Compare commits
13 Commits
v0.28
...
version0.2
Author | SHA1 | Date | |
---|---|---|---|
|
b153a305d6 | ||
|
c7be3dcd39 | ||
|
bbb23bf817 | ||
|
4d61cf4de9 | ||
|
e61e45d3dd | ||
|
a1f941f965 | ||
|
d1e72b3bd5 | ||
|
032e7f919f | ||
|
b6bc264332 | ||
|
b1cc5eb98a | ||
|
2fa8247501 | ||
|
2fe1662d67 | ||
|
209cd3a49c |
22
README.md
22
README.md
@@ -1,7 +1,21 @@
|
||||
#IMPORTANT INFORMATION
|
||||
----------------------------------------------------------------------------
|
||||
- Beta 0.26 and Beta 0.261, Beta 0.262, Beta 0.27 is complete test
|
||||
- You can download and use it.
|
||||
-Working on version 0.29 now. Download the source from the release section rather than the master branch version.
|
||||
Master version is working now.
|
||||
|
||||
- Beta 0.26 and Beta 0.261, Beta 0.262,0.27 is complete test, 0.28 is tested.
|
||||
- You can download and use it (Release section).
|
||||
|
||||
# Current work list (for Version 0.29)
|
||||
1 Testing CAT Control with Software using hamlib on Linux
|
||||
2 BFO setting based on current value - complete
|
||||
3 Select Tune Step - Testing
|
||||
4 Change Tune control type, Do not keep the original source - Complete
|
||||
- Coded differently after clearing the original source
|
||||
- Prevent malfunction by applying threshold
|
||||
5 stabilize and remove many warning messages - by Pullrequest and merge
|
||||
6 Study on improvement method for cw keying - need idea
|
||||
- set ADC Range value
|
||||
|
||||
#NOTICE
|
||||
----------------------------------------------------------------------------
|
||||
@@ -46,6 +60,10 @@ Prepared or finished tasks for the next version
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
## REVISION RECORD
|
||||
0.28
|
||||
- Fixed CAT problem with hamlib on Linux
|
||||
- restore Protocol autorecovery logic
|
||||
|
||||
0.27
|
||||
(First alpha test version, This will be renamed to the major version 1.0)
|
||||
- Dual VFO Dial Lock (vfoA Dial lock)
|
||||
|
@@ -398,7 +398,7 @@ void ReadEEPRom_FT817(byte fromType)
|
||||
|
||||
void WriteEEPRom_FT817(byte fromType)
|
||||
{
|
||||
byte temp0 = CAT_BUFF[0];
|
||||
//byte temp0 = CAT_BUFF[0];
|
||||
byte temp1 = CAT_BUFF[1];
|
||||
|
||||
CAT_BUFF[0] = 0;
|
||||
|
@@ -208,10 +208,14 @@ void sendCWChar(char cwKeyChar)
|
||||
charLength = ((tmpChar >> 6) & 0x03) + 3;
|
||||
|
||||
for (j = 0; j < charLength; j++)
|
||||
sendBuff[j] = (tmpChar << j + 2) & 0x80;
|
||||
sendBuff[j] = (tmpChar << (j + 2)) & 0x80;
|
||||
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
charLength = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -257,7 +261,7 @@ unsigned long scrollDispayTime = 0;
|
||||
#define scrollSpeed 500
|
||||
byte displayScrolStep = 0;
|
||||
|
||||
int controlAutoCW(){
|
||||
void controlAutoCW(){
|
||||
int knob = 0;
|
||||
byte i;
|
||||
|
||||
|
@@ -152,6 +152,7 @@ int count = 0; //to generally count ticks, loops, etc
|
||||
#define TX_TUNE_TYPE 261 //
|
||||
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
|
||||
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
|
||||
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5)
|
||||
|
||||
//Check Firmware type and version
|
||||
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
|
||||
@@ -211,7 +212,7 @@ unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier;
|
||||
unsigned long vfoA_eeprom, vfoB_eeprom; //for protect eeprom life
|
||||
unsigned long frequency, ritRxFrequency, ritTxFrequency; //frequency is the current frequency on the dial
|
||||
|
||||
int cwSpeed = 100; //this is actuall the dot period in milliseconds
|
||||
unsigned int cwSpeed = 100; //this is actuall the dot period in milliseconds
|
||||
extern int32_t calibration;
|
||||
|
||||
//for store the mode in eeprom
|
||||
@@ -235,7 +236,8 @@ byte sideToneSub = 0;
|
||||
//DialLock
|
||||
byte isDialLock = 0; //000000[0]vfoB [0]vfoA 0Bit : A, 1Bit : B
|
||||
byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop]
|
||||
|
||||
byte arTuneStep[5];
|
||||
byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user
|
||||
|
||||
//Variables for auto cw mode
|
||||
byte isCWAutoMode = 0; //0 : none, 1 : CW_AutoMode_Menu_Selection, 2 : CW_AutoMode Sending
|
||||
@@ -320,8 +322,8 @@ void setNextHamBandFreq(unsigned long f, char moveDirection)
|
||||
loadMode = (byte)(resultFreq >> 30);
|
||||
resultFreq = resultFreq & 0x3FFFFFFF;
|
||||
|
||||
if ((resultFreq / 1000) < hamBandRange[findedIndex][0] || (resultFreq / 1000) > hamBandRange[findedIndex][1])
|
||||
resultFreq = (unsigned long)(hamBandRange[findedIndex][0]) * 1000;
|
||||
if ((resultFreq / 1000) < hamBandRange[(unsigned char)findedIndex][0] || (resultFreq / 1000) > hamBandRange[(unsigned char)findedIndex][1])
|
||||
resultFreq = (unsigned long)(hamBandRange[(unsigned char)findedIndex][0]) * 1000;
|
||||
|
||||
setFrequency(resultFreq);
|
||||
byteWithFreqToMode(loadMode);
|
||||
@@ -422,10 +424,7 @@ void setTXFilters(unsigned long freq){
|
||||
*/
|
||||
|
||||
void setFrequency(unsigned long f){
|
||||
uint64_t osc_f;
|
||||
|
||||
//1 digits discarded
|
||||
f = (f / 50) * 50;
|
||||
f = (f / arTuneStep[tuneStepIndex -1]) * arTuneStep[tuneStepIndex -1];
|
||||
|
||||
setTXFilters(f);
|
||||
|
||||
@@ -448,8 +447,6 @@ void setFrequency(unsigned long f){
|
||||
*/
|
||||
|
||||
void startTx(byte txMode, byte isDisplayUpdate){
|
||||
unsigned long tx_freq = 0;
|
||||
|
||||
//Check Hamband only TX //Not found Hamband index by now frequency
|
||||
if (tuneTXType >= 100 && getIndexHambanBbyFreq(ritOn ? ritTxFrequency : frequency) == -1) {
|
||||
//no message
|
||||
@@ -545,8 +542,6 @@ void checkPTT(){
|
||||
}
|
||||
|
||||
void checkButton(){
|
||||
int i, t1, t2, knob, new_knob;
|
||||
|
||||
//only if the button is pressed
|
||||
if (!btnDown())
|
||||
return;
|
||||
@@ -565,17 +560,19 @@ void checkButton(){
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* The tuning jumps by 50 Hz on each step when you tune slowly
|
||||
* As you spin the encoder faster, the jump size also increases
|
||||
* This way, you can quickly move to another band by just spinning the
|
||||
* tuning knob
|
||||
*/
|
||||
|
||||
/************************************
|
||||
Replace function by KD8CEC
|
||||
prevent error controls
|
||||
applied Threshold for reduct errors, dial Lock, dynamic Step
|
||||
*************************************/
|
||||
byte threshold = 2; //noe action for count
|
||||
unsigned long lastEncInputtime = 0;
|
||||
int encodedSumValue = 0;
|
||||
#define encodeTimeOut 1000
|
||||
void doTuning(){
|
||||
int s = 0;
|
||||
unsigned long prev_freq;
|
||||
int incdecValue = 0;
|
||||
long incdecValue = 0;
|
||||
|
||||
if ((vfoActive == VFO_A && ((isDialLock & 0x01) == 0x01)) ||
|
||||
(vfoActive == VFO_B && ((isDialLock & 0x02) == 0x02)))
|
||||
@@ -584,36 +581,28 @@ void doTuning(){
|
||||
if (isCWAutoMode == 0 || cwAutoDialType == 1)
|
||||
s = enc_read();
|
||||
|
||||
if (s){
|
||||
//if time is exceeded, it is recognized as an error,
|
||||
//ignore exists values, because of errors
|
||||
if (s == 0) {
|
||||
if (encodedSumValue != 0 && (millis() - encodeTimeOut) > lastEncInputtime)
|
||||
encodedSumValue = 0;
|
||||
return;
|
||||
}
|
||||
lastEncInputtime = millis();
|
||||
|
||||
//for check moving direction
|
||||
encodedSumValue += (s > 0 ? 1 : -1);
|
||||
|
||||
//check threshold
|
||||
if ((encodedSumValue * encodedSumValue) <= (threshold * threshold))
|
||||
return;
|
||||
|
||||
//Valid Action without noise
|
||||
encodedSumValue = 0;
|
||||
|
||||
prev_freq = frequency;
|
||||
|
||||
if (s > 10)
|
||||
incdecValue = 200000l;
|
||||
if (s > 7)
|
||||
incdecValue = 10000l;
|
||||
else if (s > 4)
|
||||
incdecValue = 1000l;
|
||||
else if (s > 2)
|
||||
incdecValue = 500;
|
||||
else if (s > 0)
|
||||
incdecValue = 50l;
|
||||
else if (s > -2)
|
||||
incdecValue = -50l;
|
||||
else if (s > -4)
|
||||
incdecValue = -500l;
|
||||
else if (s > -7)
|
||||
incdecValue = -1000l;
|
||||
else if (s > -9)
|
||||
incdecValue = -10000l;
|
||||
else
|
||||
incdecValue = -200000l;
|
||||
|
||||
if (incdecValue > 0 && frequency + incdecValue > HIGHEST_FREQ_DIAL)
|
||||
frequency = HIGHEST_FREQ_DIAL;
|
||||
else if (incdecValue < 0 && frequency < -incdecValue + LOWEST_FREQ_DIAL) //for compute and compare based integer type.
|
||||
frequency = LOWEST_FREQ_DIAL;
|
||||
else
|
||||
frequency += incdecValue;
|
||||
//incdecValue = tuningStep * s;
|
||||
frequency += (arTuneStep[tuneStepIndex -1] * s);
|
||||
|
||||
if (prev_freq < 10000000l && frequency > 10000000l)
|
||||
isUSB = true;
|
||||
@@ -623,15 +612,12 @@ void doTuning(){
|
||||
|
||||
setFrequency(frequency);
|
||||
updateDisplay();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* RIT only steps back and forth by 100 hz at a time
|
||||
*/
|
||||
void doRIT(){
|
||||
unsigned long newFreq;
|
||||
|
||||
int knob = enc_read();
|
||||
unsigned long old_freq = frequency;
|
||||
|
||||
@@ -738,19 +724,65 @@ void initSettings(){
|
||||
EEPROM.get(HAM_BAND_COUNT, useHamBandCount);
|
||||
EEPROM.get(TX_TUNE_TYPE, tuneTXType);
|
||||
|
||||
|
||||
if ((3 < tuneTXType && tuneTXType < 100) || 103 < tuneTXType || useHamBandCount < 1)
|
||||
tuneTXType = 0;
|
||||
byte findedValidValueCount = 0;
|
||||
|
||||
//Read band Information
|
||||
for (byte i = 0; i < useHamBandCount; i++) {
|
||||
unsigned int tmpReadValue = 0;
|
||||
EEPROM.get(HAM_BAND_RANGE + 4 * i, tmpReadValue);
|
||||
hamBandRange[i][0] = tmpReadValue;
|
||||
|
||||
if (tmpReadValue > 1 && tmpReadValue < 55000)
|
||||
findedValidValueCount++;
|
||||
|
||||
EEPROM.get(HAM_BAND_RANGE + 4 * i + 2, tmpReadValue);
|
||||
hamBandRange[i][1] = tmpReadValue;
|
||||
}
|
||||
|
||||
//Check Value Range and default Set for new users
|
||||
if ((3 < tuneTXType && tuneTXType < 100) || 103 < tuneTXType || useHamBandCount < 1 || findedValidValueCount < 5)
|
||||
{
|
||||
tuneTXType = 2;
|
||||
//if empty band Information, auto insert default region 1 frequency range
|
||||
//This part is made temporary for people who have difficulty setting up, so can remove it when you run out of memory.
|
||||
useHamBandCount = 10;
|
||||
hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000;
|
||||
hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800;
|
||||
hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367;
|
||||
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7200;
|
||||
hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150;
|
||||
hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350;
|
||||
hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168;
|
||||
hamBandRange[7][0] = 21000; hamBandRange[7][1] = 21450;
|
||||
hamBandRange[8][0] = 24890; hamBandRange[8][1] = 24990;
|
||||
hamBandRange[9][0] = 28000; hamBandRange[9][1] = 29700;
|
||||
}
|
||||
|
||||
|
||||
//Read Tuning Step Index, and steps
|
||||
findedValidValueCount = 0;
|
||||
EEPROM.get(TUNING_STEP, tuneStepIndex);
|
||||
for (byte i = 0; i < 5; i++) {
|
||||
arTuneStep[i] = EEPROM.read(TUNING_STEP + i + 1);
|
||||
if (arTuneStep[i] >= 1 && arTuneStep[i] < 251) //Maximum 250 for check valid Value
|
||||
findedValidValueCount++;
|
||||
}
|
||||
|
||||
//Check Value Range and default Set for new users
|
||||
if (findedValidValueCount < 5)
|
||||
{
|
||||
//Default Setting
|
||||
arTuneStep[0] = 10;
|
||||
arTuneStep[1] = 20;
|
||||
arTuneStep[2] = 50;
|
||||
arTuneStep[3] = 100;
|
||||
arTuneStep[4] = 200;
|
||||
}
|
||||
|
||||
if (tuneStepIndex == 0) //New User
|
||||
tuneStepIndex = 3;
|
||||
|
||||
|
||||
if (cwDelayTime < 1 || cwDelayTime > 250)
|
||||
cwDelayTime = 60;
|
||||
|
||||
|
@@ -1,5 +1,7 @@
|
||||
/**
|
||||
* CW Keyer
|
||||
* CW Key logic change with ron's code (ubitx_keyer.cpp) <=== **********************************
|
||||
* The file you are working on. The code only applies and is still in testing. <==== ***********
|
||||
*
|
||||
* The CW keyer handles either a straight key or an iambic / paddle key.
|
||||
* They all use just one analog input line. This is how it works.
|
||||
@@ -34,7 +36,6 @@
|
||||
//when both are simultaneously pressed
|
||||
char lastPaddle = 0;
|
||||
|
||||
|
||||
//reads the analog keyer pin and reports the paddle
|
||||
byte getPaddle(){
|
||||
int paddle = analogRead(ANALOG_KEYER);
|
||||
@@ -81,13 +82,218 @@ void cwKeyUp(){
|
||||
cwTimeout = millis() + cwDelayTime * 10;
|
||||
}
|
||||
|
||||
/*****************************************************************************
|
||||
// New logic, by RON
|
||||
// modified by KD8CEC
|
||||
******************************************************************************/
|
||||
#define DIT_L 0x01 // DIT latch
|
||||
#define DAH_L 0x02 // DAH latch
|
||||
#define DIT_PROC 0x04 // DIT is being processed
|
||||
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
|
||||
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
|
||||
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
|
||||
|
||||
static long ktimer;
|
||||
|
||||
bool Iambic_Key = true;
|
||||
unsigned char keyerControl = IAMBICB;
|
||||
unsigned char keyerState = IDLE;
|
||||
|
||||
//Below is a test to reduce the keying error.
|
||||
/*
|
||||
char update_PaddleLatch(byte isUpdateKeyState) {
|
||||
int paddle = analogRead(ANALOG_KEYER);
|
||||
unsigned char tmpKeyerControl;
|
||||
|
||||
if (paddle > 800) // above 4v is up
|
||||
tmpKeyerControl = 0;
|
||||
//else if (paddle > 600) // 4-3v is DASH
|
||||
else if (paddle > 693 && paddle < 700) // 4-3v is DASH
|
||||
tmpKeyerControl |= DAH_L;
|
||||
//else if (paddle > 300) //1-2v is DOT
|
||||
else if (paddle > 323 && paddle < 328) //1-2v is DOT
|
||||
tmpKeyerControl |= DIT_L;
|
||||
//else if (paddle > 50)
|
||||
else if (paddle > 280 && paddle < 290)
|
||||
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
|
||||
else
|
||||
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
|
||||
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
|
||||
|
||||
if (isUpdateKeyState == 1) {
|
||||
keyerControl |= tmpKeyerControl;
|
||||
}
|
||||
|
||||
byte buff[17];
|
||||
sprintf(buff, "Key : %d", paddle);
|
||||
if (tmpKeyerControl > 0)
|
||||
printLine2(buff);
|
||||
|
||||
return tmpKeyerControl;
|
||||
|
||||
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
|
||||
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
|
||||
}
|
||||
*/
|
||||
|
||||
//create by KD8CEC for compatible with new CW Logic
|
||||
char update_PaddleLatch(byte isUpdateKeyState) {
|
||||
int paddle = analogRead(ANALOG_KEYER);
|
||||
unsigned char tmpKeyerControl;
|
||||
|
||||
if (paddle > 800) // above 4v is up
|
||||
tmpKeyerControl = 0;
|
||||
else if (paddle > 600) // 4-3v is DASH
|
||||
tmpKeyerControl |= DAH_L;
|
||||
else if (paddle > 300) //1-2v is DOT
|
||||
tmpKeyerControl |= DIT_L;
|
||||
else if (paddle > 50)
|
||||
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
|
||||
else
|
||||
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
|
||||
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
|
||||
|
||||
if (isUpdateKeyState == 1) {
|
||||
keyerControl |= tmpKeyerControl;
|
||||
}
|
||||
|
||||
return tmpKeyerControl;
|
||||
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
|
||||
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
|
||||
}
|
||||
|
||||
void cwKeyer(void){
|
||||
byte paddle;
|
||||
lastPaddle = 0;
|
||||
int dot,dash;
|
||||
bool continue_loop = true;
|
||||
unsigned tmpKeyControl = 0;
|
||||
if( Iambic_Key ){
|
||||
|
||||
while(continue_loop){
|
||||
switch (keyerState) {
|
||||
case IDLE:
|
||||
tmpKeyControl = update_PaddleLatch(0);
|
||||
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
|
||||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
|
||||
//DIT or DASH or current state DIT & DASH
|
||||
//(analogRead(ANALOG_DOT) < 600) || //DIT
|
||||
//(analogRead(ANALOG_DASH) < 600) || //DIT
|
||||
// (keyerControl & 0x03)) {
|
||||
update_PaddleLatch(1);
|
||||
keyerState = CHK_DIT;
|
||||
}else{
|
||||
if (0 < cwTimeout && cwTimeout < millis()){
|
||||
cwTimeout = 0;
|
||||
stopTx();
|
||||
}
|
||||
continue_loop = false;
|
||||
}
|
||||
break;
|
||||
|
||||
case CHK_DIT:
|
||||
if (keyerControl & DIT_L) {
|
||||
keyerControl |= DIT_PROC;
|
||||
ktimer = cwSpeed;
|
||||
keyerState = KEYED_PREP;
|
||||
}else{
|
||||
keyerState = CHK_DAH;
|
||||
}
|
||||
break;
|
||||
|
||||
case CHK_DAH:
|
||||
if (keyerControl & DAH_L) {
|
||||
ktimer = cwSpeed*3;
|
||||
keyerState = KEYED_PREP;
|
||||
}else{
|
||||
keyerState = IDLE;
|
||||
}
|
||||
break;
|
||||
|
||||
case KEYED_PREP:
|
||||
ktimer += millis(); // set ktimer to interval end time
|
||||
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
|
||||
keyerState = KEYED; // next state
|
||||
if (!inTx){
|
||||
keyDown = 0;
|
||||
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
||||
startTx(TX_CW, 0);
|
||||
}
|
||||
cwKeydown();
|
||||
break;
|
||||
|
||||
case KEYED:
|
||||
if (millis() > ktimer) { // are we at end of key down ?
|
||||
cwKeyUp();
|
||||
ktimer = millis() + cwSpeed; // inter-element time
|
||||
keyerState = INTER_ELEMENT; // next state
|
||||
}else if (keyerControl & IAMBICB) {
|
||||
update_PaddleLatch(1); // early paddle latch in Iambic B mode
|
||||
}
|
||||
break;
|
||||
|
||||
case INTER_ELEMENT:
|
||||
// Insert time between dits/dahs
|
||||
update_PaddleLatch(1); // latch paddle state
|
||||
if (millis() > ktimer) { // are we at end of inter-space ?
|
||||
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
|
||||
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
|
||||
keyerState = CHK_DAH; // dit done, check for dah
|
||||
}else{
|
||||
keyerControl &= ~(DAH_L); // clear dah latch
|
||||
keyerState = IDLE; // go idle
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
} //end of while
|
||||
|
||||
}else{
|
||||
while(1){
|
||||
//if (analogRead(ANALOG_DOT) < 600){
|
||||
if (update_PaddleLatch(0) == DIT_L) {
|
||||
// if we are here, it is only because the key is pressed
|
||||
if (!inTx){
|
||||
keyDown = 0;
|
||||
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
||||
startTx(TX_CW, 0);
|
||||
}
|
||||
// start the transmission)
|
||||
cwKeydown();
|
||||
//while ( analogRead(ANALOG_DOT) < 600 ) delay(1);
|
||||
while ( update_PaddleLatch(0) == DIT_L ) delay(1);
|
||||
cwKeyUp();
|
||||
}else{
|
||||
if (0 < cwTimeout && cwTimeout < millis()){
|
||||
cwTimeout = 0;
|
||||
keyDown = 0;
|
||||
stopTx();
|
||||
}
|
||||
if (!cwTimeout)
|
||||
return;
|
||||
// got back to the beginning of the loop, if no further activity happens on straight key
|
||||
// we will time out, and return out of this routine
|
||||
delay(5);
|
||||
continue;
|
||||
}
|
||||
} //end of else
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//=======================================================================================
|
||||
//Before logic
|
||||
//by Farhan and modified by KD8CEC
|
||||
//======================================================================================
|
||||
|
||||
/**
|
||||
* The keyer handles the straight key as well as the iambic key
|
||||
* This module keeps looping until the user stops sending cw
|
||||
* if the cwTimeout is set to 0, then it means, we have to exit the keyer loop
|
||||
* Each time the key is hit the cwTimeout is pushed to a time in the future by cwKeyDown()
|
||||
*/
|
||||
|
||||
/*
|
||||
void cwKeyer(){
|
||||
byte paddle;
|
||||
lastPaddle = 0;
|
||||
@@ -111,17 +317,7 @@ void cwKeyer(){
|
||||
if (!cwTimeout)
|
||||
return;
|
||||
|
||||
//if a paddle was used (not a straight key) we should extend the space to be a full dash
|
||||
//by adding two more dots long space (one has already been added at the end of the dot or dash)
|
||||
/*
|
||||
if (cwTimeout > 0 && lastPaddle != PADDLE_STRAIGHT)
|
||||
delay_background(cwSpeed * 2, 3);
|
||||
//delay(cwSpeed * 2);
|
||||
|
||||
// got back to the begining of the loop, if no further activity happens on the paddle or the straight key
|
||||
// we will time out, and return out of this routine
|
||||
delay(5);
|
||||
*/
|
||||
Check_Cat(2); //for uBITX on Raspberry pi, when straight keying, disconnect / test complete
|
||||
continue;
|
||||
}
|
||||
|
||||
@@ -184,3 +380,6 @@ void cwKeyer(){
|
||||
delay(cwSpeed);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
|
@@ -13,7 +13,7 @@
|
||||
#define printLineF1(x) (printLineF(1, x))
|
||||
#define printLineF2(x) (printLineF(0, x))
|
||||
|
||||
int menuBand(int btn){
|
||||
void menuBand(int btn){
|
||||
int knob = 0;
|
||||
int stepChangeCount = 0;
|
||||
byte btnPressCount = 0;
|
||||
@@ -36,21 +36,6 @@ int menuBand(int btn){
|
||||
}
|
||||
else {
|
||||
tuneTXType = 2;
|
||||
//if empty band Information, auto insert default region 1 frequency range
|
||||
//This part is made temporary for people who have difficulty setting up, so can remove it when you run out of memory.
|
||||
if (useHamBandCount < 1) {
|
||||
useHamBandCount = 10;
|
||||
hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000;
|
||||
hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800;
|
||||
hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367;
|
||||
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7200;
|
||||
hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150;
|
||||
hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350;
|
||||
hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168;
|
||||
hamBandRange[7][0] = 21000; hamBandRange[7][1] = 21450;
|
||||
hamBandRange[8][0] = 24890; hamBandRange[8][1] = 24990;
|
||||
hamBandRange[9][0] = 28000; hamBandRange[9][1] = 29700;
|
||||
}
|
||||
printLineF2(F("Ham band mode"));
|
||||
}
|
||||
delay_background(1000, 0);
|
||||
@@ -302,7 +287,7 @@ void menuExit(int btn){
|
||||
}
|
||||
}
|
||||
|
||||
int menuCWSpeed(int btn){
|
||||
void menuCWSpeed(int btn){
|
||||
int knob = 0;
|
||||
int wpm;
|
||||
|
||||
@@ -357,7 +342,7 @@ int menuCWSpeed(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
int menuCWAutoKey(int btn){
|
||||
void menuCWAutoKey(int btn){
|
||||
if (!btn){
|
||||
printLineF2(F("CW AutoKey Mode?"));
|
||||
return;
|
||||
@@ -380,7 +365,7 @@ int menuCWAutoKey(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
int menuSetupCwDelay(int btn){
|
||||
void menuSetupCwDelay(int btn){
|
||||
int knob = 0;
|
||||
int tmpCWDelay = cwDelayTime * 10;
|
||||
|
||||
@@ -428,7 +413,7 @@ int menuSetupCwDelay(int btn){
|
||||
menuOn = 0;
|
||||
}
|
||||
|
||||
int menuSetupTXCWInterval(int btn){
|
||||
void menuSetupTXCWInterval(int btn){
|
||||
int knob = 0;
|
||||
int tmpTXCWInterval = delayBeforeCWStartTime * 2;
|
||||
|
||||
@@ -491,10 +476,8 @@ int menuSetupTXCWInterval(int btn){
|
||||
extern int32_t calibration;
|
||||
extern uint32_t si5351bx_vcoa;
|
||||
|
||||
int factoryCalibration(int btn){
|
||||
void factoryCalibration(int btn){
|
||||
int knob = 0;
|
||||
int32_t prev_calibration;
|
||||
|
||||
|
||||
//keep clear of any previous button press
|
||||
while (btnDown())
|
||||
@@ -503,10 +486,9 @@ int factoryCalibration(int btn){
|
||||
|
||||
if (!btn){
|
||||
printLineF2(F("Set Calibration?"));
|
||||
return 0;
|
||||
return;
|
||||
}
|
||||
|
||||
prev_calibration = calibration;
|
||||
calibration = 0;
|
||||
|
||||
isUSB = true;
|
||||
@@ -561,13 +543,13 @@ int factoryCalibration(int btn){
|
||||
delay(100);
|
||||
}
|
||||
|
||||
int menuSetupCalibration(int btn){
|
||||
void menuSetupCalibration(int btn){
|
||||
int knob = 0;
|
||||
int32_t prev_calibration;
|
||||
|
||||
if (!btn){
|
||||
printLineF2(F("Set Calibration?"));
|
||||
return 0;
|
||||
return;
|
||||
}
|
||||
|
||||
printLineF1(F("Set to Zero-beat,"));
|
||||
@@ -656,7 +638,8 @@ void menuSetupCarrier(int btn){
|
||||
printLineF1(F("PTT to confirm. "));
|
||||
delay_background(1000, 0);
|
||||
|
||||
usbCarrier = 11995000l;
|
||||
//usbCarrier = 11995000l; //Remarked by KD8CEC, Suggest from many user, if entry routine factoryrest
|
||||
|
||||
si5351bx_setfreq(0, usbCarrier);
|
||||
printCarrierFreq(usbCarrier);
|
||||
|
||||
@@ -759,22 +742,29 @@ void setDialLock(byte tmpLock, byte fromMode) {
|
||||
printLine2ClearAndUpdate();
|
||||
}
|
||||
|
||||
int btnDownTimeCount;
|
||||
unsigned int btnDownTimeCount;
|
||||
|
||||
#define PRESS_ADJUST_TUNE 1000
|
||||
#define PRESS_LOCK_CONTROL 2000
|
||||
|
||||
void doMenu(){
|
||||
int select=0, i,btnState;
|
||||
char isNeedDisplay = 0;
|
||||
|
||||
//for DialLock On/Off function
|
||||
btnDownTimeCount = 0;
|
||||
|
||||
//wait for the button to be raised up
|
||||
|
||||
//Appened Lines by KD8CEC for Adjust Tune step and Set Dial lock
|
||||
while(btnDown()){
|
||||
delay(50);
|
||||
Check_Cat(0); //To prevent disconnections
|
||||
|
||||
//btnDownTimeCount++;
|
||||
//check long time Down Button -> 3 Second
|
||||
if (btnDownTimeCount++ > (2000 / 50)) {
|
||||
if (btnDownTimeCount++ == (PRESS_ADJUST_TUNE / 50)) { //Set Tune Step
|
||||
printLineF2(F("Set Tune Step?"));
|
||||
}
|
||||
else if (btnDownTimeCount > (PRESS_LOCK_CONTROL / 50)) { //check long time Down Button -> 2.5 Second => Lock
|
||||
if (vfoActive == VFO_A)
|
||||
setDialLock((isDialLock & 0x01) == 0x01 ? 0 : 1, 0); //Reverse Dial lock
|
||||
else
|
||||
@@ -784,6 +774,55 @@ void doMenu(){
|
||||
}
|
||||
delay(50); //debounce
|
||||
|
||||
//ADJUST TUNE STEP
|
||||
if (btnDownTimeCount > (PRESS_ADJUST_TUNE / 50))
|
||||
{
|
||||
printLineF1(F("Press Key to set"));
|
||||
isNeedDisplay = 1; //check to need display for display current value
|
||||
|
||||
while (digitalRead(PTT) == HIGH && !btnDown())
|
||||
{
|
||||
Check_Cat(0); //To prevent disconnections
|
||||
delay(50); //debounce
|
||||
|
||||
if (isNeedDisplay) {
|
||||
strcpy(b, "Tune Step:");
|
||||
itoa(arTuneStep[tuneStepIndex -1], c, 10);
|
||||
strcat(b, c);
|
||||
printLine2(b);
|
||||
isNeedDisplay = 0;
|
||||
}
|
||||
|
||||
i = enc_read();
|
||||
|
||||
if (i != 0) {
|
||||
select += (i > 0 ? 1 : -1);
|
||||
|
||||
if (select * select >= 25) { //Threshold 5 * 5 = 25
|
||||
if (select < 0) {
|
||||
if (tuneStepIndex > 1)
|
||||
tuneStepIndex--;
|
||||
}
|
||||
else {
|
||||
if (tuneStepIndex < 5)
|
||||
tuneStepIndex++;
|
||||
}
|
||||
select = 0;
|
||||
isNeedDisplay = 1;
|
||||
}
|
||||
}
|
||||
} //end of while
|
||||
|
||||
printLineF2(F("Changed Step!"));
|
||||
//SAVE EEPROM
|
||||
EEPROM.put(TUNING_STEP, tuneStepIndex);
|
||||
delay_background(500, 0);
|
||||
printLine2ClearAndUpdate();
|
||||
return;
|
||||
} //set tune step
|
||||
|
||||
//Below codes are origial code with modified by KD8CEC
|
||||
//Select menu
|
||||
menuOn = 2;
|
||||
|
||||
while (menuOn){
|
||||
@@ -796,10 +835,13 @@ void doMenu(){
|
||||
if (!modeCalibrate && select + i < 80)
|
||||
select += i;
|
||||
}
|
||||
if (i < 0 && select - i >= 0)
|
||||
//if (i < 0 && select - i >= 0)
|
||||
if (i < 0 && select - i >= -10)
|
||||
select += i; //caught ya, i is already -ve here, so you add it
|
||||
|
||||
if (select < 10)
|
||||
if (select < -5)
|
||||
menuExit(btnState);
|
||||
else if (select < 10)
|
||||
menuBand(btnState);
|
||||
else if (select < 20)
|
||||
menuRitToggle(btnState);
|
||||
|
@@ -62,7 +62,7 @@ void i2cWriten(uint8_t reg, uint8_t *vals, uint8_t vcnt) { // write array
|
||||
|
||||
|
||||
void si5351bx_init() { // Call once at power-up, start PLLA
|
||||
uint8_t reg; uint32_t msxp1;
|
||||
uint32_t msxp1;
|
||||
Wire.begin();
|
||||
i2cWrite(149, 0); // SpreadSpectrum off
|
||||
i2cWrite(3, si5351bx_clken); // Disable all CLK output drivers
|
||||
|
@@ -115,7 +115,7 @@ void drawMeter(int8_t needle){
|
||||
*/
|
||||
|
||||
// The generic routine to display one line on the LCD
|
||||
void printLine(char linenmbr, char *c) {
|
||||
void printLine(unsigned char linenmbr, const char *c) {
|
||||
if (strcmp(c, printBuff[linenmbr])) { // only refresh the display when there was a change
|
||||
lcd.setCursor(0, linenmbr); // place the cursor at the beginning of the selected line
|
||||
lcd.print(c);
|
||||
@@ -160,11 +160,11 @@ void printLineFromEEPRom(char linenmbr, char lcdColumn, byte eepromStartIndex, b
|
||||
}
|
||||
|
||||
// short cut to print to the first line
|
||||
void printLine1(char *c){
|
||||
void printLine1(const char *c){
|
||||
printLine(1,c);
|
||||
}
|
||||
// short cut to print to the first line
|
||||
void printLine2(char *c){
|
||||
void printLine2(const char *c){
|
||||
printLine(0,c);
|
||||
}
|
||||
|
||||
@@ -312,9 +312,9 @@ int enc_read(void) {
|
||||
byte newState;
|
||||
int enc_speed = 0;
|
||||
|
||||
long stop_by = millis() + 50;
|
||||
unsigned long start_at = millis();
|
||||
|
||||
while (millis() < stop_by) { // check if the previous state was stable
|
||||
while (millis() - start_at < 50) { // check if the previous state was stable
|
||||
newState = enc_state(); // Get current state
|
||||
|
||||
if (newState != enc_prev_state)
|
||||
|
Reference in New Issue
Block a user