ubitx-v5x/Raduino/ubitx_keyer.ino

404 lines
12 KiB
Arduino
Raw Permalink Normal View History

/**
2018-01-26 04:23:52 -05:00
CW Keyer
CW Key logic change with ron's code (ubitx_keyer.cpp)
Ron's logic has been modified to work with the original uBITX by KD8CEC
Original Comment ----------------------------------------------------------------------------
* The CW keyer handles either a straight key or an iambic / paddle key.
* They all use just one analog input line. This is how it works.
* The analog line has the internal pull-up resistor enabled.
* When a straight key is connected, it shorts the pull-up resistor, analog input is 0 volts
* When a paddle is connected, the dot and the dash are connected to the analog pin through
* a 10K and a 2.2K resistors. These produce a 4v and a 2v input to the analog pins.
* So, the readings are as follows :
* 0v - straight key
* 1-2.5 v - paddle dot
* 2.5 to 4.5 v - paddle dash
* 2.0 to 0.5 v - dot and dash pressed
*
* The keyer is written to transparently handle all these cases
*
* Generating CW
* The CW is cleanly generated by unbalancing the front-end mixer
* and putting the local oscillator directly at the CW transmit frequency.
* The sidetone, generated by the Arduino is injected into the volume control
*/
// in milliseconds, this is the parameter that determines how long the tx will hold between cw key downs
2018-01-09 21:34:15 -05:00
//#define CW_TIMEOUT (600l) //Change to CW Delaytime for value save to eeprom
#define PADDLE_DOT 1
#define PADDLE_DASH 2
#define PADDLE_BOTH 3
#define PADDLE_STRAIGHT 4
//we store the last padde's character
//to alternatively send dots and dashes
//when both are simultaneously pressed
char lastPaddle = 0;
//reads the analog keyer pin and reports the paddle
byte getPaddle(){
/*
* KC4UPR - IOP update, 2020-05-03
*
* Modifying this for the uBITX IOP. Big picture:
*
* (1) It uses the PTT input line.
*
* (2) It's always "straight key" mode (the IOP provides the keyer).
*/
if (digitalRead(PTT) == 1) // key/PTT is up
return 0;
else
return PADDLE_STRAIGHT;
/*
int paddle = analogRead(ANALOG_KEYER);
if (paddle > 800) // above 4v is up
return 0;
if (paddle > 600) // 4-3v is dot
return PADDLE_DASH;
else if (paddle > 300) //1-2v is dash
return PADDLE_DOT;
else if (paddle > 50)
return PADDLE_BOTH; //both are between 1 and 2v
else
return PADDLE_STRAIGHT; //less than 1v is the straight key
*/
}
/**
* Starts transmitting the carrier with the sidetone
* It assumes that we have called cwTxStart and not called cwTxStop
* each time it is called, the cwTimeOut is pushed further into the future
*/
void cwKeydown(){
keyDown = 1; //tracks the CW_KEY
tone(CW_TONE, (int)sideTone);
digitalWrite(CW_KEY, 1);
2018-01-09 21:34:15 -05:00
//Modified by KD8CEC, for CW Delay Time save to eeprom
//cwTimeout = millis() + CW_TIMEOUT;
cwTimeout = millis() + cwDelayTime * 10;
}
/**
* Stops the cw carrier transmission along with the sidetone
* Pushes the cwTimeout further into the future
*/
void cwKeyUp(){
keyDown = 0; //tracks the CW_KEY
noTone(CW_TONE);
digitalWrite(CW_KEY, 0);
2018-01-09 21:34:15 -05:00
//Modified by KD8CEC, for CW Delay Time save to eeprom
//cwTimeout = millis() + CW_TIMEOUT;
cwTimeout = millis() + cwDelayTime * 10;
}
2018-01-26 07:47:15 -05:00
//Variables for Ron's new logic
2018-01-24 07:41:15 -05:00
#define DIT_L 0x01 // DIT latch
#define DAH_L 0x02 // DAH latch
#define DIT_PROC 0x04 // DIT is being processed
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
2018-02-06 02:13:05 -05:00
static unsigned long ktimer;
2018-01-24 07:41:15 -05:00
unsigned char keyerState = IDLE;
2018-01-26 07:47:15 -05:00
//Below is a test to reduce the keying error. do not delete lines
//create by KD8CEC for compatible with new CW Logic
2018-01-24 07:41:15 -05:00
char update_PaddleLatch(byte isUpdateKeyState) {
/*
* KC4UPR - IOP update, 2020-05-03
*
* Modifying this for the uBITX IOP. Big picture:
*
* No iambic keyer. It's always "straight key" based on the IOP.
*
* It uses the PTT line.
*/
return (digitalRead(PTT) ? 0 : DIT_L);
/*
2018-02-06 02:13:05 -05:00
unsigned char tmpKeyerControl = 0;
2018-01-27 02:39:54 -05:00
int paddle = analogRead(ANALOG_KEYER);
2018-01-29 04:38:48 -05:00
if (paddle >= cwAdcDashFrom && paddle <= cwAdcDashTo)
2018-01-24 07:41:15 -05:00
tmpKeyerControl |= DAH_L;
2018-01-29 04:38:48 -05:00
else if (paddle >= cwAdcDotFrom && paddle <= cwAdcDotTo)
2018-01-24 07:41:15 -05:00
tmpKeyerControl |= DIT_L;
2018-01-29 04:38:48 -05:00
else if (paddle >= cwAdcBothFrom && paddle <= cwAdcBothTo)
2018-01-27 02:39:54 -05:00
tmpKeyerControl |= (DAH_L | DIT_L) ;
2018-01-26 07:47:15 -05:00
else
{
if (Iambic_Key)
tmpKeyerControl = 0 ;
2018-01-29 04:38:48 -05:00
else if (paddle >= cwAdcSTFrom && paddle <= cwAdcSTTo)
2018-01-26 07:47:15 -05:00
tmpKeyerControl = DIT_L ;
else
tmpKeyerControl = 0 ;
}
2018-01-25 09:15:24 -05:00
if (isUpdateKeyState == 1)
2018-01-24 07:41:15 -05:00
keyerControl |= tmpKeyerControl;
return tmpKeyerControl;
*/
2018-01-24 07:41:15 -05:00
}
2018-01-26 07:47:15 -05:00
/*****************************************************************************
// New logic, by RON
// modified by KD8CEC
******************************************************************************/
2018-01-24 07:41:15 -05:00
void cwKeyer(void){
/*
* KC4UPR - IOP update, 2020-05-03
*
* Modifying this for the uBITX IOP. Big picture:
*
* No iambic keyer. It's always "straight key" based on the IOP.
*/
// lastPaddle = 0;
// bool continue_loop = true;
// unsigned tmpKeyControl = 0;
//
// if( Iambic_Key ) {
// while(continue_loop) {
// switch (keyerState) {
// case IDLE:
// tmpKeyControl = update_PaddleLatch(0);
// if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
// tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
// update_PaddleLatch(1);
// keyerState = CHK_DIT;
// }else{
// if (0 < cwTimeout && cwTimeout < millis()){
// cwTimeout = 0;
// stopTx();
// }
// continue_loop = false;
// }
// break;
//
// case CHK_DIT:
// if (keyerControl & DIT_L) {
// keyerControl |= DIT_PROC;
// ktimer = cwSpeed;
// keyerState = KEYED_PREP;
// }else{
// keyerState = CHK_DAH;
// }
// break;
//
// case CHK_DAH:
// if (keyerControl & DAH_L) {
// ktimer = cwSpeed*3;
// keyerState = KEYED_PREP;
// }else{
// keyerState = IDLE;
// }
// break;
//
// case KEYED_PREP:
// //modified KD8CEC
// /*
// ktimer += millis(); // set ktimer to interval end time
// keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
// keyerState = KEYED; // next state
// if (!inTx){
// //DelayTime Option
// delay_background(delayBeforeCWStartTime * 2, 2);
//
// keyDown = 0;
// cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
// startTx(TX_CW, 1);
// }
// */
// if (!inTx){
// //DelayTime Option
// delay_background(delayBeforeCWStartTime * 2, 2);
//
// keyDown = 0;
// cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
// startTx(TX_CW, 1);
// }
// ktimer += millis(); // set ktimer to interval end time
// keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
// keyerState = KEYED; // next state
//
// cwKeydown();
// break;
//
// case KEYED:
// if (millis() > ktimer) { // are we at end of key down ?
// cwKeyUp();
// ktimer = millis() + cwSpeed; // inter-element time
// keyerState = INTER_ELEMENT; // next state
// }else if (keyerControl & IAMBICB) {
// update_PaddleLatch(1); // early paddle latch in Iambic B mode
// }
// break;
//
// case INTER_ELEMENT:
// // Insert time between dits/dahs
// update_PaddleLatch(1); // latch paddle state
// if (millis() > ktimer) { // are we at end of inter-space ?
// if (keyerControl & DIT_PROC) { // was it a dit or dah ?
// keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
// keyerState = CHK_DAH; // dit done, check for dah
// }else{
// keyerControl &= ~(DAH_L); // clear dah latch
// keyerState = IDLE; // go idle
// }
// }
// break;
// }
//
// Check_Cat(2);
// } //end of while
// }
// else{
while(1){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
if (!inTx){
2018-02-09 23:29:30 -05:00
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
cwKeydown();
while ( update_PaddleLatch(0) == DIT_L )
delay_background(1, 3);
cwKeyUp();
}
else{
2018-01-24 07:41:15 -05:00
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
2018-01-24 07:41:15 -05:00
stopTx();
}
//if (!cwTimeout) //removed by KD8CEC
// return;
// got back to the beginning of the loop, if no further activity happens on straight key
// we will time out, and return out of this routine
//delay(5);
//delay_background(5, 3); //removed by KD8CEC
//continue; //removed by KD8CEC
return; //Tx stop control by Main Loop
2018-01-24 07:41:15 -05:00
}
Check_Cat(2);
} //end of while
// } //end of elese
2018-01-24 07:41:15 -05:00
}
//=======================================================================================
//Before logic
//by Farhan and modified by KD8CEC
//======================================================================================
/**
* The keyer handles the straight key as well as the iambic key
* This module keeps looping until the user stops sending cw
* if the cwTimeout is set to 0, then it means, we have to exit the keyer loop
* Each time the key is hit the cwTimeout is pushed to a time in the future by cwKeyDown()
*/
2018-01-24 07:41:15 -05:00
/*
void cwKeyer(){
byte paddle;
lastPaddle = 0;
while(1){
paddle = getPaddle();
// do nothing if the paddle has not been touched, unless
// we are in the cw mode and we have timed out
if (!paddle){
2018-01-09 21:34:15 -05:00
//modifed by KD8CEC for auto CW Send
if (isCWAutoMode > 1) //if while auto cw sending, dont stop tx by paddle position
return;
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
stopTx();
}
if (!cwTimeout)
return;
2018-01-22 05:46:50 -05:00
Check_Cat(2); //for uBITX on Raspberry pi, when straight keying, disconnect / test complete
continue;
}
2018-01-09 21:34:15 -05:00
//if while auto cw send, stop auto cw
//but isAutoCWHold for Manual Keying with cwAutoSend
if (isCWAutoMode > 1 && isAutoCWHold == 0)
isCWAutoMode = 1; //read status
//Remoark Debug code / Serial Use by CAT Protocol
//Serial.print("paddle:");Serial.println(paddle);
// if we are here, it is only because the key or the paddle is pressed
if (!inTx){
keyDown = 0;
2018-01-09 21:34:15 -05:00
//Modified by KD8CEC, for CW Delay Time save to eeprom
//cwTimeout = millis() + CW_TIMEOUT;
cwTimeout = millis() + cwDelayTime * 10;
startTx(TX_CW, 0); //disable updateDisplay Command for reduce latency time
updateDisplay();
2018-01-09 21:34:15 -05:00
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
}
// star the transmission)
// we store the transmitted character in the lastPaddle
cwKeydown();
if (paddle == PADDLE_DOT){
2018-01-09 21:34:15 -05:00
//delay(cwSpeed);
delay_background(cwSpeed, 3);
lastPaddle = PADDLE_DOT;
}
else if (paddle == PADDLE_DASH){
2018-01-09 21:34:15 -05:00
//delay(cwSpeed * 3);
delay_background(cwSpeed * 3, 3);
lastPaddle = PADDLE_DASH;
}
else if (paddle == PADDLE_BOTH){ //both paddles down
//depending upon what was sent last, send the other
if (lastPaddle == PADDLE_DOT) {
2018-01-09 21:34:15 -05:00
//delay(cwSpeed * 3);
delay_background(cwSpeed * 3, 3);
lastPaddle = PADDLE_DASH;
}else{
2018-01-09 21:34:15 -05:00
//delay(cwSpeed);
delay_background(cwSpeed, 3);
lastPaddle = PADDLE_DOT;
}
}
else if (paddle == PADDLE_STRAIGHT){
2018-01-09 21:34:15 -05:00
while (getPaddle() == PADDLE_STRAIGHT) {
delay(1);
2018-01-09 21:34:15 -05:00
Check_Cat(2);
}
lastPaddle = PADDLE_STRAIGHT;
}
cwKeyUp();
//introduce a dot long gap between characters if the keyer was used
if (lastPaddle != PADDLE_STRAIGHT)
delay(cwSpeed);
}
}
2018-01-24 07:41:15 -05:00
*/