1
0
Fork 0

ChunkDataSerializer: don't repeatedly mallocate

+ Store an instance of the class, the way it seems it is meant to be used.
This commit is contained in:
Tiger Wang 2020-08-21 18:22:04 +01:00
parent 440523b022
commit a473e8ba52
5 changed files with 216 additions and 171 deletions

View File

@ -11,7 +11,6 @@
#include "ChunkSender.h" #include "ChunkSender.h"
#include "World.h" #include "World.h"
#include "BlockEntities/BlockEntity.h" #include "BlockEntities/BlockEntity.h"
#include "Protocol/ChunkDataSerializer.h"
#include "ClientHandle.h" #include "ClientHandle.h"
#include "Chunk.h" #include "Chunk.h"
@ -61,7 +60,8 @@ public:
cChunkSender::cChunkSender(cWorld & a_World) : cChunkSender::cChunkSender(cWorld & a_World) :
Super("ChunkSender"), Super("ChunkSender"),
m_World(a_World) m_World(a_World),
m_Serializer(m_World.GetDimension())
{ {
} }
@ -246,11 +246,8 @@ void cChunkSender::SendChunk(int a_ChunkX, int a_ChunkZ, std::unordered_set<cCli
return; return;
} }
{
// Send: // Send:
cChunkDataSerializer Data(a_ChunkX, a_ChunkZ, m_Data, m_BiomeMap, m_World.GetDimension()); m_Serializer.SendToClients(a_ChunkX, a_ChunkZ, m_Data, m_BiomeMap, a_Clients);
Data.SendToClients(a_Clients);
}
for (const auto Client : a_Clients) for (const auto Client : a_Clients)
{ {

View File

@ -27,6 +27,7 @@ Note that it may be called by world's BroadcastToChunk() if the client is still
#include "OSSupport/IsThread.h" #include "OSSupport/IsThread.h"
#include "ChunkDataCallback.h" #include "ChunkDataCallback.h"
#include "Protocol/ChunkDataSerializer.h"
@ -109,6 +110,9 @@ protected:
cWorld & m_World; cWorld & m_World;
/** An instance of a chunk serializer, held to maintain its internal cache. */
cChunkDataSerializer m_Serializer;
cCriticalSection m_CS; cCriticalSection m_CS;
std::priority_queue<sChunkQueue> m_SendChunks; std::priority_queue<sChunkQueue> m_SendChunks;
std::unordered_map<cChunkCoords, sSendChunk, cChunkCoordsHash> m_ChunkInfo; std::unordered_map<cChunkCoords, sSendChunk, cChunkCoordsHash> m_ChunkInfo;

View File

@ -2479,7 +2479,8 @@ void cClientHandle::SendChunkData(int a_ChunkX, int a_ChunkZ, const std::string_
{ {
// This just sometimes happens. If you have a reliably replicatable situation for this, go ahead and fix it // This just sometimes happens. If you have a reliably replicatable situation for this, go ahead and fix it
// It's not a big issue anyway, just means that some chunks may be compressed several times // It's not a big issue anyway, just means that some chunks may be compressed several times
// LOGD("Refusing to send chunk [%d, %d] to client \"%s\" at [%d, %d].", ChunkX, ChunkZ, m_Username.c_str(), m_Player->GetChunkX(), m_Player->GetChunkZ()); // LOG("Refusing to send chunk [%d, %d] to client \"%s\" at [%d, %d].", a_ChunkX, a_ChunkZ, m_Username.c_str(), m_Player->GetChunkX(), m_Player->GetChunkZ());
// 2020 08 21: seems to happen going through nether portals on 1.8.9
return; return;
} }

View File

@ -3,7 +3,6 @@
#include "zlib/zlib.h" #include "zlib/zlib.h"
#include "Protocol_1_8.h" #include "Protocol_1_8.h"
#include "Protocol_1_9.h" #include "Protocol_1_9.h"
#include "../ByteBuffer.h"
#include "../ClientHandle.h" #include "../ClientHandle.h"
#include "../WorldStorage/FastNBT.h" #include "../WorldStorage/FastNBT.h"
@ -64,17 +63,8 @@ namespace
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// cChunkDataSerializer: // cChunkDataSerializer:
cChunkDataSerializer::cChunkDataSerializer( cChunkDataSerializer::cChunkDataSerializer(const eDimension a_Dimension) :
int a_ChunkX, m_Packet(512 KiB),
int a_ChunkZ,
const cChunkData & a_Data,
const unsigned char * a_BiomeData,
const eDimension a_Dimension
) :
m_ChunkX(a_ChunkX),
m_ChunkZ(a_ChunkZ),
m_Data(a_Data),
m_BiomeData(a_BiomeData),
m_Dimension(a_Dimension) m_Dimension(a_Dimension)
{ {
} }
@ -83,30 +73,22 @@ cChunkDataSerializer::cChunkDataSerializer(
void cChunkDataSerializer::SendToClients(const std::unordered_set<cClientHandle *> & a_SendTo) void cChunkDataSerializer::SendToClients(const int a_ChunkX, const int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData, const ClientHandles & a_SendTo)
{ {
std::unordered_map<cProtocol::Version, std::vector<cClientHandle *>> ClientProtocolVersions;
for (const auto Client : a_SendTo) for (const auto Client : a_SendTo)
{ {
const auto ClientProtocol = static_cast<cProtocol::Version>(Client->GetProtocolVersion()); switch (static_cast<cProtocol::Version>(Client->GetProtocolVersion()))
ClientProtocolVersions[ClientProtocol].emplace_back(Client);
}
for (const auto & Entry : ClientProtocolVersions)
{
switch (Entry.first)
{ {
case cProtocol::Version::v1_8_0: case cProtocol::Version::v1_8_0:
{ {
Serialize47(Entry.second); Serialize(Client, a_ChunkX, a_ChunkZ, a_Data, a_BiomeData, CacheVersion::v47);
continue; continue;
} }
case cProtocol::Version::v1_9_0: case cProtocol::Version::v1_9_0:
case cProtocol::Version::v1_9_1: case cProtocol::Version::v1_9_1:
case cProtocol::Version::v1_9_2: case cProtocol::Version::v1_9_2:
{ {
Serialize107(Entry.second); Serialize(Client, a_ChunkX, a_ChunkZ, a_Data, a_BiomeData, CacheVersion::v107);
continue; continue;
} }
case cProtocol::Version::v1_9_4: case cProtocol::Version::v1_9_4:
@ -117,106 +99,161 @@ void cChunkDataSerializer::SendToClients(const std::unordered_set<cClientHandle
case cProtocol::Version::v1_12_1: case cProtocol::Version::v1_12_1:
case cProtocol::Version::v1_12_2: case cProtocol::Version::v1_12_2:
{ {
Serialize110(Entry.second); Serialize(Client, a_ChunkX, a_ChunkZ, a_Data, a_BiomeData, CacheVersion::v110);
continue; continue;
} }
case cProtocol::Version::v1_13: case cProtocol::Version::v1_13:
{ {
Serialize393<&Palette393>(Entry.second); // This version didn't last very long xD Serialize(Client, a_ChunkX, a_ChunkZ, a_Data, a_BiomeData, CacheVersion::v393); // This version didn't last very long xD
continue; continue;
} }
case cProtocol::Version::v1_13_1: case cProtocol::Version::v1_13_1:
case cProtocol::Version::v1_13_2: case cProtocol::Version::v1_13_2:
{ {
Serialize393<&Palette401>(Entry.second); Serialize(Client, a_ChunkX, a_ChunkZ, a_Data, a_BiomeData, CacheVersion::v401);
continue; continue;
} }
case cProtocol::Version::v1_14: case cProtocol::Version::v1_14:
{ {
Serialize477(Entry.second); Serialize(Client, a_ChunkX, a_ChunkZ, a_Data, a_BiomeData, CacheVersion::v477);
continue; continue;
} }
} }
UNREACHABLE("Unknown chunk data serialization version"); UNREACHABLE("Unknown chunk data serialization version");
} }
// Our cache is only persistent during the function call:
for (auto & Cache : m_Cache)
{
Cache.Engaged = false;
}
} }
void cChunkDataSerializer::Serialize47(const std::vector<cClientHandle *> & a_SendTo) inline void cChunkDataSerializer::Serialize(cClientHandle * a_Client, const int a_ChunkX, const int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData, const CacheVersion a_CacheVersion)
{
auto & Cache = m_Cache[static_cast<size_t>(a_CacheVersion)];
if (Cache.Engaged)
{
// Success! We've done it already, just re-use:
a_Client->SendChunkData(a_ChunkX, a_ChunkZ, Cache.ToSend);
return;
}
switch (a_CacheVersion)
{
case CacheVersion::v47:
{
Serialize47(a_ChunkX, a_ChunkZ, a_Data, a_BiomeData);
break;
}
case CacheVersion::v107:
{
Serialize107(a_ChunkX, a_ChunkZ, a_Data, a_BiomeData);
break;
}
case CacheVersion::v110:
{
Serialize110(a_ChunkX, a_ChunkZ, a_Data, a_BiomeData);
break;
}
case CacheVersion::v393:
{
Serialize393<&Palette393>(a_ChunkX, a_ChunkZ, a_Data, a_BiomeData);
break;
}
case CacheVersion::v401:
{
Serialize393<&Palette401>(a_ChunkX, a_ChunkZ, a_Data, a_BiomeData);
break;
}
case CacheVersion::v477:
{
Serialize477(a_ChunkX, a_ChunkZ, a_Data, a_BiomeData);
break;
}
}
CompressPacketInto(Cache);
ASSERT(Cache.Engaged); // Cache must be populated now
a_Client->SendChunkData(a_ChunkX, a_ChunkZ, Cache.ToSend);
}
inline void cChunkDataSerializer::Serialize47(const int a_ChunkX, const int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData)
{ {
// This function returns the fully compressed packet (including packet size), not the raw packet! // This function returns the fully compressed packet (including packet size), not the raw packet!
// Create the packet: // Create the packet:
cByteBuffer Packet(512 KiB); m_Packet.WriteVarInt32(0x21); // Packet id (Chunk Data packet)
Packet.WriteVarInt32(0x21); // Packet id (Chunk Data packet) m_Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(m_ChunkX); m_Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBEInt32(m_ChunkZ); m_Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag m_Packet.WriteBEUInt16(a_Data.GetSectionBitmask());
Packet.WriteBEUInt16(m_Data.GetSectionBitmask());
// Write the chunk size: // Write the chunk size:
const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width; const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
UInt32 ChunkSize = ( UInt32 ChunkSize = (
m_Data.NumPresentSections() * cChunkData::SectionBlockCount * 3 + // Blocks and lighting a_Data.NumPresentSections() * cChunkData::SectionBlockCount * 3 + // Blocks and lighting
BiomeDataSize // Biome data BiomeDataSize // Biome data
); );
Packet.WriteVarInt32(ChunkSize); m_Packet.WriteVarInt32(ChunkSize);
// Chunk written as seperate arrays of (blocktype + meta), blocklight and skylight // Chunk written as seperate arrays of (blocktype + meta), blocklight and skylight
// each array stores all present sections of the same kind packed together // each array stores all present sections of the same kind packed together
// Write the block types to the packet: // Write the block types to the packet:
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) ForEachSection(a_Data, [&](const cChunkData::sChunkSection & a_Section)
{ {
for (size_t BlockIdx = 0; BlockIdx != cChunkData::SectionBlockCount; ++BlockIdx) for (size_t BlockIdx = 0; BlockIdx != cChunkData::SectionBlockCount; ++BlockIdx)
{ {
BLOCKTYPE BlockType = a_Section.m_BlockTypes[BlockIdx] & 0xFF; BLOCKTYPE BlockType = a_Section.m_BlockTypes[BlockIdx] & 0xFF;
NIBBLETYPE BlockMeta = a_Section.m_BlockMetas[BlockIdx / 2] >> ((BlockIdx & 1) * 4) & 0x0f; NIBBLETYPE BlockMeta = a_Section.m_BlockMetas[BlockIdx / 2] >> ((BlockIdx & 1) * 4) & 0x0f;
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType << 4) | BlockMeta); m_Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType << 4) | BlockMeta);
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType >> 4)); m_Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType >> 4));
} }
} }
); );
// Write the block lights: // Write the block lights:
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) ForEachSection(a_Data, [&](const cChunkData::sChunkSection & a_Section)
{ {
Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight)); m_Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
} }
); );
// Write the sky lights: // Write the sky lights:
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) ForEachSection(a_Data, [&](const cChunkData::sChunkSection & a_Section)
{ {
Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight)); m_Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
} }
); );
// Write the biome data: // Write the biome data:
Packet.WriteBuf(m_BiomeData, BiomeDataSize); m_Packet.WriteBuf(a_BiomeData, BiomeDataSize);
CompressAndSend(Packet, a_SendTo);
} }
void cChunkDataSerializer::Serialize107(const std::vector<cClientHandle *> & a_SendTo) inline void cChunkDataSerializer::Serialize107(const int a_ChunkX, const int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData)
{ {
// This function returns the fully compressed packet (including packet size), not the raw packet! // This function returns the fully compressed packet (including packet size), not the raw packet!
// Create the packet: // Create the packet:
cByteBuffer Packet(512 KiB); m_Packet.WriteVarInt32(0x20); // Packet id (Chunk Data packet)
Packet.WriteVarInt32(0x20); // Packet id (Chunk Data packet) m_Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(m_ChunkX); m_Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBEInt32(m_ChunkZ); m_Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag m_Packet.WriteVarInt32(a_Data.GetSectionBitmask());
Packet.WriteVarInt32(m_Data.GetSectionBitmask());
// Write the chunk size: // Write the chunk size:
const UInt8 BitsPerEntry = 13; const UInt8 BitsPerEntry = 13;
const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8; // Convert from bit count to long count const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8; // Convert from bit count to long count
@ -236,50 +273,47 @@ void cChunkDataSerializer::Serialize107(const std::vector<cClientHandle *> & a_S
const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width; const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
size_t ChunkSize = ( size_t ChunkSize = (
ChunkSectionSize * m_Data.NumPresentSections() + ChunkSectionSize * a_Data.NumPresentSections() +
BiomeDataSize BiomeDataSize
); );
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize)); m_Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));
// Write each chunk section... // Write each chunk section...
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) ForEachSection(a_Data, [&](const cChunkData::sChunkSection & a_Section)
{ {
Packet.WriteBEUInt8(BitsPerEntry); m_Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(0); // Palette length is 0 m_Packet.WriteVarInt32(0); // Palette length is 0
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize)); m_Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
WriteSectionDataSeamless<&PaletteLegacy>(Packet, a_Section, BitsPerEntry); WriteSectionDataSeamless<&PaletteLegacy>(a_Section, BitsPerEntry);
// Write lighting: // Write lighting:
Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight)); m_Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
if (m_Dimension == dimOverworld) if (m_Dimension == dimOverworld)
{ {
// Skylight is only sent in the overworld; the nether and end do not use it // Skylight is only sent in the overworld; the nether and end do not use it
Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight)); m_Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
} }
} }
); );
// Write the biome data // Write the biome data
Packet.WriteBuf(m_BiomeData, BiomeDataSize); m_Packet.WriteBuf(a_BiomeData, BiomeDataSize);
CompressAndSend(Packet, a_SendTo);
} }
void cChunkDataSerializer::Serialize110(const std::vector<cClientHandle *> & a_SendTo) inline void cChunkDataSerializer::Serialize110(const int a_ChunkX, const int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData)
{ {
// This function returns the fully compressed packet (including packet size), not the raw packet! // This function returns the fully compressed packet (including packet size), not the raw packet!
// Create the packet: // Create the packet:
cByteBuffer Packet(512 KiB); m_Packet.WriteVarInt32(0x20); // Packet id (Chunk Data packet)
Packet.WriteVarInt32(0x20); // Packet id (Chunk Data packet) m_Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(m_ChunkX); m_Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBEInt32(m_ChunkZ); m_Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag m_Packet.WriteVarInt32(a_Data.GetSectionBitmask());
Packet.WriteVarInt32(m_Data.GetSectionBitmask());
// Write the chunk size: // Write the chunk size:
const UInt8 BitsPerEntry = 13; const UInt8 BitsPerEntry = 13;
const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8; // Convert from bit count to long count const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8; // Convert from bit count to long count
@ -299,36 +333,34 @@ void cChunkDataSerializer::Serialize110(const std::vector<cClientHandle *> & a_S
const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width; const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
size_t ChunkSize = ( size_t ChunkSize = (
ChunkSectionSize * m_Data.NumPresentSections() + ChunkSectionSize * a_Data.NumPresentSections() +
BiomeDataSize BiomeDataSize
); );
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize)); m_Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));
// Write each chunk section... // Write each chunk section...
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) ForEachSection(a_Data, [&](const cChunkData::sChunkSection & a_Section)
{ {
Packet.WriteBEUInt8(BitsPerEntry); m_Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(0); // Palette length is 0 m_Packet.WriteVarInt32(0); // Palette length is 0
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize)); m_Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
WriteSectionDataSeamless<&PaletteLegacy>(Packet, a_Section, BitsPerEntry); WriteSectionDataSeamless<&PaletteLegacy>(a_Section, BitsPerEntry);
// Write lighting: // Write lighting:
Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight)); m_Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
if (m_Dimension == dimOverworld) if (m_Dimension == dimOverworld)
{ {
// Skylight is only sent in the overworld; the nether and end do not use it // Skylight is only sent in the overworld; the nether and end do not use it
Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight)); m_Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
} }
} }
); );
// Write the biome data // Write the biome data
Packet.WriteBuf(m_BiomeData, BiomeDataSize); m_Packet.WriteBuf(a_BiomeData, BiomeDataSize);
// Identify 1.9.4's tile entity list as empty // Identify 1.9.4's tile entity list as empty
Packet.WriteBEUInt8(0); m_Packet.WriteBEUInt8(0);
CompressAndSend(Packet, a_SendTo);
} }
@ -336,24 +368,23 @@ void cChunkDataSerializer::Serialize110(const std::vector<cClientHandle *> & a_S
template <auto Palette> template <auto Palette>
void cChunkDataSerializer::Serialize393(const std::vector<cClientHandle *> & a_SendTo) inline void cChunkDataSerializer::Serialize393(const int a_ChunkX, const int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData)
{ {
// This function returns the fully compressed packet (including packet size), not the raw packet! // This function returns the fully compressed packet (including packet size), not the raw packet!
// Create the packet: // Create the packet:
cByteBuffer Packet(512 KiB); m_Packet.WriteVarInt32(0x22); // Packet id (Chunk Data packet)
Packet.WriteVarInt32(0x22); // Packet id (Chunk Data packet) m_Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(m_ChunkX); m_Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBEInt32(m_ChunkZ); m_Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag m_Packet.WriteVarInt32(a_Data.GetSectionBitmask());
Packet.WriteVarInt32(m_Data.GetSectionBitmask());
// Write the chunk size in bytes: // Write the chunk size in bytes:
const UInt8 BitsPerEntry = 14; const UInt8 BitsPerEntry = 14;
const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8; const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8;
size_t ChunkSectionSize = ( size_t ChunkSectionSize = (
1 + // Bits per entry, BEUInt8, 1 byte 1 + // Bits per entry, BEUInt8, 1 byte
Packet.GetVarIntSize(static_cast<UInt32>(ChunkSectionDataArraySize)) + // Field containing "size of whole section", VarInt32, variable size m_Packet.GetVarIntSize(static_cast<UInt32>(ChunkSectionDataArraySize)) + // Field containing "size of whole section", VarInt32, variable size
ChunkSectionDataArraySize * 8 + // Actual section data, lots of bytes (multiplier 1 long = 8 bytes) ChunkSectionDataArraySize * 8 + // Actual section data, lots of bytes (multiplier 1 long = 8 bytes)
cChunkData::SectionBlockCount / 2 // Size of blocklight which is always sent cChunkData::SectionBlockCount / 2 // Size of blocklight which is always sent
); );
@ -366,24 +397,24 @@ void cChunkDataSerializer::Serialize393(const std::vector<cClientHandle *> & a_S
const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width; const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
size_t ChunkSize = ( size_t ChunkSize = (
ChunkSectionSize * m_Data.NumPresentSections() + ChunkSectionSize * a_Data.NumPresentSections() +
BiomeDataSize * 4 // Biome data now BE ints BiomeDataSize * 4 // Biome data now BE ints
); );
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize)); m_Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));
// Write each chunk section... // Write each chunk section...
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) ForEachSection(a_Data, [&](const cChunkData::sChunkSection & a_Section)
{ {
Packet.WriteBEUInt8(BitsPerEntry); m_Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize)); m_Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
WriteSectionDataSeamless<Palette>(Packet, a_Section, BitsPerEntry); WriteSectionDataSeamless<Palette>(a_Section, BitsPerEntry);
// Write lighting: // Write lighting:
Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight)); m_Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
if (m_Dimension == dimOverworld) if (m_Dimension == dimOverworld)
{ {
// Skylight is only sent in the overworld; the nether and end do not use it // Skylight is only sent in the overworld; the nether and end do not use it
Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight)); m_Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
} }
} }
); );
@ -391,30 +422,27 @@ void cChunkDataSerializer::Serialize393(const std::vector<cClientHandle *> & a_S
// Write the biome data // Write the biome data
for (size_t i = 0; i != BiomeDataSize; i++) for (size_t i = 0; i != BiomeDataSize; i++)
{ {
Packet.WriteBEUInt32(static_cast<UInt32>(m_BiomeData[i]) & 0xff); m_Packet.WriteBEUInt32(static_cast<UInt32>(a_BiomeData[i]) & 0xff);
} }
// Identify 1.9.4's tile entity list as empty // Identify 1.9.4's tile entity list as empty
Packet.WriteVarInt32(0); m_Packet.WriteVarInt32(0);
CompressAndSend(Packet, a_SendTo);
} }
void cChunkDataSerializer::Serialize477(const std::vector<cClientHandle *> & a_SendTo) inline void cChunkDataSerializer::Serialize477(const int a_ChunkX, const int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData)
{ {
// This function returns the fully compressed packet (including packet size), not the raw packet! // This function returns the fully compressed packet (including packet size), not the raw packet!
// Create the packet: // Create the packet:
cByteBuffer Packet(512 KiB); m_Packet.WriteVarInt32(0x21); // Packet id (Chunk Data packet)
Packet.WriteVarInt32(0x21); // Packet id (Chunk Data packet) m_Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(m_ChunkX); m_Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBEInt32(m_ChunkZ); m_Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag m_Packet.WriteVarInt32(a_Data.GetSectionBitmask());
Packet.WriteVarInt32(m_Data.GetSectionBitmask());
{ {
cFastNBTWriter Writer; cFastNBTWriter Writer;
@ -422,7 +450,7 @@ void cChunkDataSerializer::Serialize477(const std::vector<cClientHandle *> & a_S
// std::array<Int64, 36> Longz = {}; // std::array<Int64, 36> Longz = {};
// Writer.AddLongArray("MOTION_BLOCKING", Longz.data(), Longz.size()); // Writer.AddLongArray("MOTION_BLOCKING", Longz.data(), Longz.size());
Writer.Finish(); Writer.Finish();
Packet.Write(Writer.GetResult().data(), Writer.GetResult().size()); m_Packet.Write(Writer.GetResult().data(), Writer.GetResult().size());
} }
// Write the chunk size in bytes: // Write the chunk size in bytes:
@ -431,37 +459,35 @@ void cChunkDataSerializer::Serialize477(const std::vector<cClientHandle *> & a_S
const size_t ChunkSectionSize = ( const size_t ChunkSectionSize = (
2 + // Block count, BEInt16, 2 bytes 2 + // Block count, BEInt16, 2 bytes
1 + // Bits per entry, BEUInt8, 1 byte 1 + // Bits per entry, BEUInt8, 1 byte
Packet.GetVarIntSize(static_cast<UInt32>(ChunkSectionDataArraySize)) + // Field containing "size of whole section", VarInt32, variable size m_Packet.GetVarIntSize(static_cast<UInt32>(ChunkSectionDataArraySize)) + // Field containing "size of whole section", VarInt32, variable size
ChunkSectionDataArraySize * 8 // Actual section data, lots of bytes (multiplier 1 long = 8 bytes) ChunkSectionDataArraySize * 8 // Actual section data, lots of bytes (multiplier 1 long = 8 bytes)
); );
const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width; const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
const size_t ChunkSize = ( const size_t ChunkSize = (
ChunkSectionSize * m_Data.NumPresentSections() + ChunkSectionSize * a_Data.NumPresentSections() +
BiomeDataSize * 4 // Biome data now BE ints BiomeDataSize * 4 // Biome data now BE ints
); );
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize)); m_Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));
// Write each chunk section... // Write each chunk section...
ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) ForEachSection(a_Data, [&](const cChunkData::sChunkSection & a_Section)
{ {
Packet.WriteBEInt16(-1); m_Packet.WriteBEInt16(-1);
Packet.WriteBEUInt8(BitsPerEntry); m_Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize)); m_Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
WriteSectionDataSeamless<&Palette477>(Packet, a_Section, BitsPerEntry); WriteSectionDataSeamless<&Palette477>(a_Section, BitsPerEntry);
} }
); );
// Write the biome data // Write the biome data
for (size_t i = 0; i != BiomeDataSize; i++) for (size_t i = 0; i != BiomeDataSize; i++)
{ {
Packet.WriteBEUInt32(static_cast<UInt32>(m_BiomeData[i]) & 0xff); m_Packet.WriteBEUInt32(static_cast<UInt32>(a_BiomeData[i]) & 0xff);
} }
// Identify 1.9.4's tile entity list as empty // Identify 1.9.4's tile entity list as empty
Packet.WriteVarInt32(0); m_Packet.WriteVarInt32(0);
CompressAndSend(Packet, a_SendTo);
} }
@ -469,7 +495,7 @@ void cChunkDataSerializer::Serialize477(const std::vector<cClientHandle *> & a_S
template <auto Palette> template <auto Palette>
void cChunkDataSerializer::WriteSectionDataSeamless(cByteBuffer & a_Packet, const cChunkData::sChunkSection & a_Section, const UInt8 a_BitsPerEntry) inline void cChunkDataSerializer::WriteSectionDataSeamless(const cChunkData::sChunkSection & a_Section, const UInt8 a_BitsPerEntry)
{ {
// https://wiki.vg/Chunk_Format#Data_structure // https://wiki.vg/Chunk_Format#Data_structure
@ -493,7 +519,7 @@ void cChunkDataSerializer::WriteSectionDataSeamless(cByteBuffer & a_Packet, cons
if (Remaining >= 0) if (Remaining >= 0)
{ {
// There were some bits remaining: we've filled the buffer. Flush it: // There were some bits remaining: we've filled the buffer. Flush it:
a_Packet.WriteBEUInt64(Buffer); m_Packet.WriteBEUInt64(Buffer);
// And write the remaining bits, setting the new BitIndex: // And write the remaining bits, setting the new BitIndex:
Buffer = Value >> (a_BitsPerEntry - Remaining); Buffer = Value >> (a_BitsPerEntry - Remaining);
@ -515,20 +541,16 @@ void cChunkDataSerializer::WriteSectionDataSeamless(cByteBuffer & a_Packet, cons
void cChunkDataSerializer::CompressAndSend(cByteBuffer & a_Packet, const std::vector<cClientHandle *> & a_SendTo) inline void cChunkDataSerializer::CompressPacketInto(ChunkDataCache & a_Cache)
{ {
AString PacketData; m_Packet.ReadAll(a_Cache.PacketData);
a_Packet.ReadAll(PacketData); m_Packet.CommitRead();
AString ToSend; if (!cProtocol_1_8_0::CompressPacket(a_Cache.PacketData, a_Cache.ToSend))
if (!cProtocol_1_8_0::CompressPacket(PacketData, ToSend))
{ {
ASSERT(!"Packet compression failed."); ASSERT(!"Packet compression failed.");
return; return;
} }
for (const auto Client : a_SendTo) a_Cache.Engaged = true;
{
Client->SendChunkData(m_ChunkX, m_ChunkZ, ToSend);
}
} }

View File

@ -1,5 +1,6 @@
#pragma once #pragma once
#include "../ByteBuffer.h"
#include "../ChunkData.h" #include "../ChunkData.h"
#include "../Defines.h" #include "../Defines.h"
@ -18,47 +19,67 @@ Caches the serialized data for as long as this object lives, so that the same da
other clients using the same protocol. */ other clients using the same protocol. */
class cChunkDataSerializer class cChunkDataSerializer
{ {
using ClientHandles = std::unordered_set<cClientHandle *>;
/** Enum to collapse protocol versions into a contiguous index. */
enum class CacheVersion
{
v47,
v107,
v110,
v393,
v401,
v477,
Count
};
/** A single cache entry containing the raw data, compressed data, and a validity flag. */
struct ChunkDataCache
{
std::string PacketData;
std::string ToSend;
bool Engaged = false;
};
public: public:
cChunkDataSerializer( cChunkDataSerializer(eDimension a_Dimension);
int a_ChunkX,
int a_ChunkZ,
const cChunkData & a_Data,
const unsigned char * a_BiomeData,
const eDimension a_Dimension
);
/** For each client, serializes the chunk into their protocol version and sends it. */ /** For each client, serializes the chunk into their protocol version and sends it.
void SendToClients(const std::unordered_set<cClientHandle *> & a_SendTo); Parameters are the coordinates of the chunk to serialise, and the data and biome data read from the chunk. */
void SendToClients(int a_ChunkX, int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData, const ClientHandles & a_SendTo);
protected: protected:
void Serialize47 (const std::vector<cClientHandle *> & a_SendTo); // Release 1.8 /** Serialises the given chunk, storing the result into the given cache entry, and sends the data.
void Serialize107(const std::vector<cClientHandle *> & a_SendTo); // Release 1.9 If the cache entry is already present, simply re-uses it. */
void Serialize110(const std::vector<cClientHandle *> & a_SendTo); // Release 1.9.4 inline void Serialize(cClientHandle * a_Client, int a_ChunkX, int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData, CacheVersion a_CacheVersion);
inline void Serialize47 (int a_ChunkX, int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData); // Release 1.8
inline void Serialize107(int a_ChunkX, int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData); // Release 1.9
inline void Serialize110(int a_ChunkX, int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData); // Release 1.9.4
template <auto Palette> template <auto Palette>
void Serialize393(const std::vector<cClientHandle *> & a_SendTo); // Release 1.13 - 1.13.2 inline void Serialize393(int a_ChunkX, int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData); // Release 1.13 - 1.13.2
void Serialize477(const std::vector<cClientHandle *> & a_SendTo); // Release 1.14 - 1.14.4 inline void Serialize477(int a_ChunkX, int a_ChunkZ, const cChunkData & a_Data, const unsigned char * a_BiomeData); // Release 1.14 - 1.14.4
/** Writes all blocks in a chunk section into a series of Int64. /** Writes all blocks in a chunk section into a series of Int64.
Writes start from the bit directly subsequent to the previous write's end, possibly crossing over to the next Int64. */ Writes start from the bit directly subsequent to the previous write's end, possibly crossing over to the next Int64. */
template <auto Palette> template <auto Palette>
inline void WriteSectionDataSeamless(cByteBuffer & a_Packet, const cChunkData::sChunkSection & a_Section, const UInt8 a_BitsPerEntry); inline void WriteSectionDataSeamless(const cChunkData::sChunkSection & a_Section, const UInt8 a_BitsPerEntry);
/** Finalises the data, compresses it if required, and delivers it to all clients. */ /** Finalises the data, compresses it if required, and stores it into cache. */
void CompressAndSend(cByteBuffer & a_Packet, const std::vector<cClientHandle *> & a_SendTo); inline void CompressPacketInto(ChunkDataCache & a_Cache);
/** The coordinates of the chunk to serialise. */ /** A staging area used to construct the chunk packet, persistent to avoid reallocating. */
int m_ChunkX, m_ChunkZ; cByteBuffer m_Packet;
/** The data read from the chunk, to be serialized. */ /** The dimension for the World this Serializer is tied to. */
const cChunkData & m_Data;
/** The biomes in the chunk, to be serialized. */
const unsigned char * m_BiomeData;
/** The dimension where the chunk resides. */
const eDimension m_Dimension; const eDimension m_Dimension;
/** A cache, mapping protocol version to a fully serialised chunk.
It is used during a single invocation of SendToClients with more than one client. */
std::array<ChunkDataCache, static_cast<size_t>(CacheVersion::Count)> m_Cache;
} ; } ;