF_CAST ||
behaviour == asBEHAVE_IMPLICIT_REF_CAST )
{
// There are two allowed signatures
// 1. obj @f()
// 2. void f(?&out)
if( !(func.parameterTypes.GetLength() == 0 && func.returnType.IsObjectHandle()) &&
!(func.parameterTypes.GetLength() == 1 && func.parameterTypes[0].GetTokenType() == ttQuestion && func.inOutFlags[0] == asTM_OUTREF && func.returnType.GetTokenType() == ttVoid) )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Currently it is not supported to register const overloads for the ref cast behaviour
if( func.IsReadOnly() )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that the same cast is not registered already
// (const or non-const is treated the same for the return type)
if( func.parameterTypes.GetLength() == 1 )
{
// Check for existing behaviour with ?&out
for( asUINT n = 0; n < beh->operators.GetLength(); n+= 2 )
{
if( beh->operators[n] == asBEHAVE_REF_CAST ||
beh->operators[n] == asBEHAVE_IMPLICIT_REF_CAST )
{
asCScriptFunction *f = scriptFunctions[beh->operators[n+1]];
if( f->parameterTypes.GetLength() == 1 )
return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
}
}
else
{
// Check for existing behaviour with same return type
for( asUINT n = 0; n < beh->operators.GetLength(); n+= 2 )
{
if( beh->operators[n] == asBEHAVE_REF_CAST ||
beh->operators[n] == asBEHAVE_IMPLICIT_REF_CAST )
{
asCScriptFunction *f = scriptFunctions[beh->operators[n+1]];
if( f->returnType.GetObjectType() == func.returnType.GetObjectType() )
return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
}
}
beh->operators.PushLast(behaviour);
func.id = AddBehaviourFunction(func, internal);
beh->operators.PushLast(func.id);
}
else if ( behaviour == asBEHAVE_GET_WEAKREF_FLAG )
{
// This behaviour is only allowed for reference types
if( !(func.objectType->flags & asOBJ_REF) )
{
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// Don't allow it if the type is registered with nohandle or scoped
if( func.objectType->flags & (asOBJ_NOHANDLE|asOBJ_SCOPED) )
{
WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE);
return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
// Verify that the return type is a reference since it needs to return a pointer to an asISharedBool
if( !func.returnType.IsReference() )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Verify that there are no parameters
if( func.parameterTypes.GetLength() != 0 )
return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
if( beh->getWeakRefFlag )
return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
func.id = beh->getWeakRefFlag = AddBehaviourFunction(func, internal);
}
else
{
asASSERT(false);
return ConfigError(asINVALID_ARG, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
}
if( func.id < 0 )
return ConfigError(func.id, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl);
// Return function id as success
return func.id;
}
int asCScriptEngine::VerifyVarTypeNotInFunction(asCScriptFunction *func)
{
// Don't allow var type in this function
if( func->returnType.GetTokenType() == ttQuestion )
return asINVALID_DECLARATION;
for( unsigned int n = 0; n < func->parameterTypes.GetLength(); n++ )
if( func->parameterTypes[n].GetTokenType() == ttQuestion )
return asINVALID_DECLARATION;
return 0;
}
int asCScriptEngine::AddBehaviourFunction(asCScriptFunction &func, asSSystemFunctionInterface &internal)
{
asUINT n;
int id = GetNextScriptFunctionId();
asSSystemFunctionInterface *newInterface = asNEW(asSSystemFunctionInterface)(internal);
if( newInterface == 0 )
return asOUT_OF_MEMORY;
asCScriptFunction *f = asNEW(asCScriptFunction)(this, 0, asFUNC_SYSTEM);
if( f == 0 )
{
asDELETE(newInterface, asSSystemFunctionInterface);
return asOUT_OF_MEMORY;
}
asASSERT(func.name != "" && func.name != "f");
f->name = func.name;
f->sysFuncIntf = newInterface;
f->returnType = func.returnType;
f->objectType = func.objectType;
f->id = id;
f->isReadOnly = func.isReadOnly;
f->accessMask = defaultAccessMask;
f->parameterTypes = func.parameterTypes;
f->inOutFlags = func.inOutFlags;
for( n = 0; n < func.defaultArgs.GetLength(); n++ )
if( func.defaultArgs[n] )
f->defaultArgs.PushLast(asNEW(asCString)(*func.defaultArgs[n]));
else
f->defaultArgs.PushLast(0);
SetScriptFunction(f);
// If parameter type from other groups are used, add references
if( f->returnType.GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(f->returnType.GetObjectType());
currentGroup->RefConfigGroup(group);
}
for( n = 0; n < f->parameterTypes.GetLength(); n++ )
{
if( f->parameterTypes[n].GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(f->parameterTypes[n].GetObjectType());
currentGroup->RefConfigGroup(group);
}
}
return id;
}
// interface
int asCScriptEngine::RegisterGlobalProperty(const char *declaration, void *pointer)
{
// Don't accept a null pointer
if( pointer == 0 )
return ConfigError(asINVALID_ARG, "RegisterGlobalProperty", declaration, 0);
asCDataType type;
asCString name;
int r;
asCBuilder bld(this, 0);
if( (r = bld.VerifyProperty(0, declaration, name, type, defaultNamespace)) < 0 )
return ConfigError(r, "RegisterGlobalProperty", declaration, 0);
// Don't allow registering references as global properties
if( type.IsReference() )
return ConfigError(asINVALID_TYPE, "RegisterGlobalProperty", declaration, 0);
// Store the property info
asCGlobalProperty *prop = AllocateGlobalProperty();
prop->name = name;
prop->nameSpace = defaultNamespace;
prop->type = type;
prop->accessMask = defaultAccessMask;
prop->SetRegisteredAddress(pointer);
varAddressMap.Insert(prop->GetAddressOfValue(), prop);
registeredGlobalProps.Put(prop);
currentGroup->globalProps.PushLast(prop);
// If from another group add reference
if( type.GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(type.GetObjectType());
currentGroup->RefConfigGroup(group);
}
return asSUCCESS;
}
// internal
asCGlobalProperty *asCScriptEngine::AllocateGlobalProperty()
{
asCGlobalProperty *prop = asNEW(asCGlobalProperty);
if( prop == 0 )
{
// Out of memory
return 0;
}
// First check the availability of a free slot
if( freeGlobalPropertyIds.GetLength() )
{
prop->id = freeGlobalPropertyIds.PopLast();
globalProperties[prop->id] = prop;
return prop;
}
prop->id = (asUINT)globalProperties.GetLength();
globalProperties.PushLast(prop);
return prop;
}
// internal
void asCScriptEngine::FreeUnusedGlobalProperties()
{
for( asUINT n = 0; n < globalProperties.GetLength(); n++ )
{
if( globalProperties[n] && globalProperties[n]->GetRefCount() == 0 )
{
freeGlobalPropertyIds.PushLast(n);
asSMapNode<void*, asCGlobalProperty*> *node;
varAddressMap.MoveTo(&node, globalProperties[n]->GetAddressOfValue());
asASSERT(node);
if( node )
varAddressMap.Erase(node);
asDELETE(globalProperties[n], asCGlobalProperty);
globalProperties[n] = 0;
}
}
}
// interface
asUINT asCScriptEngine::GetGlobalPropertyCount() const
{
return asUINT(registeredGlobalProps.GetSize());
}
// interface
// TODO: If the typeId ever encodes the const flag, then the isConst parameter should be removed
int asCScriptEngine::GetGlobalPropertyByIndex(asUINT index, const char **name, const char **nameSpace, int *typeId, bool *isConst, const char **configGroup, void **pointer, asDWORD *accessMask) const
{
const asCGlobalProperty *prop = registeredGlobalProps.Get(index);
if( !prop )
return asINVALID_ARG;
if( name ) *name = prop->name.AddressOf();
if( nameSpace ) *nameSpace = prop->nameSpace->name.AddressOf();
if( typeId ) *typeId = GetTypeIdFromDataType(prop->type);
if( isConst ) *isConst = prop->type.IsReadOnly();
if( pointer ) *pointer = prop->GetRegisteredAddress();
if( accessMask ) *accessMask = prop->accessMask;
if( configGroup )
{
asCConfigGroup *group = FindConfigGroupForGlobalVar(index);
if( group )
*configGroup = group->groupName.AddressOf();
else
*configGroup = 0;
}
return asSUCCESS;
}
// interface
int asCScriptEngine::GetGlobalPropertyIndexByName(const char *name) const
{
// Find the global var id
int id = registeredGlobalProps.GetFirstIndex(defaultNamespace, name);
if( id == -1 ) return asNO_GLOBAL_VAR;
return id;
}
// interface
int asCScriptEngine::GetGlobalPropertyIndexByDecl(const char *decl) const
{
// This const cast is OK. The builder won't modify the engine
asCBuilder bld(const_cast<asCScriptEngine*>(this), 0);
// Don't write parser errors to the message callback
bld.silent = true;
asCString name;
asSNameSpace *ns;
asCDataType dt;
int r = bld.ParseVariableDeclaration(decl, defaultNamespace, name, ns, dt);
if( r < 0 )
return r;
// Search for a match
int id = registeredGlobalProps.GetFirstIndex(ns, name, asCCompGlobPropType(dt));
if (id < 0)
return asNO_GLOBAL_VAR;
return id;
}
// interface
int asCScriptEngine::RegisterObjectMethod(const char *obj, const char *declaration, const asSFuncPtr &funcPointer, asDWORD callConv)
{
if( obj == 0 )
return ConfigError(asINVALID_ARG, "RegisterObjectMethod", obj, declaration);
// Determine the object type
asCDataType dt;
asCBuilder bld(this, 0);
int r = bld.ParseDataType(obj, &dt, defaultNamespace);
if( r < 0 )
return ConfigError(r, "RegisterObjectMethod", obj, declaration);
if( dt.GetObjectType() == 0 || dt.IsObjectHandle() )
return ConfigError(asINVALID_ARG, "RegisterObjectMethod", obj, declaration);
// Don't allow application to modify built-in types
if( dt.GetObjectType() == &functionBehaviours ||
dt.GetObjectType() == &objectTypeBehaviours ||
dt.GetObjectType() == &globalPropertyBehaviours ||
dt.GetObjectType() == &scriptTypeBehaviours )
return ConfigError(asINVALID_ARG, "RegisterObjectMethod", obj, declaration);
return RegisterMethodToObjectType(dt.GetObjectType(), declaration, funcPointer, callConv);
}
// internal
int asCScriptEngine::RegisterMethodToObjectType(asCObjectType *objectType, const char *declaration, const asSFuncPtr &funcPointer, asDWORD callConv)
{
asSSystemFunctionInterface internal;
int r = DetectCallingConvention(true, funcPointer, callConv, 0, &internal);
if( r < 0 )
return ConfigError(r, "RegisterObjectMethod", objectType->name.AddressOf(), declaration);
// We only support these calling conventions for object methods
#ifdef AS_MAX_PORTABILITY
if( callConv != asCALL_GENERIC )
return ConfigError(asNOT_SUPPORTED, "RegisterObjectMethod", objectType->name.AddressOf(), declaration);
#else
if( callConv != asCALL_THISCALL &&
callConv != asCALL_CDECL_OBJLAST &&
callConv != asCALL_CDECL_OBJFIRST &&
callConv != asCALL_GENERIC )
return ConfigError(asNOT_SUPPORTED, "RegisterObjectMethod", objectType->name.AddressOf(), declaration);
#endif
isPrepared = false;
// Put the system function in the list of system functions
asSSystemFunctionInterface *newInterface = asNEW(asSSystemFunctionInterface)(internal);
if( newInterface == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterObjectMethod", objectType->name.AddressOf(), declaration);
asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_SYSTEM);
if( func == 0 )
{
asDELETE(newInterface, asSSystemFunctionInterface);
return ConfigError(asOUT_OF_MEMORY, "RegisterObjectMethod", objectType->name.AddressOf(), declaration);
}
func->sysFuncIntf = newInterface;
func->objectType = objectType;
asCBuilder bld(this, 0);
r = bld.ParseFunctionDeclaration(func->objectType, declaration, func, true, &newInterface->paramAutoHandles, &newInterface->returnAutoHandle);
if( r < 0 )
{
// Set as dummy function before deleting
func->funcType = asFUNC_DUMMY;
asDELETE(func,asCScriptFunction);
return ConfigError(asINVALID_DECLARATION, "RegisterObjectMethod", objectType->name.AddressOf(), declaration);
}
// Check name conflicts
r = bld.CheckNameConflictMember(objectType, func->name.AddressOf(), 0, 0, false);
if( r < 0 )
{
func->funcType = asFUNC_DUMMY;
asDELETE(func,asCScriptFunction);
return ConfigError(asNAME_TAKEN, "RegisterObjectMethod", objectType->name.AddressOf(), declaration);
}
// Check against duplicate methods
asUINT n;
for( n = 0; n < func->objectType->methods.GetLength(); n++ )
{
asCScriptFunction *f = scriptFunctions[func->objectType->methods[n]];
if( f->name == func->name &&
f->IsSignatureExceptNameAndReturnTypeEqual(func) )
{
func->funcType = asFUNC_DUMMY;
asDELETE(func,asCScriptFunction);
return ConfigError(asALREADY_REGISTERED, "RegisterObjectMethod", objectType->name.AddressOf(), declaration);
}
}
func->id = GetNextScriptFunctionId();
func->objectType->methods.PushLast(func->id);
func->accessMask = defaultAccessMask;
SetScriptFunction(func);
// TODO: This code is repeated in many places
// If parameter type from other groups are used, add references
if( func->returnType.GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(func->returnType.GetObjectType());
currentGroup->RefConfigGroup(group);
}
for( n = 0; n < func->parameterTypes.GetLength(); n++ )
{
if( func->parameterTypes[n].GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(func->parameterTypes[n].GetObjectType());
currentGroup->RefConfigGroup(group);
}
}
// Check if the method restricts that use of the template to value types or reference types
if( func->objectType->flags & asOBJ_TEMPLATE )
{
for( asUINT subTypeIdx = 0; subTypeIdx < func->objectType->templateSubTypes.GetLength(); subTypeIdx++ )
{
if( func->returnType.GetObjectType() == func->objectType->templateSubTypes[subTypeIdx].GetObjectType() )
{
if( func->returnType.IsObjectHandle() )
func->objectType->acceptValueSubType = false;
else if( !func->returnType.IsReference() )
func->objectType->acceptRefSubType = false;
}
for( asUINT n = 0; n < func->parameterTypes.GetLength(); n++ )
{
if( func->parameterTypes[n].GetObjectType() == func->objectType->templateSubTypes[subTypeIdx].GetObjectType() )
{
// TODO: If unsafe references are allowed, then inout references allow value types
if( func->parameterTypes[n].IsObjectHandle() || (func->parameterTypes[n].IsReference() && func->inOutFlags[n] == asTM_INOUTREF) )
func->objectType->acceptValueSubType = false;
else if( !func->parameterTypes[n].IsReference() )
func->objectType->acceptRefSubType = false;
}
}
}
}
// TODO: beh.copy member will be removed, so this is not necessary
// Is this the default copy behaviour?
if( func->name == "opAssign" && func->parameterTypes.GetLength() == 1 && func->isReadOnly == false &&
(objectType->flags & asOBJ_SCRIPT_OBJECT || func->parameterTypes[0].IsEqualExceptRefAndConst(asCDataType::CreateObject(func->objectType, false))) )
{
if( func->objectType->beh.copy != 0 )
return ConfigError(asALREADY_REGISTERED, "RegisterObjectMethod", objectType->name.AddressOf(), declaration);
func->objectType->beh.copy = func->id;
func->AddRef();
}
// Return the function id as success
return func->id;
}
// interface
int asCScriptEngine::RegisterGlobalFunction(const char *declaration, const asSFuncPtr &funcPointer, asDWORD callConv, void *objForThiscall)
{
asSSystemFunctionInterface internal;
int r = DetectCallingConvention(false, funcPointer, callConv, objForThiscall, &internal);
if( r < 0 )
return ConfigError(r, "RegisterGlobalFunction", declaration, 0);
#ifdef AS_MAX_PORTABILITY
if( callConv != asCALL_GENERIC )
return ConfigError(asNOT_SUPPORTED, "RegisterGlobalFunction", declaration, 0);
#else
if( callConv != asCALL_CDECL &&
callConv != asCALL_STDCALL &&
callConv != asCALL_THISCALL_ASGLOBAL &&
callConv != asCALL_GENERIC )
return ConfigError(asNOT_SUPPORTED, "RegisterGlobalFunction", declaration, 0);
#endif
isPrepared = false;
// Put the system function in the list of system functions
asSSystemFunctionInterface *newInterface = asNEW(asSSystemFunctionInterface)(internal);
if( newInterface == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterGlobalFunction", declaration, 0);
asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_SYSTEM);
if( func == 0 )
{
asDELETE(newInterface, asSSystemFunctionInterface);
return ConfigError(asOUT_OF_MEMORY, "RegisterGlobalFunction", declaration, 0);
}
func->sysFuncIntf = newInterface;
asCBuilder bld(this, 0);
r = bld.ParseFunctionDeclaration(0, declaration, func, true, &newInterface->paramAutoHandles, &newInterface->returnAutoHandle, defaultNamespace);
if( r < 0 )
{
// Set as dummy function before deleting
func->funcType = asFUNC_DUMMY;
asDELETE(func,asCScriptFunction);
return ConfigError(asINVALID_DECLARATION, "RegisterGlobalFunction", declaration, 0);
}
// TODO: namespace: What if the declaration defined an explicit namespace?
func->nameSpace = defaultNamespace;
// Check name conflicts
r = bld.CheckNameConflict(func->name.AddressOf(), 0, 0, defaultNamespace);
if( r < 0 )
{
// Set as dummy function before deleting
func->funcType = asFUNC_DUMMY;
asDELETE(func,asCScriptFunction);
return ConfigError(asNAME_TAKEN, "RegisterGlobalFunction", declaration, 0);
}
// Make sure the function is not identical to a previously registered function
asUINT n;
const asCArray<unsigned int> &idxs = registeredGlobalFuncs.GetIndexes(func->nameSpace, func->name);
for( n = 0; n < idxs.GetLength(); n++ )
{
asCScriptFunction *f = registeredGlobalFuncs.Get(idxs[n]);
if( f->IsSignatureExceptNameAndReturnTypeEqual(func) )
{
func->funcType = asFUNC_DUMMY;
asDELETE(func,asCScriptFunction);
return ConfigError(asALREADY_REGISTERED, "RegisterGlobalFunction", declaration, 0);
}
}
func->id = GetNextScriptFunctionId();
SetScriptFunction(func);
currentGroup->scriptFunctions.PushLast(func);
func->accessMask = defaultAccessMask;
registeredGlobalFuncs.Put(func);
// If parameter type from other groups are used, add references
if( func->returnType.GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(func->returnType.GetObjectType());
currentGroup->RefConfigGroup(group);
}
for( n = 0; n < func->parameterTypes.GetLength(); n++ )
{
if( func->parameterTypes[n].GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(func->parameterTypes[n].GetObjectType());
currentGroup->RefConfigGroup(group);
}
}
// Return the function id as success
return func->id;
}
// interface
asUINT asCScriptEngine::GetGlobalFunctionCount() const
{
// Don't count the builtin delegate factory
return asUINT(registeredGlobalFuncs.GetSize()-1);
}
// interface
asIScriptFunction *asCScriptEngine::GetGlobalFunctionByIndex(asUINT index) const
{
// Don't count the builtin delegate factory
index++;
if( index >= registeredGlobalFuncs.GetSize() )
return 0;
return static_cast<asIScriptFunction*>(const_cast<asCScriptFunction*>(registeredGlobalFuncs.Get(index)));
}
// interface
asIScriptFunction *asCScriptEngine::GetGlobalFunctionByDecl(const char *decl) const
{
asCBuilder bld(const_cast<asCScriptEngine*>(this), 0);
// Don't write parser errors to the message callback
bld.silent = true;
asCScriptFunction func(const_cast<asCScriptEngine*>(this), 0, asFUNC_DUMMY);
int r = bld.ParseFunctionDeclaration(0, decl, &func, false, 0, 0, defaultNamespace);
if( r < 0 )
return 0;
// Search script functions for matching interface
asIScriptFunction *f = 0;
const asCArray<unsigned int> &idxs = registeredGlobalFuncs.GetIndexes(defaultNamespace, func.name);
for( unsigned int n = 0; n < idxs.GetLength(); n++ )
{
const asCScriptFunction *funcPtr = registeredGlobalFuncs.Get(idxs[n]);
if( funcPtr->objectType == 0 &&
func.returnType == funcPtr->returnType &&
func.parameterTypes.GetLength() == funcPtr->parameterTypes.GetLength()
)
{
bool match = true;
for( size_t p = 0; p < func.parameterTypes.GetLength(); ++p )
{
if( func.parameterTypes[p] != funcPtr->parameterTypes[p] )
{
match = false;
break;
}
}
if( match )
{
if( f == 0 )
f = const_cast<asCScriptFunction*>(funcPtr);
else
// Multiple functions
return 0;
}
}
}
return f;
}
asCObjectType *asCScriptEngine::GetRegisteredObjectType(const asCString &type, asSNameSpace *ns) const
{
asSMapNode<asSNameSpaceNamePair, asCObjectType *> *cursor;
if( allRegisteredTypes.MoveTo(&cursor, asSNameSpaceNamePair(ns, type)) )
return cursor->value;
return 0;
}
void asCScriptEngine::PrepareEngine()
{
if( isPrepared ) return;
if( configFailed ) return;
asUINT n;
for( n = 0; n < scriptFunctions.GetLength(); n++ )
{
// Determine the host application interface
if( scriptFunctions[n] && scriptFunctions[n]->funcType == asFUNC_SYSTEM )
{
if( scriptFunctions[n]->sysFuncIntf->callConv == ICC_GENERIC_FUNC ||
scriptFunctions[n]->sysFuncIntf->callConv == ICC_GENERIC_METHOD )
PrepareSystemFunctionGeneric(scriptFunctions[n], scriptFunctions[n]->sysFuncIntf, this);
else
PrepareSystemFunction(scriptFunctions[n], scriptFunctions[n]->sysFuncIntf, this);
}
}
// Validate object type registrations
for( n = 0; n < registeredObjTypes.GetLength(); n++ )
{
asCObjectType *type = registeredObjTypes[n];
if( type && !(type->flags & asOBJ_SCRIPT_OBJECT) )
{
bool missingBehaviour = false;
const char *infoMsg = 0;
// Verify that GC types have all behaviours
if( type->flags & asOBJ_GC )
{
if( type->beh.addref == 0 ||
type->beh.release == 0 ||
type->beh.gcGetRefCount == 0 ||
type->beh.gcSetFlag == 0 ||
type->beh.gcGetFlag == 0 ||
type->beh.gcEnumReferences == 0 ||
type->beh.gcReleaseAllReferences == 0 )
{
infoMsg = TXT_GC_REQUIRE_ADD_REL_GC_BEHAVIOUR;
missingBehaviour = true;
}
}
// Verify that scoped ref types have the release behaviour
else if( type->flags & asOBJ_SCOPED )
{
if( type->beh.release == 0 )
{
infoMsg = TXT_SCOPE_REQUIRE_REL_BEHAVIOUR;
missingBehaviour = true;
}
}
// Verify that ref types have add ref and release behaviours
else if( (type->flags & asOBJ_REF) &&
!(type->flags & asOBJ_NOHANDLE) &&
!(type->flags & asOBJ_NOCOUNT) )
{
if( type->beh.addref == 0 ||
type->beh.release == 0 )
{
infoMsg = TXT_REF_REQUIRE_ADD_REL_BEHAVIOUR;
missingBehaviour = true;
}
}
// Verify that non-pod value types have the constructor and destructor registered
else if( (type->flags & asOBJ_VALUE) &&
!(type->flags & asOBJ_POD) )
{
if( type->beh.construct == 0 ||
type->beh.destruct == 0 )
{
infoMsg = TXT_NON_POD_REQUIRE_CONSTR_DESTR_BEHAVIOUR;
missingBehaviour = true;
}
}
if( missingBehaviour )
{
asCString str;
str.Format(TXT_TYPE_s_IS_MISSING_BEHAVIOURS, type->name.AddressOf());
WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf());
WriteMessage("", 0, 0, asMSGTYPE_INFORMATION, infoMsg);
ConfigError(asINVALID_CONFIGURATION, 0, 0, 0);
}
}
}
isPrepared = true;
}
int asCScriptEngine::ConfigError(int err, const char *funcName, const char *arg1, const char *arg2)
{
configFailed = true;
if( funcName )
{
asCString str;
if( arg1 )
{
if( arg2 )
str.Format(TXT_FAILED_IN_FUNC_s_WITH_s_AND_s_d, funcName, arg1, arg2, err);
else
str.Format(TXT_FAILED_IN_FUNC_s_WITH_s_d, funcName, arg1, err);
}
else
str.Format(TXT_FAILED_IN_FUNC_s_d, funcName, err);
WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf());
}
return err;
}
// interface
int asCScriptEngine::RegisterDefaultArrayType(const char *type)
{
asCBuilder bld(this, 0);
asCDataType dt;
int r = bld.ParseDataType(type, &dt, defaultNamespace);
if( r < 0 ) return r;
if( dt.GetObjectType() == 0 ||
!(dt.GetObjectType()->GetFlags() & asOBJ_TEMPLATE) )
return asINVALID_TYPE;
defaultArrayObjectType = dt.GetObjectType();
defaultArrayObjectType->AddRef();
return 0;
}
// interface
int asCScriptEngine::GetDefaultArrayTypeId() const
{
if( defaultArrayObjectType )
return GetTypeIdFromDataType(asCDataType::CreateObject(defaultArrayObjectType, false));
return asINVALID_TYPE;
}
// interface
int asCScriptEngine::RegisterStringFactory(const char *datatype, const asSFuncPtr &funcPointer, asDWORD callConv, void *objForThiscall)
{
asSSystemFunctionInterface internal;
int r = DetectCallingConvention(false, funcPointer, callConv, objForThiscall, &internal);
if( r < 0 )
return ConfigError(r, "RegisterStringFactory", datatype, 0);
#ifdef AS_MAX_PORTABILITY
if( callConv != asCALL_GENERIC )
return ConfigError(asNOT_SUPPORTED, "RegisterStringFactory", datatype, 0);
#else
if( callConv != asCALL_CDECL &&
callConv != asCALL_STDCALL &&
callConv != asCALL_THISCALL_ASGLOBAL &&
callConv != asCALL_GENERIC )
return ConfigError(asNOT_SUPPORTED, "RegisterStringFactory", datatype, 0);
#endif
// Put the system function in the list of system functions
asSSystemFunctionInterface *newInterface = asNEW(asSSystemFunctionInterface)(internal);
if( newInterface == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterStringFactory", datatype, 0);
asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_SYSTEM);
if( func == 0 )
{
asDELETE(newInterface, asSSystemFunctionInterface);
return ConfigError(asOUT_OF_MEMORY, "RegisterStringFactory", datatype, 0);
}
func->name = "_string_factory_";
func->sysFuncIntf = newInterface;
asCBuilder bld(this, 0);
asCDataType dt;
r = bld.ParseDataType(datatype, &dt, defaultNamespace, true);
if( r < 0 )
{
// Set as dummy before deleting
func->funcType = asFUNC_DUMMY;
asDELETE(func,asCScriptFunction);
return ConfigError(asINVALID_TYPE, "RegisterStringFactory", datatype, 0);
}
func->returnType = dt;
func->parameterTypes.PushLast(asCDataType::CreatePrimitive(ttInt, true));
func->inOutFlags.PushLast(asTM_NONE);
asCDataType parm1 = asCDataType::CreatePrimitive(ttUInt8, true);
parm1.MakeReference(true);
func->parameterTypes.PushLast(parm1);
func->inOutFlags.PushLast(asTM_INREF);
func->id = GetNextScriptFunctionId();
SetScriptFunction(func);
stringFactory = func;
if( func->returnType.GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(func->returnType.GetObjectType());
if( group == 0 ) group = &defaultGroup;
group->scriptFunctions.PushLast(func);
}
// Register function id as success
return func->id;
}
// interface
int asCScriptEngine::GetStringFactoryReturnTypeId() const
{
if( stringFactory == 0 )
return asNO_FUNCTION;
return GetTypeIdFromDataType(stringFactory->returnType);
}
// interface
asCModule *asCScriptEngine::GetModule(const char *_name, bool create)
{
// Accept null as well as zero-length string
const char *name = "";
if( _name != 0 ) name = _name;
if( lastModule && lastModule->name == name )
return lastModule;
// TODO: optimize: Improve linear search
for( asUINT n = 0; n < scriptModules.GetLength(); ++n )
if( scriptModules[n] && scriptModules[n]->name == name )
{
lastModule = scriptModules[n];
return lastModule;
}
if( create )
{
asCModule *module = asNEW(asCModule)(name, this);
if( module == 0 )
{
// Out of memory
return 0;
}
scriptModules.PushLast(module);
lastModule = module;
return lastModule;
}
return 0;
}
asCModule *asCScriptEngine::GetModuleFromFuncId(int id)
{
if( id < 0 ) return 0;
if( id >= (int)scriptFunctions.GetLength() ) return 0;
asCScriptFunction *func = scriptFunctions[id];
if( func == 0 ) return 0;
return func->module;
}
// internal
int asCScriptEngine::RequestBuild()
{
ACQUIREEXCLUSIVE(engineRWLock);
if( isBuilding )
{
RELEASEEXCLUSIVE(engineRWLock);
return asBUILD_IN_PROGRESS;
}
isBuilding = true;
RELEASEEXCLUSIVE(engineRWLock);
return 0;
}
// internal
void asCScriptEngine::BuildCompleted()
{
// Always free up pooled memory after a completed build
memoryMgr.FreeUnusedMemory();
isBuilding = false;
}
void asCScriptEngine::RemoveTemplateInstanceType(asCObjectType *t)
{
int n;
// Destroy the factory stubs
for( n = 0; n < (int)t->beh.factories.GetLength(); n++ )
{
// Make sure the factory stub isn't referencing this object anymore
scriptFunctions[t->beh.factories[n]]->ReleaseAllHandles(this);
scriptFunctions[t->beh.factories[n]]->Release();
}
t->beh.factories.SetLength(0);
// Destroy the stub for the list factory too
if( t->beh.listFactory )
{
scriptFunctions[t->beh.listFactory]->ReleaseAllHandles(this);
scriptFunctions[t->beh.listFactory]->Release();
t->beh.listFactory = 0;
}
// Destroy the specialized functions
for( n = 1; n < (int)t->beh.operators.GetLength(); n += 2 )
{
if( t->beh.operators[n] && scriptFunctions[t->beh.operators[n]]->objectType == t )
{
scriptFunctions[t->beh.operators[n]]->Release();
}
}
t->beh.operators.SetLength(0);
// Start searching from the end of the list, as most of
// the time it will be the last two types
for( n = (int)templateInstanceTypes.GetLength()-1; n >= 0; n-- )
{
if( templateInstanceTypes[n] == t )
{
if( n == (signed)templateInstanceTypes.GetLength()-1 )
templateInstanceTypes.PopLast();
else
templateInstanceTypes[n] = templateInstanceTypes.PopLast();
}
}
for( n = (int)generatedTemplateTypes.GetLength()-1; n >= 0; n-- )
{
if( generatedTemplateTypes[n] == t )
{
if( n == (signed)generatedTemplateTypes.GetLength()-1 )
generatedTemplateTypes.PopLast();
else
generatedTemplateTypes[n] = generatedTemplateTypes.PopLast();
}
}
asDELETE(t,asCObjectType);
}
// internal
void asCScriptEngine::OrphanTemplateInstances(asCObjectType *subType)
{
for( asUINT n = 0; n < templateInstanceTypes.GetLength(); n++ )
{
asCObjectType *type = templateInstanceTypes[n];
if( type == 0 )
continue;
// If the template type isn't owned by any module it can't be orphaned
if( type->module == 0 )
continue;
for( asUINT subTypeIdx = 0; subTypeIdx < type->templateSubTypes.GetLength(); subTypeIdx++ )
{
if( type->templateSubTypes[subTypeIdx].GetObjectType() == subType )
{
// Tell the GC that the template type exists so it can resolve potential circular references
gc.AddScriptObjectToGC(type, &objectTypeBehaviours);
// Clear the module
type->module = 0;
type->Release();
// Do a recursive check for other template instances
OrphanTemplateInstances(type);
// Break out so we don't add the same template to
// the gc again if another subtype matches this one
break;
}
}
}
}
// internal
asCObjectType *asCScriptEngine::GetTemplateInstanceType(asCObjectType *templateType, asCArray<asCDataType> &subTypes)
{
asUINT n;
// Is there any template instance type or template specialization already with this subtype?
for( n = 0; n < templateInstanceTypes.GetLength(); n++ )
{
if( templateInstanceTypes[n] &&
templateInstanceTypes[n]->name == templateType->name &&
templateInstanceTypes[n]->templateSubTypes == subTypes )
return templateInstanceTypes[n];
}
// No previous template instance exists
// Make sure this template supports the subtype
for( n = 0; n < subTypes.GetLength(); n++ )
{
if( !templateType->acceptValueSubType && (subTypes[n].IsPrimitive() || (subTypes[n].GetObjectType()->flags & asOBJ_VALUE)) )
return 0;
if( !templateType->acceptRefSubType && (subTypes[n].IsObject() && (subTypes[n].GetObjectType()->flags & asOBJ_REF)) )
return 0;
}
// Create a new template instance type based on the templateType
asCObjectType *ot = asNEW(asCObjectType)(this);
if( ot == 0 )
{
// Out of memory
return 0;
}
ot->templateSubTypes = subTypes;
ot->flags = templateType->flags;
ot->size = templateType->size;
ot->name = templateType->name;
// The template instance type will inherit the same module as the subType
// This will allow the module to orphan the template instance types afterwards
for( n = 0; n < subTypes.GetLength(); n++ )
{
if( subTypes[n].GetObjectType() )
{
ot->module = subTypes[n].GetObjectType()->module;
if( ot->module )
{
ot->AddRef();
break;
}
}
}
// Before filling in the methods, call the template instance callback behaviour to validate the type
if( templateType->beh.templateCallback )
{
bool dontGarbageCollect = false;
asCScriptFunction *callback = scriptFunctions[templateType->beh.templateCallback];
if( !CallGlobalFunctionRetBool(ot, &dontGarbageCollect, callback->sysFuncIntf, callback) )
{
// If the validation is deferred then the validation will be done later,
// so it is necessary to continue the preparation of the template instance type
if( !deferValidationOfTemplateTypes )
{
// The type cannot be instanciated
ot->templateSubTypes.SetLength(0);
asDELETE(ot, asCObjectType);
return 0;
}
}
// If the callback said this template instance won't be garbage collected then remove the flag
if( dontGarbageCollect )
ot->flags &= ~asOBJ_GC;
ot->beh.templateCallback = templateType->beh.templateCallback;
scriptFunctions[ot->beh.templateCallback]->AddRef();
}
ot->methods = templateType->methods;
for( n = 0; n < ot->methods.GetLength(); n++ )
scriptFunctions[ot->methods[n]]->AddRef();
// Store the real factory in the constructor. This is used by the CreateScriptObject function.
// Otherwise it wouldn't be necessary to store the real factory ids.
ot->beh.construct = templateType->beh.factory;
ot->beh.constructors = templateType->beh.factories;
for( n = 0; n < ot->beh.constructors.GetLength(); n++ )
scriptFunctions[ot->beh.constructors[n]]->AddRef();
// As the new template type is instanciated the engine should
// generate new functions to substitute the ones with the template subtype.
for( n = 0; n < ot->beh.constructors.GetLength(); n++ )
{
int funcId = ot->beh.constructors[n];
asCScriptFunction *func = scriptFunctions[funcId];
if( GenerateNewTemplateFunction(templateType, ot, func, &func) )
{
// Release the old function, the new one already has its ref count set to 1
scriptFunctions[funcId]->Release();
ot->beh.constructors[n] = func->id;
if( ot->beh.construct == funcId )
ot->beh.construct = func->id;
}
}
ot->beh.factory = 0;
// Generate factory stubs for each of the factories
for( n = 0; n < ot->beh.constructors.GetLength(); n++ )
{
asCScriptFunction *func = GenerateTemplateFactoryStub(templateType, ot, ot->beh.constructors[n]);
// The function's refCount was already initialized to 1
ot->beh.factories.PushLast(func->id);
// Set the default factory as well
if( ot->beh.constructors[n] == ot->beh.construct )
ot->beh.factory = func->id;
}
// Generate stub for the list factory as well
if( templateType->beh.listFactory )
{
asCScriptFunction *func = GenerateTemplateFactoryStub(templateType, ot, templateType->beh.listFactory);
// The function's refCount was already initialized to 1
ot->beh.listFactory = func->id;
}
ot->beh.addref = templateType->beh.addref;
if( scriptFunctions[ot->beh.addref] ) scriptFunctions[ot->beh.addref]->AddRef();
ot->beh.release = templateType->beh.release;
if( scriptFunctions[ot->beh.release] ) scriptFunctions[ot->beh.release]->AddRef();
ot->beh.copy = templateType->beh.copy;
if( scriptFunctions[ot->beh.copy] ) scriptFunctions[ot->beh.copy]->AddRef();
ot->beh.operators = templateType->beh.operators;
for( n = 1; n < ot->beh.operators.GetLength(); n += 2 )
scriptFunctions[ot->beh.operators[n]]->AddRef();
ot->beh.gcGetRefCount = templateType->beh.gcGetRefCount;
if( scriptFunctions[ot->beh.gcGetRefCount] ) scriptFunctions[ot->beh.gcGetRefCount]->AddRef();
ot->beh.gcSetFlag = templateType->beh.gcSetFlag;
if( scriptFunctions[ot->beh.gcSetFlag] ) scriptFunctions[ot->beh.gcSetFlag]->AddRef();
ot->beh.gcGetFlag = templateType->beh.gcGetFlag;
if( scriptFunctions[ot->beh.gcGetFlag] ) scriptFunctions[ot->beh.gcGetFlag]->AddRef();
ot->beh.gcEnumReferences = templateType->beh.gcEnumReferences;
if( scriptFunctions[ot->beh.gcEnumReferences] ) scriptFunctions[ot->beh.gcEnumReferences]->AddRef();
ot->beh.gcReleaseAllReferences = templateType->beh.gcReleaseAllReferences;
if( scriptFunctions[ot->beh.gcReleaseAllReferences] ) scriptFunctions[ot->beh.gcReleaseAllReferences]->AddRef();
ot->beh.getWeakRefFlag = templateType->beh.getWeakRefFlag;
if( scriptFunctions[ot->beh.getWeakRefFlag] ) scriptFunctions[ot->beh.getWeakRefFlag]->AddRef();
// As the new template type is instanciated the engine should
// generate new functions to substitute the ones with the template subtype.
for( n = 1; n < ot->beh.operators.GetLength(); n += 2 )
{
int funcId = ot->beh.operators[n];
asCScriptFunction *func = scriptFunctions[funcId];
if( GenerateNewTemplateFunction(templateType, ot, func, &func) )
{
// Release the old function, the new one already has its ref count set to 1
scriptFunctions[funcId]->Release();
ot->beh.operators[n] = func->id;
}
}
// As the new template type is instanciated, the engine should
// generate new functions to substitute the ones with the template subtype.
for( n = 0; n < ot->methods.GetLength(); n++ )
{
int funcId = ot->methods[n];
asCScriptFunction *func = scriptFunctions[funcId];
if( GenerateNewTemplateFunction(templateType, ot, func, &func) )
{
// Release the old function, the new one already has its ref count set to 1
scriptFunctions[funcId]->Release();
ot->methods[n] = func->id;
}
}
// Increase ref counter for sub type if it is an object type
for( n = 0; n < ot->templateSubTypes.GetLength(); n++ )
if( ot->templateSubTypes[n].GetObjectType() )
ot->templateSubTypes[n].GetObjectType()->AddRef();
templateInstanceTypes.PushLast(ot);
// Store the template instance types that have been created automatically by the engine from a template type
// The object types in templateInstanceTypes that are not also in generatedTemplateTypes are registered template specializations
generatedTemplateTypes.PushLast(ot);
return ot;
}
// interface
asILockableSharedBool *asCScriptEngine::GetWeakRefFlagOfScriptObject(void *obj, const asIObjectType *type) const
{
// Make sure it is not a null pointer
if( obj == 0 || type == 0 ) return 0;
const asCObjectType *objType = static_cast<const asCObjectType *>(type);
asILockableSharedBool *dest = 0;
if( objType->beh.getWeakRefFlag )
{
// Call the getweakrefflag behaviour
dest = reinterpret_cast<asILockableSharedBool*>(CallObjectMethodRetPtr(obj, objType->beh.getWeakRefFlag));
}
return dest;
}
// internal
asCDataType asCScriptEngine::DetermineTypeForTemplate(const asCDataType &orig, asCObjectType *tmpl, asCObjectType *ot)
{
asCDataType dt;
if( orig.GetObjectType() && (orig.GetObjectType()->flags & asOBJ_TEMPLATE_SUBTYPE) )
{
bool found = false;
for( asUINT n = 0; n < tmpl->templateSubTypes.GetLength(); n++ )
{
if( orig.GetObjectType() == tmpl->templateSubTypes[n].GetObjectType() )
{
found = true;
dt = ot->templateSubTypes[n];
if( orig.IsObjectHandle() && !ot->templateSubTypes[n].IsObjectHandle() )
{
dt.MakeHandle(true, true);
if( orig.IsHandleToConst() )
dt.MakeHandleToConst(true);
dt.MakeReference(orig.IsReference());
dt.MakeReadOnly(orig.IsReadOnly());
}
else
{
dt.MakeReference(orig.IsReference());
dt.MakeReadOnly(ot->templateSubTypes[n].IsReadOnly() || orig.IsReadOnly());
}
break;
}
}
asASSERT( found );
UNUSED_VAR( found );
}
else if( orig.GetObjectType() == tmpl )
{
if( orig.IsObjectHandle() )
dt = asCDataType::CreateObjectHandle(ot, false);
else
dt = asCDataType::CreateObject(ot, false);
dt.MakeReference(orig.IsReference());
dt.MakeReadOnly(orig.IsReadOnly());
}
else
dt = orig;
return dt;
}
// internal
asCScriptFunction *asCScriptEngine::GenerateTemplateFactoryStub(asCObjectType *templateType, asCObjectType *ot, int factoryId)
{
asCScriptFunction *factory = scriptFunctions[factoryId];
// By first instantiating the function as a dummy and then changing it to be a script function
// I avoid having it added to the garbage collector. As it is known that this object will stay
// alive until the template instance is no longer used there is no need to have the GC check
// this function all the time.
asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_DUMMY);
if( func == 0 )
{
// Out of memory
return 0;
}
func->funcType = asFUNC_SCRIPT;
func->AllocateScriptFunctionData();
func->name = "factstub";
func->id = GetNextScriptFunctionId();
func->returnType = asCDataType::CreateObjectHandle(ot, false);
func->isShared = true;
// Skip the first parameter as this is the object type pointer that the stub will add
func->parameterTypes.SetLength(factory->parameterTypes.GetLength()-1);
func->inOutFlags.SetLength(factory->inOutFlags.GetLength()-1);
for( asUINT p = 1; p < factory->parameterTypes.GetLength(); p++ )
{
func->parameterTypes[p-1] = DetermineTypeForTemplate(factory->parameterTypes[p], templateType, ot);
func->inOutFlags[p-1] = factory->inOutFlags[p];
}
func->scriptData->objVariablesOnHeap = 0;
SetScriptFunction(func);
// Generate the bytecode for the factory stub
asUINT bcLength = asBCTypeSize[asBCInfo[asBC_OBJTYPE].type] +
asBCTypeSize[asBCInfo[asBC_CALLSYS].type] +
asBCTypeSize[asBCInfo[asBC_RET].type];
if( ep.includeJitInstructions )
bcLength += asBCTypeSize[asBCInfo[asBC_JitEntry].type];
func->scriptData->byteCode.SetLength(bcLength);
asDWORD *bc = func->scriptData->byteCode.AddressOf();
if( ep.includeJitInstructions )
{
*(asBYTE*)bc = asBC_JitEntry;
*(asPWORD*)(bc+1) = 0;
bc += asBCTypeSize[asBCInfo[asBC_JitEntry].type];
}
*(asBYTE*)bc = asBC_OBJTYPE;
*(asPWORD*)(bc+1) = (asPWORD)ot;
bc += asBCTypeSize[asBCInfo[asBC_OBJTYPE].type];
*(asBYTE*)bc = asBC_CALLSYS;
*(asDWORD*)(bc+1) = factoryId;
bc += asBCTypeSize[asBCInfo[asBC_CALLSYS].type];
*(asBYTE*)bc = asBC_RET;
*(((asWORD*)bc)+1) = (asWORD)func->GetSpaceNeededForArguments();
func->AddReferences();
func->scriptData->stackNeeded = AS_PTR_SIZE;
// Tell the virtual machine not to clean up the object on exception
func->dontCleanUpOnException = true;
func->JITCompile();
// Need to translate the list pattern too so the VM and compiler will know the correct type of the members
if( factory->listPattern )
{
asSListPatternNode *n = factory->listPattern;
asSListPatternNode *last = 0;
while( n )
{
asSListPatternNode *newNode = n->Duplicate();
if( newNode->type == asLPT_TYPE )
{
asSListPatternDataTypeNode *typeNode = reinterpret_cast<asSListPatternDataTypeNode*>(newNode);
typeNode->dataType = DetermineTypeForTemplate(typeNode->dataType, templateType, ot);
}
if( last )
last->next = newNode;
else
func->listPattern = newNode;
last = newNode;
n = n->next;
}
}
return func;
}
bool asCScriptEngine::GenerateNewTemplateFunction(asCObjectType *templateType, asCObjectType *ot, asCScriptFunction *func, asCScriptFunction **newFunc)
{
bool needNewFunc = false;
if( (func->returnType.GetObjectType() && (func->returnType.GetObjectType()->flags & asOBJ_TEMPLATE_SUBTYPE)) ||
func->returnType.GetObjectType() == templateType )
needNewFunc = true;
else
{
for( asUINT p = 0; p < func->parameterTypes.GetLength(); p++ )
{
if( (func->parameterTypes[p].GetObjectType() && (func->parameterTypes[p].GetObjectType()->flags & asOBJ_TEMPLATE_SUBTYPE)) ||
func->parameterTypes[p].GetObjectType() == templateType )
{
needNewFunc = true;
break;
}
}
}
if( !needNewFunc )
return false;
asCScriptFunction *func2 = asNEW(asCScriptFunction)(this, 0, func->funcType);
if( func2 == 0 )
{
// Out of memory
return false;
}
func2->name = func->name;
func2->id = GetNextScriptFunctionId();
func2->returnType = DetermineTypeForTemplate(func->returnType, templateType, ot);
func2->parameterTypes.SetLength(func->parameterTypes.GetLength());
for( asUINT p = 0; p < func->parameterTypes.GetLength(); p++ )
func2->parameterTypes[p] = DetermineTypeForTemplate(func->parameterTypes[p], templateType, ot);
// TODO: template: Must be careful when instanciating templates for garbage collected types
// If the template hasn't been registered with the behaviours, it shouldn't
// permit instanciation of garbage collected types that in turn may refer to
// this instance.
func2->inOutFlags = func->inOutFlags;
func2->isReadOnly = func->isReadOnly;
func2->objectType = ot;
func2->sysFuncIntf = asNEW(asSSystemFunctionInterface)(*func->sysFuncIntf);
SetScriptFunction(func2);
// Return the new function
*newFunc = func2;
return true;
}
void asCScriptEngine::CallObjectMethod(void *obj, int func) const
{
asCScriptFunction *s = scriptFunctions[func];
asASSERT( s != 0 );
CallObjectMethod(obj, s->sysFuncIntf, s);
}
void asCScriptEngine::CallObjectMethod(void *obj, asSSystemFunctionInterface *i, asCScriptFunction *s) const
{
#ifdef __GNUC__
if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, 0);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
}
else if( i->callConv == ICC_THISCALL || i->callConv == ICC_VIRTUAL_THISCALL )
{
// For virtual thiscalls we must call the method as a true class method
// so that the compiler will lookup the function address in the vftable
union
{
asSIMPLEMETHOD_t mthd;
struct
{
asFUNCTION_t func;
asPWORD baseOffset; // Same size as the pointer
} f;
} p;
p.f.func = (void (*)())(i->func);
p.f.baseOffset = asPWORD(i->baseOffset);
void (asCSimpleDummy::*f)() = p.mthd;
(((asCSimpleDummy*)obj)->*f)();
}
else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/
{
void (*f)(void *) = (void (*)(void *))(i->func);
f(obj);
}
#else
#ifndef AS_NO_CLASS_METHODS
if( i->callConv == ICC_THISCALL )
{
union
{
asSIMPLEMETHOD_t mthd;
asFUNCTION_t func;
} p;
p.func = (void (*)())(i->func);
void (asCSimpleDummy::*f)() = p.mthd;
obj = (void*)(asPWORD(obj) + i->baseOffset);
(((asCSimpleDummy*)obj)->*f)();
}
else
#endif
if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, 0);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
}
else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/
{
void (*f)(void *) = (void (*)(void *))(i->func);
f(obj);
}
#endif
}
bool asCScriptEngine::CallObjectMethodRetBool(void *obj, int func) const
{
asCScriptFunction *s = scriptFunctions[func];
asASSERT( s != 0 );
asSSystemFunctionInterface *i = s->sysFuncIntf;
#ifdef __GNUC__
if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, 0);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
return *(bool*)gen.GetReturnPointer();
}
else if( i->callConv == ICC_THISCALL || i->callConv == ICC_VIRTUAL_THISCALL )
{
// For virtual thiscalls we must call the method as a true class method so that the compiler will lookup the function address in the vftable
union
{
asSIMPLEMETHOD_t mthd;
struct
{
asFUNCTION_t func;
asPWORD baseOffset;
} f;
} p;
p.f.func = (void (*)())(i->func);
p.f.baseOffset = asPWORD(i->baseOffset);
bool (asCSimpleDummy::*f)() = (bool (asCSimpleDummy::*)())(p.mthd);
return (((asCSimpleDummy*)obj)->*f)();
}
else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/
{
bool (*f)(void *) = (bool (*)(void *))(i->func);
return f(obj);
}
#else
#ifndef AS_NO_CLASS_METHODS
if( i->callConv == ICC_THISCALL )
{
union
{
asSIMPLEMETHOD_t mthd;
asFUNCTION_t func;
} p;
p.func = (void (*)())(i->func);
bool (asCSimpleDummy::*f)() = (bool (asCSimpleDummy::*)())p.mthd;
obj = (void*)(asPWORD(obj) + i->baseOffset);
return (((asCSimpleDummy*)obj)->*f)();
}
else
#endif
if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, 0);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
return *(bool*)gen.GetReturnPointer();
}
else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/
{
bool (*f)(void *) = (bool (*)(void *))(i->func);
return f(obj);
}
#endif
}
int asCScriptEngine::CallObjectMethodRetInt(void *obj, int func) const
{
asCScriptFunction *s = scriptFunctions[func];
asASSERT( s != 0 );
asSSystemFunctionInterface *i = s->sysFuncIntf;
#ifdef __GNUC__
if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, 0);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
return *(int*)gen.GetReturnPointer();
}
else if( i->callConv == ICC_THISCALL || i->callConv == ICC_VIRTUAL_THISCALL )
{
// For virtual thiscalls we must call the method as a true class method so that the compiler will lookup the function address in the vftable
union
{
asSIMPLEMETHOD_t mthd;
struct
{
asFUNCTION_t func;
asPWORD baseOffset;
} f;
} p;
p.f.func = (void (*)())(i->func);
p.f.baseOffset = asPWORD(i->baseOffset);
int (asCSimpleDummy::*f)() = (int (asCSimpleDummy::*)())(p.mthd);
return (((asCSimpleDummy*)obj)->*f)();
}
else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/
{
int (*f)(void *) = (int (*)(void *))(i->func);
return f(obj);
}
#else
#ifndef AS_NO_CLASS_METHODS
if( i->callConv == ICC_THISCALL )
{
union
{
asSIMPLEMETHOD_t mthd;
asFUNCTION_t func;
} p;
p.func = (void (*)())(i->func);
int (asCSimpleDummy::*f)() = (int (asCSimpleDummy::*)())p.mthd;
obj = (void*)(asPWORD(obj) + i->baseOffset);
return (((asCSimpleDummy*)obj)->*f)();
}
else
#endif
if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, 0);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
return *(int*)gen.GetReturnPointer();
}
else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/
{
int (*f)(void *) = (int (*)(void *))(i->func);
return f(obj);
}
#endif
}
void *asCScriptEngine::CallObjectMethodRetPtr(void *obj, int func) const
{
asCScriptFunction *s = scriptFunctions[func];
asASSERT( s != 0 );
asSSystemFunctionInterface *i = s->sysFuncIntf;
#ifdef __GNUC__
if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, 0);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
return *(void**)gen.GetReturnPointer();
}
else if( i->callConv == ICC_THISCALL || i->callConv == ICC_VIRTUAL_THISCALL )
{
// For virtual thiscalls we must call the method as a true class method so that the compiler will lookup the function address in the vftable
union
{
asSIMPLEMETHOD_t mthd;
struct
{
asFUNCTION_t func;
asPWORD baseOffset;
} f;
} p;
p.f.func = (void (*)())(i->func);
p.f.baseOffset = asPWORD(i->baseOffset);
void *(asCSimpleDummy::*f)() = (void *(asCSimpleDummy::*)())(p.mthd);
return (((asCSimpleDummy*)obj)->*f)();
}
else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/
{
void *(*f)(void *) = (void *(*)(void *))(i->func);
return f(obj);
}
#else
#ifndef AS_NO_CLASS_METHODS
if( i->callConv == ICC_THISCALL )
{
union
{
asSIMPLEMETHOD_t mthd;
asFUNCTION_t func;
} p;
p.func = (void (*)())(i->func);
void *(asCSimpleDummy::*f)() = (void *(asCSimpleDummy::*)())p.mthd;
obj = (void*)(asPWORD(obj) + i->baseOffset);
return (((asCSimpleDummy*)obj)->*f)();
}
else
#endif
if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, 0);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
return *(void **)gen.GetReturnPointer();
}
else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/
{
void *(*f)(void *) = (void *(*)(void *))(i->func);
return f(obj);
}
#endif
}
void *asCScriptEngine::CallGlobalFunctionRetPtr(int func) const
{
asCScriptFunction *s = scriptFunctions[func];
asASSERT( s != 0 );
return CallGlobalFunctionRetPtr(s->sysFuncIntf, s);
}
void *asCScriptEngine::CallGlobalFunctionRetPtr(int func, void *param1) const
{
asCScriptFunction *s = scriptFunctions[func];
asASSERT( s != 0 );
return CallGlobalFunctionRetPtr(s->sysFuncIntf, s, param1);
}
void *asCScriptEngine::CallGlobalFunctionRetPtr(asSSystemFunctionInterface *i, asCScriptFunction *s) const
{
if( i->callConv == ICC_CDECL )
{
void *(*f)() = (void *(*)())(i->func);
return f();
}
else if( i->callConv == ICC_STDCALL )
{
typedef void *(STDCALL *func_t)();
func_t f = (func_t)(i->func);
return f();
}
else
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, 0, 0);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
return *(void**)gen.GetReturnPointer();
}
}
void *asCScriptEngine::CallGlobalFunctionRetPtr(asSSystemFunctionInterface *i, asCScriptFunction *s, void *param1) const
{
if( i->callConv == ICC_CDECL )
{
void *(*f)(void *) = (void *(*)(void *))(i->func);
return f(param1);
}
else if( i->callConv == ICC_STDCALL )
{
typedef void *(STDCALL *func_t)(void *);
func_t f = (func_t)(i->func);
return f(param1);
}
else
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, 0, (asDWORD*)&param1);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
return *(void**)gen.GetReturnPointer();
}
}
void asCScriptEngine::CallObjectMethod(void *obj, void *param, int func) const
{
asCScriptFunction *s = scriptFunctions[func];
asASSERT( s != 0 );
CallObjectMethod(obj, param, s->sysFuncIntf, s);
}
void asCScriptEngine::CallObjectMethod(void *obj, void *param, asSSystemFunctionInterface *i, asCScriptFunction *s) const
{
#ifdef __GNUC__
if( i->callConv == ICC_CDECL_OBJLAST )
{
void (*f)(void *, void *) = (void (*)(void *, void *))(i->func);
f(param, obj);
}
else if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, (asDWORD*)&param);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
}
else if( i->callConv == ICC_VIRTUAL_THISCALL || i->callConv == ICC_THISCALL )
{
// For virtual thiscalls we must call the method as a true class method
// so that the compiler will lookup the function address in the vftable
union
{
asSIMPLEMETHOD_t mthd;
struct
{
asFUNCTION_t func;
asPWORD baseOffset; // Same size as the pointer
} f;
} p;
p.f.func = (void (*)())(i->func);
p.f.baseOffset = asPWORD(i->baseOffset);
void (asCSimpleDummy::*f)(void*) = (void (asCSimpleDummy::*)(void*))(p.mthd);
(((asCSimpleDummy*)obj)->*f)(param);
}
else /*if( i->callConv == ICC_CDECL_OBJFIRST */
{
void (*f)(void *, void *) = (void (*)(void *, void *))(i->func);
f(obj, param);
}
#else
#ifndef AS_NO_CLASS_METHODS
if( i->callConv == ICC_THISCALL )
{
union
{
asSIMPLEMETHOD_t mthd;
asFUNCTION_t func;
} p;
p.func = (void (*)())(i->func);
void (asCSimpleDummy::*f)(void *) = (void (asCSimpleDummy::*)(void *))(p.mthd);
obj = (void*)(asPWORD(obj) + i->baseOffset);
(((asCSimpleDummy*)obj)->*f)(param);
}
else
#endif
if( i->callConv == ICC_CDECL_OBJLAST )
{
void (*f)(void *, void *) = (void (*)(void *, void *))(i->func);
f(param, obj);
}
else if( i->callConv == ICC_GENERIC_METHOD )
{
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, obj, (asDWORD*)&param);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
}
else /*if( i->callConv == ICC_CDECL_OBJFIRST )*/
{
void (*f)(void *, void *) = (void (*)(void *, void *))(i->func);
f(obj, param);
}
#endif
}
void asCScriptEngine::CallGlobalFunction(void *param1, void *param2, asSSystemFunctionInterface *i, asCScriptFunction *s) const
{
if( i->callConv == ICC_CDECL )
{
void (*f)(void *, void *) = (void (*)(void *, void *))(i->func);
f(param1, param2);
}
else if( i->callConv == ICC_STDCALL )
{
typedef void (STDCALL *func_t)(void *, void *);
func_t f = (func_t)(i->func);
f(param1, param2);
}
else
{
// We must guarantee the order of the arguments which is why we copy them to this
// array. Otherwise the compiler may put them anywhere it likes, or even keep them
// in the registers which causes problem.
void *params[2] = {param1, param2};
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, 0, (asDWORD*)&params);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
}
}
bool asCScriptEngine::CallGlobalFunctionRetBool(void *param1, void *param2, asSSystemFunctionInterface *i, asCScriptFunction *s) const
{
if( i->callConv == ICC_CDECL )
{
bool (*f)(void *, void *) = (bool (*)(void *, void *))(i->func);
return f(param1, param2);
}
else if( i->callConv == ICC_STDCALL )
{
typedef bool (STDCALL *func_t)(void *, void *);
func_t f = (func_t)(i->func);
return f(param1, param2);
}
else
{
// TODO: When simulating a 64bit environment by defining AS_64BIT_PTR on a 32bit platform this code
// fails, because the stack given to asCGeneric is not prepared with two 64bit arguments.
// We must guarantee the order of the arguments which is why we copy them to this
// array. Otherwise the compiler may put them anywhere it likes, or even keep them
// in the registers which causes problem.
void *params[2] = {param1, param2};
asCGeneric gen(const_cast<asCScriptEngine*>(this), s, 0, (asDWORD*)params);
void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func);
f(&gen);
return *(bool*)gen.GetReturnPointer();
}
}
void *asCScriptEngine::CallAlloc(asCObjectType *type) const
{
// Allocate 4 bytes as the smallest size. Otherwise CallSystemFunction may try to
// copy a DWORD onto a smaller memory block, in case the object type is return in registers.
// Pad to the next even 4 bytes to avoid asBC_CPY writing outside of allocated buffer for registered POD types
asUINT size = type->size;
if( size & 0x3 )
size += 4 - (size & 0x3);
#if defined(AS_DEBUG)
return ((asALLOCFUNCDEBUG_t)(userAlloc))(size, __FILE__, __LINE__);
#else
return userAlloc(size);
#endif
}
void asCScriptEngine::CallFree(void *obj) const
{
userFree(obj);
}
// interface
int asCScriptEngine::NotifyGarbageCollectorOfNewObject(void *obj, asIObjectType *type)
{
return gc.AddScriptObjectToGC(obj, static_cast<asCObjectType*>(type));
}
// interface
int asCScriptEngine::GetObjectInGC(asUINT idx, asUINT *seqNbr, void **obj, asIObjectType **type)
{
return gc.GetObjectInGC(idx, seqNbr, obj, type);
}
// interface
int asCScriptEngine::GarbageCollect(asDWORD flags)
{
return gc.GarbageCollect(flags);
}
// interface
void asCScriptEngine::GetGCStatistics(asUINT *currentSize, asUINT *totalDestroyed, asUINT *totalDetected, asUINT *newObjects, asUINT *totalNewDestroyed) const
{
gc.GetStatistics(currentSize, totalDestroyed, totalDetected, newObjects, totalNewDestroyed);
}
// interface
void asCScriptEngine::GCEnumCallback(void *reference)
{
gc.GCEnumCallback(reference);
}
// TODO: multithread: The mapTypeIdToDataType must be protected with critical sections in all functions that access it
int asCScriptEngine::GetTypeIdFromDataType(const asCDataType &dtIn) const
{
if( dtIn.IsNullHandle() ) return 0;
// Register the base form
asCDataType dt(dtIn);
if( dt.GetObjectType() )
dt.MakeHandle(false);
// Find the existing type id
asSMapNode<int,asCDataType*> *cursor = 0;
mapTypeIdToDataType.MoveFirst(&cursor);
while( cursor )
{
if( mapTypeIdToDataType.GetValue(cursor)->IsEqualExceptRefAndConst(dt) )
{
int typeId = mapTypeIdToDataType.GetKey(cursor);
if( dtIn.GetObjectType() && !(dtIn.GetObjectType()->flags & asOBJ_ASHANDLE) )
{
// The the ASHANDLE types behave like handles, but are really
// value types so the typeId is never returned as a handle
if( dtIn.IsObjectHandle() )
typeId |= asTYPEID_OBJHANDLE;
if( dtIn.IsHandleToConst() )
typeId |= asTYPEID_HANDLETOCONST;
}
return typeId;
}
mapTypeIdToDataType.MoveNext(&cursor, cursor);
}
// The type id doesn't exist, create it
// Setup the basic type id
int typeId = typeIdSeqNbr++;
if( dt.GetObjectType() )
{
if( dt.GetObjectType()->flags & asOBJ_SCRIPT_OBJECT ) typeId |= asTYPEID_SCRIPTOBJECT;
else if( dt.GetObjectType()->flags & asOBJ_TEMPLATE ) typeId |= asTYPEID_TEMPLATE;
else if( dt.GetObjectType()->flags & asOBJ_ENUM ) {} // TODO: Should we have a specific bit for this?
else typeId |= asTYPEID_APPOBJECT;
}
// Insert the basic object type
asCDataType *newDt = asNEW(asCDataType)(dt);
if( newDt == 0 )
{
// Out of memory
return 0;
}
newDt->MakeReference(false);
newDt->MakeReadOnly(false);
newDt->MakeHandle(false);
mapTypeIdToDataType.Insert(typeId, newDt);
// Call recursively to get the correct typeId
return GetTypeIdFromDataType(dtIn);
}
asCDataType asCScriptEngine::GetDataTypeFromTypeId(int typeId) const
{
int baseId = typeId & (asTYPEID_MASK_OBJECT | asTYPEID_MASK_SEQNBR);
asSMapNode<int,asCDataType*> *cursor = 0;
if( mapTypeIdToDataType.MoveTo(&cursor, baseId) )
{
asCDataType dt(*mapTypeIdToDataType.GetValue(cursor));
if( typeId & asTYPEID_OBJHANDLE )
dt.MakeHandle(true, true);
if( typeId & asTYPEID_HANDLETOCONST )
dt.MakeHandleToConst(true);
return dt;
}
return asCDataType();
}
asCObjectType *asCScriptEngine::GetObjectTypeFromTypeId(int typeId) const
{
asCDataType dt = GetDataTypeFromTypeId(typeId);
return dt.GetObjectType();
}
void asCScriptEngine::RemoveFromTypeIdMap(asCObjectType *type)
{
asSMapNode<int,asCDataType*> *cursor = 0;
mapTypeIdToDataType.MoveFirst(&cursor);
while( cursor )
{
asCDataType *dt = mapTypeIdToDataType.GetValue(cursor);
asSMapNode<int,asCDataType*> *old = cursor;
mapTypeIdToDataType.MoveNext(&cursor, cursor);
if( dt->GetObjectType() == type )
{
asDELETE(dt,asCDataType);
mapTypeIdToDataType.Erase(old);
}
}
}
// interface
int asCScriptEngine::GetTypeIdByDecl(const char *decl) const
{
asCDataType dt;
// This cast is ok, because we are not changing anything in the engine
asCBuilder bld(const_cast<asCScriptEngine*>(this), 0);
// Don't write parser errors to the message callback
bld.silent = true;
int r = bld.ParseDataType(decl, &dt, defaultNamespace);
if( r < 0 )
return asINVALID_TYPE;
return GetTypeIdFromDataType(dt);
}
// interface
const char *asCScriptEngine::GetTypeDeclaration(int typeId, bool includeNamespace) const
{
asCDataType dt = GetDataTypeFromTypeId(typeId);
asCString *tempString = &asCThreadManager::GetLocalData()->string;
*tempString = dt.Format(includeNamespace);
return tempString->AddressOf();
}
// TODO: interface: Deprecate. This function is not necessary now that all primitive types have fixed typeIds
int asCScriptEngine::GetSizeOfPrimitiveType(int typeId) const
{
asCDataType dt = GetDataTypeFromTypeId(typeId);
if( !dt.IsPrimitive() ) return 0;
return dt.GetSizeInMemoryBytes();
}
#ifdef AS_DEPRECATED
// Deprecated since 2.27.0, 2013-07-18
void *asCScriptEngine::CreateScriptObject(int typeId)
{
// Make sure the type id is for an object type, and not a primitive or a handle
if( (typeId & (asTYPEID_MASK_OBJECT | asTYPEID_MASK_SEQNBR)) != typeId ) return 0;
if( (typeId & asTYPEID_MASK_OBJECT) == 0 ) return 0;
asCDataType dt = GetDataTypeFromTypeId(typeId);
// Is the type id valid?
if( !dt.IsValid() ) return 0;
asCObjectType *objType = dt.GetObjectType();
return CreateScriptObject(objType);
}
#endif
// interface
void *asCScriptEngine::CreateScriptObject(const asIObjectType *type)
{
if( type == 0 ) return 0;
asCObjectType *objType = const_cast<asCObjectType*>(reinterpret_cast<const asCObjectType *>(type));
void *ptr = 0;
// Check that there is a default factory for ref types
if( objType->beh.factory == 0 && (objType->flags & asOBJ_REF) )
{
asCString str;
str.Format(TXT_FAILED_IN_FUNC_s_d, "CreateScriptObject", asNO_FUNCTION);
WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf());
return 0;
}
// Construct the object
if( objType->flags & asOBJ_SCRIPT_OBJECT )
{
// Call the script class' default factory with a context
ptr = ScriptObjectFactory(objType, this);
}
else if( objType->flags & asOBJ_TEMPLATE )
{
// The registered factory that takes the object type is moved
// to the construct behaviour when the type is instanciated
ptr = CallGlobalFunctionRetPtr(objType->beh.construct, objType);
}
else if( objType->flags & asOBJ_REF )
{
// Call the default factory directly
ptr = CallGlobalFunctionRetPtr(objType->beh.factory);
}
else
{
// TODO: Shouldn't support allocating object like this, because the
// caller cannot be certain how the memory was allocated.
// Make sure there is a default constructor or that it is a POD type
if( objType->beh.construct == 0 && !(objType->flags & asOBJ_POD) )
{
asCString str;
str.Format(TXT_FAILED_IN_FUNC_s_d, "CreateScriptObject", asNO_FUNCTION);
WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf());
return 0;
}
// Manually allocate the memory, then call the default constructor
ptr = CallAlloc(objType);
int funcIndex = objType->beh.construct;
if( funcIndex )
CallObjectMethod(ptr, funcIndex);
}
return ptr;
}
#ifdef AS_DEPRECATED
// Deprecated since 2.27.0, 2013-07-18
// interface
void *asCScriptEngine::CreateUninitializedScriptObject(int typeId)
{
// Make sure the type id is for an object type, and not a primitive or a handle.
// This function only works for script classes. Registered types cannot be created this way.
if( (typeId & (asTYPEID_MASK_OBJECT | asTYPEID_MASK_SEQNBR)) != typeId ) return 0;
if( (typeId & asTYPEID_MASK_OBJECT) == 0 ) return 0;
if( (typeId & asTYPEID_SCRIPTOBJECT) == 0 ) return 0;
asCDataType dt = GetDataTypeFromTypeId(typeId);
// Is the type id valid?
if( !dt.IsValid() ) return 0;
asCObjectType *objType = dt.GetObjectType();
return CreateUninitializedScriptObject(objType);
}
#endif
// interface
void *asCScriptEngine::CreateUninitializedScriptObject(const asIObjectType *type)
{
// This function only works for script classes. Registered types cannot be created this way.
if( type == 0 || !(type->GetFlags() & asOBJ_SCRIPT_OBJECT) )
return 0;
asCObjectType *objType = const_cast<asCObjectType*>(reinterpret_cast<const asCObjectType*>(type));
// Construct the object, but do not call the actual constructor that initializes the members
// The initialization will be done by the application afterwards, e.g. through serialization.
asCScriptObject *obj = reinterpret_cast<asCScriptObject*>(CallAlloc(objType));
// Pre-initialize the memory so there are no invalid pointers
ScriptObject_ConstructUnitialized(objType, obj);
return obj;
}
#ifdef AS_DEPRECATED
// Deprecated since 2.27.0, 2013-07-18
void *asCScriptEngine::CreateScriptObjectCopy(void *origObj, int typeId)
{
asCDataType dt = GetDataTypeFromTypeId(typeId);
if( !dt.IsValid() ) return 0;
asCObjectType *objType = dt.GetObjectType();
void *newObj = CreateScriptObject(objType);
if( newObj == 0 ) return 0;
AssignScriptObject(newObj, origObj, typeId);
return newObj;
}
#endif
// interface
void *asCScriptEngine::CreateScriptObjectCopy(void *origObj, const asIObjectType *type)
{
// TODO: Should use the copy constructor if available
void *newObj = CreateScriptObject(type);
if( newObj == 0 ) return 0;
AssignScriptObject(newObj, origObj, type);
return newObj;
}
// internal
void asCScriptEngine::ConstructScriptObjectCopy(void *mem, void *obj, asCObjectType *type)
{
// This function is only meant to be used for value types
asASSERT( type->flags & asOBJ_VALUE );
// TODO: runtime optimize: Should use the copy constructor when available
int funcIndex = type->beh.construct;
if( funcIndex )
CallObjectMethod(mem, funcIndex);
AssignScriptObject(mem, obj, type);
}
#ifdef AS_DEPRECATED
// Deprecated since 2.27.0, 2013-07-18
void asCScriptEngine::AssignScriptObject(void *dstObj, void *srcObj, int typeId)
{
// Make sure the type id is for an object type, and not a primitive or a handle
if( (typeId & (asTYPEID_MASK_OBJECT | asTYPEID_MASK_SEQNBR)) != typeId ) return;
if( (typeId & asTYPEID_MASK_OBJECT) == 0 ) return;
// Copy the contents from the original object, using the assignment operator
asCDataType dt = GetDataTypeFromTypeId(typeId);
// Is the type id valid?
if( !dt.IsValid() ) return;
asCObjectType *objType = dt.GetObjectType();
AssignScriptObject(dstObj, srcObj, objType);
}
#endif
// interface
void asCScriptEngine::AssignScriptObject(void *dstObj, void *srcObj, const asIObjectType *type)
{
if( type == 0 ) return;
const asCObjectType *objType = reinterpret_cast<const asCObjectType*>(type);
// If value assign for ref types has been disabled, then don't do anything if the type is a ref type
if( ep.disallowValueAssignForRefType && (objType->flags & asOBJ_REF) && !(objType->flags & asOBJ_SCOPED) )
return;
// Must not copy if the opAssign is not available and the object is not a POD object
if( objType->beh.copy )
{
asCScriptFunction *func = scriptFunctions[objType->beh.copy];
if( func->funcType == asFUNC_SYSTEM )
CallObjectMethod(dstObj, srcObj, objType->beh.copy);
else
{
// Call the script class' opAssign method
asASSERT( objType->flags & asOBJ_SCRIPT_OBJECT );
reinterpret_cast<asCScriptObject*>(dstObj)->CopyFrom(reinterpret_cast<asCScriptObject*>(srcObj));
}
}
else if( objType->size && (objType->flags & asOBJ_POD) )
{
memcpy(dstObj, srcObj, objType->size);
}
}
#ifdef AS_DEPRECATED
// Deprecated since 2.27.0, 2013-07-18
void asCScriptEngine::AddRefScriptObject(void *obj, int typeId)
{
// Make sure it is not a null pointer
if( obj == 0 ) return;
// Make sure the type id is for an object type or a handle
if( (typeId & asTYPEID_MASK_OBJECT) == 0 ) return;
asCDataType dt = GetDataTypeFromTypeId(typeId);
// Is the type id valid?
if( !dt.IsValid() ) return;
asCObjectType *objType = dt.GetObjectType();
if( objType->beh.addref )
{
// Call the addref behaviour
CallObjectMethod(obj, objType->beh.addref);
}
}
#endif
// interface
void asCScriptEngine::AddRefScriptObject(void *obj, const asIObjectType *type)
{
// Make sure it is not a null pointer
if( obj == 0 || type == 0 ) return;
const asCObjectType *objType = static_cast<const asCObjectType *>(type);
if( objType->beh.addref )
{
// Call the addref behaviour
CallObjectMethod(obj, objType->beh.addref);
}
}
#ifdef AS_DEPRECATED
// Deprecated since 2.27.0, 2013-07-18
void asCScriptEngine::ReleaseScriptObject(void *obj, int typeId)
{
// Make sure it is not a null pointer
if( obj == 0 ) return;
// Make sure the type id is for an object type or a handle
if( (typeId & asTYPEID_MASK_OBJECT) == 0 ) return;
asCDataType dt = GetDataTypeFromTypeId(typeId);
// Is the type id valid?
if( !dt.IsValid() ) return;
asCObjectType *objType = dt.GetObjectType();
ReleaseScriptObject(obj, objType);
}
#endif
// interface
void asCScriptEngine::ReleaseScriptObject(void *obj, const asIObjectType *type)
{
// Make sure it is not a null pointer
if( obj == 0 || type == 0 ) return;
const asCObjectType *objType = static_cast<const asCObjectType *>(type);
if( objType->flags & asOBJ_REF )
{
asASSERT( (objType->flags & asOBJ_NOCOUNT) || objType->beh.release );
if( objType->beh.release )
{
// Call the release behaviour
CallObjectMethod(obj, objType->beh.release);
}
}
else
{
// There is really only one reason why the application would want to
// call this method for a value type, and that is if it is calling it
// as from a JIT compiled asBC_FREE instruction.
// Call the destructor
if( objType->beh.destruct )
CallObjectMethod(obj, objType->beh.destruct);
else if( objType->flags & asOBJ_LIST_PATTERN )
DestroyList((asBYTE*)obj, objType);
// Then free the memory
CallFree(obj);
}
}
// interface
bool asCScriptEngine::IsHandleCompatibleWithObject(void *obj, int objTypeId, int handleTypeId) const
{
// if equal, then it is obvious they are compatible
if( objTypeId == handleTypeId )
return true;
// Get the actual data types from the type ids
asCDataType objDt = GetDataTypeFromTypeId(objTypeId);
asCDataType hdlDt = GetDataTypeFromTypeId(handleTypeId);
// A handle to const cannot be passed to a handle that is not referencing a const object
if( objDt.IsHandleToConst() && !hdlDt.IsHandleToConst() )
return false;
if( objDt.GetObjectType() == hdlDt.GetObjectType() )
{
// The object type is equal
return true;
}
else if( objDt.IsScriptObject() && obj )
{
// Get the true type from the object instance
asCObjectType *objType = ((asCScriptObject*)obj)->objType;
// Check if the object implements the interface, or derives from the base class
// This will also return true, if the requested handle type is an exact match for the object type
if( objType->Implements(hdlDt.GetObjectType()) ||
objType->DerivesFrom(hdlDt.GetObjectType()) )
return true;
}
return false;
}
// interface
int asCScriptEngine::BeginConfigGroup(const char *groupName)
{
// Make sure the group name doesn't already exist
for( asUINT n = 0; n < configGroups.GetLength(); n++ )
{
if( configGroups[n]->groupName == groupName )
return asNAME_TAKEN;
}
if( currentGroup != &defaultGroup )
return asNOT_SUPPORTED;
asCConfigGroup *group = asNEW(asCConfigGroup)();
if( group == 0 )
return asOUT_OF_MEMORY;
group->groupName = groupName;
configGroups.PushLast(group);
currentGroup = group;
return 0;
}
// interface
int asCScriptEngine::EndConfigGroup()
{
// Raise error if trying to end the default config
if( currentGroup == &defaultGroup )
return asERROR;
currentGroup = &defaultGroup;
return 0;
}
// interface
int asCScriptEngine::RemoveConfigGroup(const char *groupName)
{
// It is not allowed to remove a group that is still in use.
// It would be possible to change the code in such a way that
// the group could be removed even though it was still in use,
// but that would cause severe negative impact on runtime
// performance, since the VM would then have to be able handle
// situations where the types, functions, and global variables
// can be removed at any time.
for( asUINT n = 0; n < configGroups.GetLength(); n++ )
{
if( configGroups[n]->groupName == groupName )
{
asCConfigGroup *group = configGroups[n];
// Make sure the group isn't referenced by anyone
if( group->refCount > 0 )
return asCONFIG_GROUP_IS_IN_USE;
// Verify if any objects registered in this group is still alive
if( group->HasLiveObjects() )
return asCONFIG_GROUP_IS_IN_USE;
// Remove the group from the list
if( n == configGroups.GetLength() - 1 )
configGroups.PopLast();
else
configGroups[n] = configGroups.PopLast();
// Remove the configurations registered with this group
group->RemoveConfiguration(this);
asDELETE(group,asCConfigGroup);
}
}
return 0;
}
asCConfigGroup *asCScriptEngine::FindConfigGroupForFunction(int funcId) const
{
for( asUINT n = 0; n < configGroups.GetLength(); n++ )
{
// Check global functions
asUINT m;
for( m = 0; m < configGroups[n]->scriptFunctions.GetLength(); m++ )
{
if( configGroups[n]->scriptFunctions[m]->id == funcId )
return configGroups[n];
}
}
return 0;
}
asCConfigGroup *asCScriptEngine::FindConfigGroupForGlobalVar(int gvarId) const
{
for( asUINT n = 0; n < configGroups.GetLength(); n++ )
{
for( asUINT m = 0; m < configGroups[n]->globalProps.GetLength(); m++ )
{
if( int(configGroups[n]->globalProps[m]->id) == gvarId )
return configGroups[n];
}
}
return 0;
}
asCConfigGroup *asCScriptEngine::FindConfigGroupForObjectType(const asCObjectType *objType) const
{
for( asUINT n = 0; n < configGroups.GetLength(); n++ )
{
for( asUINT m = 0; m < configGroups[n]->objTypes.GetLength(); m++ )
{
if( configGroups[n]->objTypes[m] == objType )
return configGroups[n];
}
}
return 0;
}
asCConfigGroup *asCScriptEngine::FindConfigGroupForFuncDef(const asCScriptFunction *funcDef) const
{
for( asUINT n = 0; n < configGroups.GetLength(); n++ )
{
asCScriptFunction *f = const_cast<asCScriptFunction*>(funcDef);
if( configGroups[n]->funcDefs.Exists(f) )
return configGroups[n];
}
return 0;
}
// interface
asDWORD asCScriptEngine::SetDefaultAccessMask(asDWORD defaultMask)
{
asDWORD old = defaultAccessMask;
defaultAccessMask = defaultMask;
return old;
}
int asCScriptEngine::GetNextScriptFunctionId()
{
// This function only returns the next function id that
// should be used. It doesn't update the internal arrays.
if( freeScriptFunctionIds.GetLength() )
return freeScriptFunctionIds[freeScriptFunctionIds.GetLength()-1];
return (int)scriptFunctions.GetLength();
}
void asCScriptEngine::SetScriptFunction(asCScriptFunction *func)
{
// Update the internal arrays with the function id that is now used
if( freeScriptFunctionIds.GetLength() && freeScriptFunctionIds[freeScriptFunctionIds.GetLength()-1] == func->id )
freeScriptFunctionIds.PopLast();
if( asUINT(func->id) == scriptFunctions.GetLength() )
scriptFunctions.PushLast(func);
else
{
// The slot should be empty or already set with the function, which happens if an existing shared function is reused
asASSERT( scriptFunctions[func->id] == 0 || scriptFunctions[func->id] == func );
scriptFunctions[func->id] = func;
}
}
void asCScriptEngine::FreeScriptFunctionId(int id)
{
if( id < 0 ) return;
id &= ~FUNC_IMPORTED;
if( id >= (int)scriptFunctions.GetLength() ) return;
if( scriptFunctions[id] )
{
asCScriptFunction *func = scriptFunctions[id];
// Remove the function from the list of script functions
if( id == (int)scriptFunctions.GetLength() - 1 )
{
scriptFunctions.PopLast();
}
else
{
scriptFunctions[id] = 0;
freeScriptFunctionIds.PushLast(id);
}
// Is the function used as signature id?
if( func->signatureId == id )
{
// Remove the signature id
signatureIds.RemoveValue(func);
// Update all functions using the signature id
int newSigId = 0;
for( asUINT n = 0; n < scriptFunctions.GetLength(); n++ )
{
if( scriptFunctions[n] && scriptFunctions[n]->signatureId == id )
{
if( newSigId == 0 )
{
newSigId = scriptFunctions[n]->id;
signatureIds.PushLast(scriptFunctions[n]);
}
scriptFunctions[n]->signatureId = newSigId;
}
}
}
}
}
// interface
int asCScriptEngine::RegisterFuncdef(const char *decl)
{
if( decl == 0 ) return ConfigError(asINVALID_ARG, "RegisterFuncdef", decl, 0);
// Parse the function declaration
asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_FUNCDEF);
if( func == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterFuncdef", decl, 0);
asCBuilder bld(this, 0);
int r = bld.ParseFunctionDeclaration(0, decl, func, false, 0, 0, defaultNamespace);
if( r < 0 )
{
// Set as dummy function before deleting
func->funcType = asFUNC_DUMMY;
asDELETE(func,asCScriptFunction);
return ConfigError(asINVALID_DECLARATION, "RegisterFuncdef", decl, 0);
}
// Check name conflicts
r = bld.CheckNameConflict(func->name.AddressOf(), 0, 0, defaultNamespace);
if( r < 0 )
{
asDELETE(func,asCScriptFunction);
return ConfigError(asNAME_TAKEN, "RegisterFuncdef", decl, 0);
}
func->id = GetNextScriptFunctionId();
SetScriptFunction(func);
funcDefs.PushLast(func);
registeredFuncDefs.PushLast(func);
currentGroup->funcDefs.PushLast(func);
// If parameter type from other groups are used, add references
if( func->returnType.GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(func->returnType.GetObjectType());
currentGroup->RefConfigGroup(group);
}
for( asUINT n = 0; n < func->parameterTypes.GetLength(); n++ )
{
if( func->parameterTypes[n].GetObjectType() )
{
asCConfigGroup *group = FindConfigGroupForObjectType(func->parameterTypes[n].GetObjectType());
currentGroup->RefConfigGroup(group);
}
}
// Return the function id as success
return func->id;
}
// interface
asUINT asCScriptEngine::GetFuncdefCount() const
{
return asUINT(registeredFuncDefs.GetLength());
}
// interface
asIScriptFunction *asCScriptEngine::GetFuncdefByIndex(asUINT index) const
{
if( index >= registeredFuncDefs.GetLength() )
return 0;
return registeredFuncDefs[index];
}
// interface
// TODO: typedef: Accept complex types for the typedefs
int asCScriptEngine::RegisterTypedef(const char *type, const char *decl)
{
if( type == 0 ) return ConfigError(asINVALID_NAME, "RegisterTypedef", type, decl);
// Verify if the name has been registered as a type already
// TODO: Must check against registered funcdefs too
if( GetRegisteredObjectType(type, defaultNamespace) )
// Let the application recover from this error, for example if the same typedef is registered twice
return asALREADY_REGISTERED;
// Grab the data type
size_t tokenLen;
eTokenType token;
asCDataType dataType;
// Create the data type
token = tok.GetToken(decl, strlen(decl), &tokenLen);
switch(token)
{
case ttBool:
case ttInt:
case ttInt8:
case ttInt16:
case ttInt64:
case ttUInt:
case ttUInt8:
case ttUInt16:
case ttUInt64:
case ttFloat:
case ttDouble:
if( strlen(decl) != tokenLen )
{
return ConfigError(asINVALID_TYPE, "RegisterTypedef", type, decl);
}
break;
default:
return ConfigError(asINVALID_TYPE, "RegisterTypedef", type, decl);
}
dataType = asCDataType::CreatePrimitive(token, false);
// Make sure the name is not a reserved keyword
token = tok.GetToken(type, strlen(type), &tokenLen);
if( token != ttIdentifier || strlen(type) != tokenLen )
return ConfigError(asINVALID_NAME, "RegisterTypedef", type, decl);
asCBuilder bld(this, 0);
int r = bld.CheckNameConflict(type, 0, 0, defaultNamespace);
if( r < 0 )
return ConfigError(asNAME_TAKEN, "RegisterTypedef", type, decl);
// Don't have to check against members of object
// types as they are allowed to use the names
// Put the data type in the list
asCObjectType *object = asNEW(asCObjectType)(this);
if( object == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterTypedef", type, decl);
object->flags = asOBJ_TYPEDEF;
object->size = dataType.GetSizeInMemoryBytes();
object->name = type;
object->nameSpace = defaultNamespace;
object->templateSubTypes.PushLast(dataType);
allRegisteredTypes.Insert(asSNameSpaceNamePair(object->nameSpace, object->name), object);
registeredTypeDefs.PushLast(object);
currentGroup->objTypes.PushLast(object);
return asSUCCESS;
}
// interface
asUINT asCScriptEngine::GetTypedefCount() const
{
return asUINT(registeredTypeDefs.GetLength());
}
// interface
const char *asCScriptEngine::GetTypedefByIndex(asUINT index, int *typeId, const char **nameSpace, const char **configGroup, asDWORD *accessMask) const
{
if( index >= registeredTypeDefs.GetLength() )
return 0;
if( typeId )
*typeId = GetTypeIdFromDataType(registeredTypeDefs[index]->templateSubTypes[0]);
if( configGroup )
{
asCConfigGroup *group = FindConfigGroupForObjectType(registeredTypeDefs[index]);
if( group )
*configGroup = group->groupName.AddressOf();
else
*configGroup = 0;
}
if( accessMask )
*accessMask = registeredTypeDefs[index]->accessMask;
if( nameSpace )
*nameSpace = registeredTypeDefs[index]->nameSpace->name.AddressOf();
return registeredTypeDefs[index]->name.AddressOf();
}
// interface
int asCScriptEngine::RegisterEnum(const char *name)
{
// Check the name
if( NULL == name )
return ConfigError(asINVALID_NAME, "RegisterEnum", name, 0);
// Verify if the name has been registered as a type already
// TODO: Must check for registered funcdefs too
if( GetRegisteredObjectType(name, defaultNamespace) )
return asALREADY_REGISTERED;
// Use builder to parse the datatype
asCDataType dt;
asCBuilder bld(this, 0);
bool oldMsgCallback = msgCallback; msgCallback = false;
int r = bld.ParseDataType(name, &dt, defaultNamespace);
msgCallback = oldMsgCallback;
if( r >= 0 )
return ConfigError(asERROR, "RegisterEnum", name, 0);
// Make sure the name is not a reserved keyword
size_t tokenLen;
int token = tok.GetToken(name, strlen(name), &tokenLen);
if( token != ttIdentifier || strlen(name) != tokenLen )
return ConfigError(asINVALID_NAME, "RegisterEnum", name, 0);
r = bld.CheckNameConflict(name, 0, 0, defaultNamespace);
if( r < 0 )
return ConfigError(asNAME_TAKEN, "RegisterEnum", name, 0);
asCObjectType *st = asNEW(asCObjectType)(this);
if( st == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterEnum", name, 0);
asCDataType dataType;
dataType.CreatePrimitive(ttInt, false);
st->flags = asOBJ_ENUM | asOBJ_SHARED;
st->size = 4;
st->name = name;
st->nameSpace = defaultNamespace;
allRegisteredTypes.Insert(asSNameSpaceNamePair(st->nameSpace, st->name), st);
registeredEnums.PushLast(st);
currentGroup->objTypes.PushLast(st);
return asSUCCESS;
}
// interface
int asCScriptEngine::RegisterEnumValue(const char *typeName, const char *valueName, int value)
{
// Verify that the correct config group is used
if( currentGroup->FindType(typeName) == 0 )
return ConfigError(asWRONG_CONFIG_GROUP, "RegisterEnumValue", typeName, valueName);
asCDataType dt;
int r;
asCBuilder bld(this, 0);
r = bld.ParseDataType(typeName, &dt, defaultNamespace);
if( r < 0 )
return ConfigError(r, "RegisterEnumValue", typeName, valueName);
// Store the enum value
asCObjectType *ot = dt.GetObjectType();
if( ot == 0 || !(ot->flags & asOBJ_ENUM) )
return ConfigError(asINVALID_TYPE, "RegisterEnumValue", typeName, valueName);
if( NULL == valueName )
return ConfigError(asINVALID_NAME, "RegisterEnumValue", typeName, valueName);
int tokenLen;
asETokenClass tokenClass = ParseToken(valueName, 0, &tokenLen);
if( tokenClass != asTC_IDENTIFIER || tokenLen != (int)strlen(valueName) )
return ConfigError(asINVALID_NAME, "RegisterEnumValue", typeName, valueName);
for( unsigned int n = 0; n < ot->enumValues.GetLength(); n++ )
{
if( ot->enumValues[n]->name == valueName )
return ConfigError(asALREADY_REGISTERED, "RegisterEnumValue", typeName, valueName);
}
asSEnumValue *e = asNEW(asSEnumValue);
if( e == 0 )
return ConfigError(asOUT_OF_MEMORY, "RegisterEnumValue", typeName, valueName);
e->name = valueName;
e->value = value;
ot->enumValues.PushLast(e);
return asSUCCESS;
}
// interface
asUINT asCScriptEngine::GetEnumCount() const
{
return asUINT(registeredEnums.GetLength());
}
// interface
const char *asCScriptEngine::GetEnumByIndex(asUINT index, int *enumTypeId, const char **nameSpace, const char **configGroup, asDWORD *accessMask) const
{
if( index >= registeredEnums.GetLength() )
return 0;
if( configGroup )
{
asCConfigGroup *group = FindConfigGroupForObjectType(registeredEnums[index]);
if( group )
*configGroup = group->groupName.AddressOf();
else
*configGroup = 0;
}
if( accessMask )
*accessMask = registeredEnums[index]->accessMask;
if( enumTypeId )
*enumTypeId = GetTypeIdFromDataType(asCDataType::CreateObject(registeredEnums[index], false));
if( nameSpace )
*nameSpace = registeredEnums[index]->nameSpace->name.AddressOf();
return registeredEnums[index]->name.AddressOf();
}
// interface
int asCScriptEngine::GetEnumValueCount(int enumTypeId) const
{
asCDataType dt = GetDataTypeFromTypeId(enumTypeId);
asCObjectType *t = dt.GetObjectType();
if( t == 0 || !(t->GetFlags() & asOBJ_ENUM) )
return asINVALID_TYPE;
return (int)t->enumValues.GetLength();
}
// interface
const char *asCScriptEngine::GetEnumValueByIndex(int enumTypeId, asUINT index, int *outValue) const
{
// TODO: This same function is implemented in as_module.cpp as well. Perhaps it should be moved to asCObjectType?
asCDataType dt = GetDataTypeFromTypeId(enumTypeId);
asCObjectType *t = dt.GetObjectType();
if( t == 0 || !(t->GetFlags() & asOBJ_ENUM) )
return 0;
if( index >= t->enumValues.GetLength() )
return 0;
if( outValue )
*outValue = t->enumValues[index]->value;
return t->enumValues[index]->name.AddressOf();
}
// interface
asUINT asCScriptEngine::GetObjectTypeCount() const
{
return asUINT(registeredObjTypes.GetLength());
}
// interface
asIObjectType *asCScriptEngine::GetObjectTypeByIndex(asUINT index) const
{
if( index >= registeredObjTypes.GetLength() )
return 0;
return registeredObjTypes[index];
}
// interface
asIObjectType *asCScriptEngine::GetObjectTypeByName(const char *name) const
{
// Check the object types
for( asUINT n = 0; n < registeredObjTypes.GetLength(); n++ )
{
if( registeredObjTypes[n]->name == name &&
registeredObjTypes[n]->nameSpace == defaultNamespace )
return registeredObjTypes[n];
}
// Perhaps it is a template type? In this case
// the returned type will be the generic type
for( asUINT n = 0; n < registeredTemplateTypes.GetLength(); n++ )
{
if( registeredTemplateTypes[n]->name == name &&
registeredTemplateTypes[n]->nameSpace == defaultNamespace )
return registeredTemplateTypes[n];
}
return 0;
}
// interface
asIObjectType *asCScriptEngine::GetObjectTypeById(int typeId) const
{
asCDataType dt = GetDataTypeFromTypeId(typeId);
// Is the type id valid?
if( !dt.IsValid() ) return 0;
// Enum types are not objects, so we shouldn't return an object type for them
if( dt.GetObjectType() && dt.GetObjectType()->GetFlags() & asOBJ_ENUM )
return 0;
return dt.GetObjectType();
}
// interface
asIScriptFunction *asCScriptEngine::GetFunctionById(int funcId) const
{
return GetScriptFunction(funcId);
}
// interface
asIScriptFunction *asCScriptEngine::GetFuncDefFromTypeId(int typeId) const
{
return GetDataTypeFromTypeId(typeId).GetFuncDef();
}
// internal
bool asCScriptEngine::IsTemplateType(const char *name) const
{
// Only look in the list of template types (not instance types)
for( unsigned int n = 0; n < registeredTemplateTypes.GetLength(); n++ )
{
asCObjectType *type = registeredTemplateTypes[n];
if( type && type->name == name )
return true;
}
return false;
}
// internal
int asCScriptEngine::AddConstantString(const char *str, size_t len)
{
// This is only called when build a script module, so it is
// known that only one thread can enter the function at a time.
asASSERT( isBuilding );
// The str may contain null chars, so we cannot use strlen, or strcmp, or strcpy
// Has the string been registered before?
asSMapNode<asCStringPointer, int> *cursor = 0;
if (stringToIdMap.MoveTo(&cursor, asCStringPointer(str, len)))
return cursor->value;
// No match was found, add the string
asCString *cstr = asNEW(asCString)(str, len);
if( cstr )
{
stringConstants.PushLast(cstr);
int index = (int)stringConstants.GetLength() - 1;
stringToIdMap.Insert(asCStringPointer(cstr), index);
// The VM currently doesn't handle string ids larger than 65535
asASSERT(stringConstants.GetLength() <= 65536);
return index;
}
return 0;
}
// internal
const asCString &asCScriptEngine::GetConstantString(int id)
{
return *stringConstants[id];
}
// internal
int asCScriptEngine::GetScriptSectionNameIndex(const char *name)
{
ACQUIREEXCLUSIVE(engineRWLock);
// TODO: These names are only released when the engine is freed. The assumption is that
// the same script section names will be reused instead of there always being new
// names. Is this assumption valid? Do we need to add reference counting?
// Store the script section names for future reference
for( asUINT n = 0; n < scriptSectionNames.GetLength(); n++ )
{
if( scriptSectionNames[n]->Compare(name) == 0 )
{
RELEASEEXCLUSIVE(engineRWLock);
return n;
}
}
asCString *str = asNEW(asCString)(name);
if( str )
scriptSectionNames.PushLast(str);
int r = int(scriptSectionNames.GetLength()-1);
RELEASEEXCLUSIVE(engineRWLock);
return r;
}
// interface
void asCScriptEngine::SetEngineUserDataCleanupCallback(asCLEANENGINEFUNC_t callback, asPWORD type)
{
ACQUIREEXCLUSIVE(engineRWLock);
for( asUINT n = 0; n < cleanEngineFuncs.GetLength(); n++ )
{
if( cleanEngineFuncs[n].type == type )
{
cleanEngineFuncs[n].cleanFunc = callback;
RELEASEEXCLUSIVE(engineRWLock);
return;
}
}
SEngineClean otc = {type, callback};
cleanEngineFuncs.PushLast(otc);
RELEASEEXCLUSIVE(engineRWLock);
}
// interface
void asCScriptEngine::SetModuleUserDataCleanupCallback(asCLEANMODULEFUNC_t callback)
{
cleanModuleFunc = callback;
}
// interface
void asCScriptEngine::SetContextUserDataCleanupCallback(asCLEANCONTEXTFUNC_t callback)
{
cleanContextFunc = callback;
}
// interface
void asCScriptEngine::SetFunctionUserDataCleanupCallback(asCLEANFUNCTIONFUNC_t callback)
{
cleanFunctionFunc = callback;
}
// interface
void asCScriptEngine::SetObjectTypeUserDataCleanupCallback(asCLEANOBJECTTYPEFUNC_t callback, asPWORD type)
{
ACQUIREEXCLUSIVE(engineRWLock);
for( asUINT n = 0; n < cleanObjectTypeFuncs.GetLength(); n++ )
{
if( cleanObjectTypeFuncs[n].type == type )
{
cleanObjectTypeFuncs[n].cleanFunc = callback;
RELEASEEXCLUSIVE(engineRWLock);
return;
}
}
SObjTypeClean otc = {type, callback};
cleanObjectTypeFuncs.PushLast(otc);
RELEASEEXCLUSIVE(engineRWLock);
}
// internal
asCObjectType *asCScriptEngine::GetListPatternType(int listPatternFuncId)
{
// Get the object type either from the constructor's object for value types
// or from the factory's return type for reference types
asCObjectType *ot = scriptFunctions[listPatternFuncId]->objectType;
if( ot == 0 )
ot = scriptFunctions[listPatternFuncId]->returnType.GetObjectType();
asASSERT( ot );
// Check if this object type already has a list pattern type
for( asUINT n = 0; n < listPatternTypes.GetLength(); n++ )
{
if( listPatternTypes[n]->templateSubTypes[0].GetObjectType() == ot )
return listPatternTypes[n];
}
// Create a new list pattern type for the given object type
asCObjectType *lpt = asNEW(asCObjectType)(this);
lpt->templateSubTypes.PushLast(asCDataType::CreateObject(ot, false));
lpt->flags = asOBJ_LIST_PATTERN;
listPatternTypes.PushLast(lpt);
return lpt;
}
// internal
void asCScriptEngine::DestroyList(asBYTE *buffer, const asCObjectType *listPatternType)
{
asASSERT( listPatternType && (listPatternType->flags & asOBJ_LIST_PATTERN) );
// Get the list pattern from the listFactory function
// TODO: runtime optimize: Store the used list factory in the listPatternType itself
// TODO: runtime optimize: Keep a flag to indicate if there is really a need to free anything
asCObjectType *ot = listPatternType->templateSubTypes[0].GetObjectType();
asCScriptFunction *listFactory = scriptFunctions[ot->beh.listFactory];
asASSERT( listFactory );
asSListPatternNode *node = listFactory->listPattern;
DestroySubList(buffer, node);
asASSERT( node->type == asLPT_END );
}
// internal
void asCScriptEngine::DestroySubList(asBYTE *&buffer, asSListPatternNode *&node)
{
asASSERT( node->type == asLPT_START );
int count = 0;
node = node->next;
while( node )
{
if( node->type == asLPT_REPEAT )
{
// Align the offset to 4 bytes boundary
if( (asPWORD(buffer) & 0x3) )
buffer += 4 - (asPWORD(buffer) & 0x3);
// Determine how many times the pattern repeat
count = *(asUINT*)buffer;
buffer += 4;
}
else if( node->type == asLPT_TYPE )
{
// If we're not in a repeat iteration, then only 1 value should be destroyed
if( count <= 0 )
count = 1;
asCDataType dt = reinterpret_cast<asSListPatternDataTypeNode*>(node)->dataType;
bool isVarType = dt.GetTokenType() == ttQuestion;
while( count-- )
{
if( isVarType )
{
// Align the offset to 4 bytes boundary
if( (asPWORD(buffer) & 0x3) )
buffer += 4 - (asPWORD(buffer) & 0x3);
int typeId = *(int*)buffer;
buffer += 4;
dt = GetDataTypeFromTypeId(typeId);
}
asCObjectType *ot = dt.GetObjectType();
if( ot && (ot->flags & asOBJ_ENUM) == 0 )
{
// Free all instances of this type
if( ot->flags & asOBJ_VALUE )
{
asUINT size = ot->GetSize();
// Align the offset to 4 bytes boundary
if( size >= 4 && (asPWORD(buffer) & 0x3) )
buffer += 4 - (asPWORD(buffer) & 0x3);
if( ot->beh.destruct )
{
// Only call the destructor if the object has been created
// We'll assume the object has been created if any byte in
// the memory is different from 0.
// TODO: This is not really correct, as bytes may have been
// modified by the constructor, but then an exception
// thrown aborting the initialization. The engine
// really should be keeping track of which objects has
// been successfully initialized.
for( asUINT n = 0; n < size; n++ )
{
if( buffer[n] != 0 )
{
void *ptr = (void*)buffer;
CallObjectMethod(ptr, ot->beh.destruct);
break;
}
}
}
// Advance the pointer in the buffer
buffer += size;
}
else
{
// Align the offset to 4 bytes boundary
if( asPWORD(buffer) & 0x3 )
buffer += 4 - (asPWORD(buffer) & 0x3);
// Call the release behaviour
void *ptr = *(void**)buffer;
if( ptr )
ReleaseScriptObject(ptr, ot);
buffer += AS_PTR_SIZE*4;
}
}
else
{
asUINT size = dt.GetSizeInMemoryBytes();
// Align the offset to 4 bytes boundary
if( size >= 4 && (asPWORD(buffer) & 0x3) )
buffer += 4 - (asPWORD(buffer) & 0x3);
// Advance the buffer
buffer += size;
}
}
}
else if( node->type == asLPT_START )
{
// If we're not in a repeat iteration, then only 1 value should be destroyed
if( count <= 0 )
count = 1;
while( count-- )
{
asSListPatternNode *subList = node;
DestroySubList(buffer, subList);
asASSERT( subList->type == asLPT_END );
if( count == 0 )
node = subList;
}
}
else if( node->type == asLPT_END )
{
return;
}
else
{
asASSERT( false );
}
node = node->next;
}
}
END_AS_NAMESPACE