387 lines
12 KiB
C++
387 lines
12 KiB
C++
/**
|
|
* CW Keyer
|
|
* CW Key logic change with ron's code (ubitx_keyer.cpp) <=== **********************************
|
|
* The file you are working on. The code only applies and is still in testing. <==== ***********
|
|
*
|
|
* The CW keyer handles either a straight key or an iambic / paddle key.
|
|
* They all use just one analog input line. This is how it works.
|
|
* The analog line has the internal pull-up resistor enabled.
|
|
* When a straight key is connected, it shorts the pull-up resistor, analog input is 0 volts
|
|
* When a paddle is connected, the dot and the dash are connected to the analog pin through
|
|
* a 10K and a 2.2K resistors. These produce a 4v and a 2v input to the analog pins.
|
|
* So, the readings are as follows :
|
|
* 0v - straight key
|
|
* 1-2.5 v - paddle dot
|
|
* 2.5 to 4.5 v - paddle dash
|
|
* 2.0 to 0.5 v - dot and dash pressed
|
|
*
|
|
* The keyer is written to transparently handle all these cases
|
|
*
|
|
* Generating CW
|
|
* The CW is cleanly generated by unbalancing the front-end mixer
|
|
* and putting the local oscillator directly at the CW transmit frequency.
|
|
* The sidetone, generated by the Arduino is injected into the volume control
|
|
*/
|
|
|
|
|
|
// in milliseconds, this is the parameter that determines how long the tx will hold between cw key downs
|
|
//#define CW_TIMEOUT (600l) //Change to CW Delaytime for value save to eeprom
|
|
#define PADDLE_DOT 1
|
|
#define PADDLE_DASH 2
|
|
#define PADDLE_BOTH 3
|
|
#define PADDLE_STRAIGHT 4
|
|
|
|
//we store the last padde's character
|
|
//to alternatively send dots and dashes
|
|
//when both are simultaneously pressed
|
|
char lastPaddle = 0;
|
|
|
|
//reads the analog keyer pin and reports the paddle
|
|
byte getPaddle(){
|
|
int paddle = analogRead(ANALOG_KEYER);
|
|
|
|
if (paddle > 800) // above 4v is up
|
|
return 0;
|
|
|
|
if (paddle > 600) // 4-3v is dot
|
|
return PADDLE_DASH;
|
|
else if (paddle > 300) //1-2v is dash
|
|
return PADDLE_DOT;
|
|
else if (paddle > 50)
|
|
return PADDLE_BOTH; //both are between 1 and 2v
|
|
else
|
|
return PADDLE_STRAIGHT; //less than 1v is the straight key
|
|
}
|
|
|
|
/**
|
|
* Starts transmitting the carrier with the sidetone
|
|
* It assumes that we have called cwTxStart and not called cwTxStop
|
|
* each time it is called, the cwTimeOut is pushed further into the future
|
|
*/
|
|
void cwKeydown(){
|
|
keyDown = 1; //tracks the CW_KEY
|
|
tone(CW_TONE, (int)sideTone);
|
|
digitalWrite(CW_KEY, 1);
|
|
|
|
//Modified by KD8CEC, for CW Delay Time save to eeprom
|
|
//cwTimeout = millis() + CW_TIMEOUT;
|
|
cwTimeout = millis() + cwDelayTime * 10;
|
|
}
|
|
|
|
/**
|
|
* Stops the cw carrier transmission along with the sidetone
|
|
* Pushes the cwTimeout further into the future
|
|
*/
|
|
void cwKeyUp(){
|
|
keyDown = 0; //tracks the CW_KEY
|
|
noTone(CW_TONE);
|
|
digitalWrite(CW_KEY, 0);
|
|
|
|
//Modified by KD8CEC, for CW Delay Time save to eeprom
|
|
//cwTimeout = millis() + CW_TIMEOUT;
|
|
cwTimeout = millis() + cwDelayTime * 10;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
// New logic, by RON
|
|
// modified by KD8CEC
|
|
******************************************************************************/
|
|
#define DIT_L 0x01 // DIT latch
|
|
#define DAH_L 0x02 // DAH latch
|
|
#define DIT_PROC 0x04 // DIT is being processed
|
|
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
|
|
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
|
|
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
|
|
|
|
static long ktimer;
|
|
|
|
bool Iambic_Key = false;
|
|
unsigned char keyerControl = IAMBICB;
|
|
unsigned char keyerState = IDLE;
|
|
|
|
//Below is a test to reduce the keying error.
|
|
/*
|
|
char update_PaddleLatch(byte isUpdateKeyState) {
|
|
int paddle = analogRead(ANALOG_KEYER);
|
|
unsigned char tmpKeyerControl;
|
|
|
|
if (paddle > 800) // above 4v is up
|
|
tmpKeyerControl = 0;
|
|
//else if (paddle > 600) // 4-3v is DASH
|
|
else if (paddle > 693 && paddle < 700) // 4-3v is DASH
|
|
tmpKeyerControl |= DAH_L;
|
|
//else if (paddle > 300) //1-2v is DOT
|
|
else if (paddle > 323 && paddle < 328) //1-2v is DOT
|
|
tmpKeyerControl |= DIT_L;
|
|
//else if (paddle > 50)
|
|
else if (paddle > 280 && paddle < 290)
|
|
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
|
|
else
|
|
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
|
|
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
|
|
|
|
if (isUpdateKeyState == 1) {
|
|
keyerControl |= tmpKeyerControl;
|
|
}
|
|
|
|
byte buff[17];
|
|
sprintf(buff, "Key : %d", paddle);
|
|
if (tmpKeyerControl > 0)
|
|
printLine2(buff);
|
|
|
|
return tmpKeyerControl;
|
|
|
|
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
|
|
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
|
|
}
|
|
*/
|
|
|
|
//create by KD8CEC for compatible with new CW Logic
|
|
char update_PaddleLatch(byte isUpdateKeyState) {
|
|
int paddle = analogRead(ANALOG_KEYER);
|
|
unsigned char tmpKeyerControl;
|
|
|
|
if (paddle > 800) // above 4v is up
|
|
tmpKeyerControl = 0;
|
|
else if (paddle > 600) // 4-3v is DASH
|
|
tmpKeyerControl |= DAH_L;
|
|
else if (paddle > 300) //1-2v is DOT
|
|
tmpKeyerControl |= DIT_L;
|
|
else if (paddle > 50)
|
|
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
|
|
else
|
|
{ //STRAIGHT KEY in original code
|
|
if (Iambic_Key)
|
|
tmpKeyerControl = 0 ;
|
|
else
|
|
tmpKeyerControl = DIT_L ;
|
|
}
|
|
|
|
if (isUpdateKeyState == 1)
|
|
keyerControl |= tmpKeyerControl;
|
|
|
|
return tmpKeyerControl;
|
|
}
|
|
|
|
void cwKeyer(void){
|
|
byte paddle;
|
|
lastPaddle = 0;
|
|
int dot,dash;
|
|
bool continue_loop = true;
|
|
unsigned tmpKeyControl = 0;
|
|
if( Iambic_Key ){
|
|
|
|
while(continue_loop){
|
|
switch (keyerState) {
|
|
case IDLE:
|
|
tmpKeyControl = update_PaddleLatch(0);
|
|
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
|
|
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
|
|
//DIT or DASH or current state DIT & DASH
|
|
//(analogRead(ANALOG_DOT) < 600) || //DIT
|
|
//(analogRead(ANALOG_DASH) < 600) || //DIT
|
|
// (keyerControl & 0x03)) {
|
|
update_PaddleLatch(1);
|
|
keyerState = CHK_DIT;
|
|
}else{
|
|
if (0 < cwTimeout && cwTimeout < millis()){
|
|
cwTimeout = 0;
|
|
stopTx();
|
|
}
|
|
continue_loop = false;
|
|
}
|
|
break;
|
|
|
|
case CHK_DIT:
|
|
if (keyerControl & DIT_L) {
|
|
keyerControl |= DIT_PROC;
|
|
ktimer = cwSpeed;
|
|
keyerState = KEYED_PREP;
|
|
}else{
|
|
keyerState = CHK_DAH;
|
|
}
|
|
break;
|
|
|
|
case CHK_DAH:
|
|
if (keyerControl & DAH_L) {
|
|
ktimer = cwSpeed*3;
|
|
keyerState = KEYED_PREP;
|
|
}else{
|
|
keyerState = IDLE;
|
|
}
|
|
break;
|
|
|
|
case KEYED_PREP:
|
|
ktimer += millis(); // set ktimer to interval end time
|
|
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
|
|
keyerState = KEYED; // next state
|
|
if (!inTx){
|
|
keyDown = 0;
|
|
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
|
startTx(TX_CW, 1);
|
|
}
|
|
cwKeydown();
|
|
break;
|
|
|
|
case KEYED:
|
|
if (millis() > ktimer) { // are we at end of key down ?
|
|
cwKeyUp();
|
|
ktimer = millis() + cwSpeed; // inter-element time
|
|
keyerState = INTER_ELEMENT; // next state
|
|
}else if (keyerControl & IAMBICB) {
|
|
update_PaddleLatch(1); // early paddle latch in Iambic B mode
|
|
}
|
|
break;
|
|
|
|
case INTER_ELEMENT:
|
|
// Insert time between dits/dahs
|
|
update_PaddleLatch(1); // latch paddle state
|
|
if (millis() > ktimer) { // are we at end of inter-space ?
|
|
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
|
|
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
|
|
keyerState = CHK_DAH; // dit done, check for dah
|
|
}else{
|
|
keyerControl &= ~(DAH_L); // clear dah latch
|
|
keyerState = IDLE; // go idle
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
} //end of while
|
|
|
|
}else{
|
|
while(1){
|
|
//if (analogRead(ANALOG_DOT) < 600){
|
|
if (update_PaddleLatch(0) == DIT_L) {
|
|
// if we are here, it is only because the key is pressed
|
|
if (!inTx){
|
|
keyDown = 0;
|
|
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
|
startTx(TX_CW, 1);
|
|
}
|
|
// start the transmission)
|
|
cwKeydown();
|
|
//while ( analogRead(ANALOG_DOT) < 600 ) delay(1);
|
|
while ( update_PaddleLatch(0) == DIT_L ) delay(1);
|
|
cwKeyUp();
|
|
}else{
|
|
if (0 < cwTimeout && cwTimeout < millis()){
|
|
cwTimeout = 0;
|
|
keyDown = 0;
|
|
stopTx();
|
|
}
|
|
if (!cwTimeout)
|
|
return;
|
|
// got back to the beginning of the loop, if no further activity happens on straight key
|
|
// we will time out, and return out of this routine
|
|
delay(5);
|
|
continue;
|
|
}
|
|
} //end of else
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//=======================================================================================
|
|
//Before logic
|
|
//by Farhan and modified by KD8CEC
|
|
//======================================================================================
|
|
|
|
/**
|
|
* The keyer handles the straight key as well as the iambic key
|
|
* This module keeps looping until the user stops sending cw
|
|
* if the cwTimeout is set to 0, then it means, we have to exit the keyer loop
|
|
* Each time the key is hit the cwTimeout is pushed to a time in the future by cwKeyDown()
|
|
*/
|
|
/*
|
|
void cwKeyer(){
|
|
byte paddle;
|
|
lastPaddle = 0;
|
|
|
|
while(1){
|
|
paddle = getPaddle();
|
|
|
|
// do nothing if the paddle has not been touched, unless
|
|
// we are in the cw mode and we have timed out
|
|
if (!paddle){
|
|
//modifed by KD8CEC for auto CW Send
|
|
if (isCWAutoMode > 1) //if while auto cw sending, dont stop tx by paddle position
|
|
return;
|
|
|
|
if (0 < cwTimeout && cwTimeout < millis()){
|
|
cwTimeout = 0;
|
|
keyDown = 0;
|
|
stopTx();
|
|
}
|
|
|
|
if (!cwTimeout)
|
|
return;
|
|
|
|
Check_Cat(2); //for uBITX on Raspberry pi, when straight keying, disconnect / test complete
|
|
continue;
|
|
}
|
|
|
|
//if while auto cw send, stop auto cw
|
|
//but isAutoCWHold for Manual Keying with cwAutoSend
|
|
if (isCWAutoMode > 1 && isAutoCWHold == 0)
|
|
isCWAutoMode = 1; //read status
|
|
|
|
//Remoark Debug code / Serial Use by CAT Protocol
|
|
//Serial.print("paddle:");Serial.println(paddle);
|
|
// if we are here, it is only because the key or the paddle is pressed
|
|
if (!inTx){
|
|
keyDown = 0;
|
|
//Modified by KD8CEC, for CW Delay Time save to eeprom
|
|
//cwTimeout = millis() + CW_TIMEOUT;
|
|
cwTimeout = millis() + cwDelayTime * 10;
|
|
|
|
startTx(TX_CW, 0); //disable updateDisplay Command for reduce latency time
|
|
updateDisplay();
|
|
|
|
//DelayTime Option
|
|
delay_background(delayBeforeCWStartTime * 2, 2);
|
|
}
|
|
|
|
// star the transmission)
|
|
// we store the transmitted character in the lastPaddle
|
|
cwKeydown();
|
|
if (paddle == PADDLE_DOT){
|
|
//delay(cwSpeed);
|
|
delay_background(cwSpeed, 3);
|
|
lastPaddle = PADDLE_DOT;
|
|
}
|
|
else if (paddle == PADDLE_DASH){
|
|
//delay(cwSpeed * 3);
|
|
delay_background(cwSpeed * 3, 3);
|
|
lastPaddle = PADDLE_DASH;
|
|
}
|
|
else if (paddle == PADDLE_BOTH){ //both paddles down
|
|
//depending upon what was sent last, send the other
|
|
if (lastPaddle == PADDLE_DOT) {
|
|
//delay(cwSpeed * 3);
|
|
delay_background(cwSpeed * 3, 3);
|
|
lastPaddle = PADDLE_DASH;
|
|
}else{
|
|
//delay(cwSpeed);
|
|
delay_background(cwSpeed, 3);
|
|
lastPaddle = PADDLE_DOT;
|
|
}
|
|
}
|
|
else if (paddle == PADDLE_STRAIGHT){
|
|
while (getPaddle() == PADDLE_STRAIGHT) {
|
|
delay(1);
|
|
Check_Cat(2);
|
|
}
|
|
lastPaddle = PADDLE_STRAIGHT;
|
|
}
|
|
cwKeyUp();
|
|
//introduce a dot long gap between characters if the keyer was used
|
|
if (lastPaddle != PADDLE_STRAIGHT)
|
|
delay(cwSpeed);
|
|
}
|
|
}
|
|
*/
|
|
|
|
|