test for new cw keying logic

This commit is contained in:
phdlee 2018-01-24 21:41:15 +09:00
parent bbb23bf817
commit c7be3dcd39

View File

@ -1,5 +1,7 @@
/**
* CW Keyer
* CW Key logic change with ron's code (ubitx_keyer.cpp) <=== **********************************
* The file you are working on. The code only applies and is still in testing. <==== ***********
*
* The CW keyer handles either a straight key or an iambic / paddle key.
* They all use just one analog input line. This is how it works.
@ -34,7 +36,6 @@
//when both are simultaneously pressed
char lastPaddle = 0;
//reads the analog keyer pin and reports the paddle
byte getPaddle(){
int paddle = analogRead(ANALOG_KEYER);
@ -81,13 +82,218 @@ void cwKeyUp(){
cwTimeout = millis() + cwDelayTime * 10;
}
/*****************************************************************************
// New logic, by RON
// modified by KD8CEC
******************************************************************************/
#define DIT_L 0x01 // DIT latch
#define DAH_L 0x02 // DAH latch
#define DIT_PROC 0x04 // DIT is being processed
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
static long ktimer;
bool Iambic_Key = true;
unsigned char keyerControl = IAMBICB;
unsigned char keyerState = IDLE;
//Below is a test to reduce the keying error.
/*
char update_PaddleLatch(byte isUpdateKeyState) {
int paddle = analogRead(ANALOG_KEYER);
unsigned char tmpKeyerControl;
if (paddle > 800) // above 4v is up
tmpKeyerControl = 0;
//else if (paddle > 600) // 4-3v is DASH
else if (paddle > 693 && paddle < 700) // 4-3v is DASH
tmpKeyerControl |= DAH_L;
//else if (paddle > 300) //1-2v is DOT
else if (paddle > 323 && paddle < 328) //1-2v is DOT
tmpKeyerControl |= DIT_L;
//else if (paddle > 50)
else if (paddle > 280 && paddle < 290)
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
else
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
if (isUpdateKeyState == 1) {
keyerControl |= tmpKeyerControl;
}
byte buff[17];
sprintf(buff, "Key : %d", paddle);
if (tmpKeyerControl > 0)
printLine2(buff);
return tmpKeyerControl;
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
}
*/
//create by KD8CEC for compatible with new CW Logic
char update_PaddleLatch(byte isUpdateKeyState) {
int paddle = analogRead(ANALOG_KEYER);
unsigned char tmpKeyerControl;
if (paddle > 800) // above 4v is up
tmpKeyerControl = 0;
else if (paddle > 600) // 4-3v is DASH
tmpKeyerControl |= DAH_L;
else if (paddle > 300) //1-2v is DOT
tmpKeyerControl |= DIT_L;
else if (paddle > 50)
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
else
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
if (isUpdateKeyState == 1) {
keyerControl |= tmpKeyerControl;
}
return tmpKeyerControl;
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
}
void cwKeyer(void){
byte paddle;
lastPaddle = 0;
int dot,dash;
bool continue_loop = true;
unsigned tmpKeyControl = 0;
if( Iambic_Key ){
while(continue_loop){
switch (keyerState) {
case IDLE:
tmpKeyControl = update_PaddleLatch(0);
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
//DIT or DASH or current state DIT & DASH
//(analogRead(ANALOG_DOT) < 600) || //DIT
//(analogRead(ANALOG_DASH) < 600) || //DIT
// (keyerControl & 0x03)) {
update_PaddleLatch(1);
keyerState = CHK_DIT;
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
stopTx();
}
continue_loop = false;
}
break;
case CHK_DIT:
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = cwSpeed;
keyerState = KEYED_PREP;
}else{
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
ktimer = cwSpeed*3;
keyerState = KEYED_PREP;
}else{
keyerState = IDLE;
}
break;
case KEYED_PREP:
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 0);
}
cwKeydown();
break;
case KEYED:
if (millis() > ktimer) { // are we at end of key down ?
cwKeyUp();
ktimer = millis() + cwSpeed; // inter-element time
keyerState = INTER_ELEMENT; // next state
}else if (keyerControl & IAMBICB) {
update_PaddleLatch(1); // early paddle latch in Iambic B mode
}
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(1); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
}else{
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
}
break;
}
} //end of while
}else{
while(1){
//if (analogRead(ANALOG_DOT) < 600){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 0);
}
// start the transmission)
cwKeydown();
//while ( analogRead(ANALOG_DOT) < 600 ) delay(1);
while ( update_PaddleLatch(0) == DIT_L ) delay(1);
cwKeyUp();
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
stopTx();
}
if (!cwTimeout)
return;
// got back to the beginning of the loop, if no further activity happens on straight key
// we will time out, and return out of this routine
delay(5);
continue;
}
} //end of else
}
}
//=======================================================================================
//Before logic
//by Farhan and modified by KD8CEC
//======================================================================================
/**
* The keyer handles the straight key as well as the iambic key
* This module keeps looping until the user stops sending cw
* if the cwTimeout is set to 0, then it means, we have to exit the keyer loop
* Each time the key is hit the cwTimeout is pushed to a time in the future by cwKeyDown()
*/
/*
void cwKeyer(){
byte paddle;
lastPaddle = 0;
@ -111,18 +317,6 @@ void cwKeyer(){
if (!cwTimeout)
return;
//if a paddle was used (not a straight key) we should extend the space to be a full dash
//by adding two more dots long space (one has already been added at the end of the dot or dash)
/*
if (cwTimeout > 0 && lastPaddle != PADDLE_STRAIGHT)
delay_background(cwSpeed * 2, 3);
//delay(cwSpeed * 2);
// got back to the begining of the loop, if no further activity happens on the paddle or the straight key
// we will time out, and return out of this routine
delay(5);
*/
Check_Cat(2); //for uBITX on Raspberry pi, when straight keying, disconnect / test complete
continue;
}
@ -186,3 +380,6 @@ void cwKeyer(){
delay(cwSpeed);
}
}
*/