Compare commits

...

5 Commits

8 changed files with 416 additions and 396 deletions

View File

@ -31,6 +31,7 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/
/*
#include <avr/pgmspace.h>
//27 + 10 + 18 + 1(SPACE) = //56
@ -398,3 +399,4 @@ void controlAutoCW(){
}
}
*/

View File

@ -23,7 +23,7 @@
// Compile Option
//==============================================================================
//Ubitx Board Version
#define UBITX_BOARD_VERSION 2 //v1 ~ v4 : 4, v5: 5
#define UBITX_BOARD_VERSION 5 //v1 ~ v4 : 4, v5: 5
//Depending on the type of LCD mounted on the uBITX, uncomment one of the options below.
//You must select only one.
@ -39,9 +39,12 @@
#define I2C_LCD_SECOND_ADDRESS_DEFAULT 0x3F //0x27 //only using Dual LCD Mode
//Select betwen Analog S-Meter and DSP (I2C) Meter
#define USE_I2CSMETER
//#define USE_I2CSMETER
#define EXTEND_KEY_GROUP1 //MODE, BAND(-), BAND(+), STEP
// Use alternate keyer?
#define USE_ALTKEYER
//#define EXTEND_KEY_GROUP1 //MODE, BAND(-), BAND(+), STEP
//#define EXTEND_KEY_GROUP2 //Numeric (0~9), Point(.), Enter //Not supported in Version 1.0x
//Custom LPF Filter Mod
@ -219,6 +222,12 @@ extern byte I2C_LCD_SECOND_ADDRESS; //only using Dual LCD Mode
#define ANALOG_SPARE (A7)
#define ANALOG_SMETER (A7) //by KD8CEC
#ifdef USE_ALTKEYER
#define DIGITAL_DOT (11) // can't remember if I need to swap still???
#define DIGITAL_DASH (12)
#define DIGITAL_KEY (A3)
#endif
/**
* The second set of 16 pins on the Raduino's bottom connector are have the three clock outputs and the digital lines to control the rig.
* This assignment is as follows :
@ -332,4 +341,22 @@ extern void DisplayVersionInfo(const char* fwVersionInfo);
//I2C Signal Meter, Version 1.097
extern int GetI2CSmeterValue(int valueType); //ubitx_ui.ino
#define DIT_L 0x01 // DIT latch
#define DAH_L 0x02 // DAH latch
#define DIT_PROC 0x04 // DIT is being processed
#define PDLSWAP 0x08
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
// For compatibility w/ W0EB code
#define MODE_USB 0
#define MODE_LSB 1
#define MODE_CW 2
#define MODE_CWR 3
#define MODE_SWU 4
#define MODE_SWL 5
#define PTT_HNDKEY_DEBOUNCE_CT 2
#endif //end of if header define

View File

@ -9,6 +9,8 @@
#define FIRMWARE_VERSION_INFO F("+v1.200")
#define FIRMWARE_VERSION_NUM 0x04 //1st Complete Project : 1 (Version 1.061), 2st Project : 2, 1.08: 3, 1.09 : 4
extern void Connect_Interrupts(void);
/**
Cat Suppoort uBITX CEC Version
This firmware has been gradually changed based on the original firmware created by Farhan, Jack, Jerry and others.
@ -165,7 +167,6 @@ int cwAdcBothFrom = 0;
int cwAdcBothTo = 0;
byte cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
bool Iambic_Key = true;
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
unsigned char keyerControl = IAMBICB;
byte isShiftDisplayCWFreq = 1; //Display Frequency
@ -187,10 +188,10 @@ byte userCallsignLength = 0; //7 : display callsign at system startup, 6~0 :
/**
* Raduino needs to keep track of current state of the transceiver. These are a few variables that do it
*/
boolean txCAT = false; //turned on if the transmitting due to a CAT command
char inTx = 0; //it is set to 1 if in transmit mode (whatever the reason : cw, ptt or cat)
volatile boolean txCAT = false; //turned on if the transmitting due to a CAT command
bool inTx = false; //it is set to 1 if in transmit mode (whatever the reason : cw, ptt or cat)
char splitOn = 0; //working split, uses VFO B as the transmit frequency
char keyDown = 0; //in cw mode, denotes the carrier is being transmitted
//char keyDown = 0; //in cw mode, denotes the carrier is being transmitted
char isUSB = 0; //upper sideband was selected, this is reset to the default for the
char cwMode = 0; //compatible original source, and extend mode //if cwMode == 0, mode check : isUSB, cwMode > 0, mode Check : cwMode
@ -312,6 +313,7 @@ void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) {
When the delay is used, the program will generate an error because it is not communicating,
so Create a new delay function that can do background processing.
*/
unsigned long delayBeforeTime = 0;
byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWKey -> Check Paddle
delayBeforeTime = millis();
@ -321,11 +323,11 @@ byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWK
if (fromType == 4)
{
//CHECK PADDLE
if (getPaddle() != 0) //Interrupt : Stop cw Auto mode by Paddle -> Change Auto to Manual
return 1;
// if (getPaddle() != 0) //Interrupt : Stop cw Auto mode by Paddle -> Change Auto to Manual
// return 1;
//Check PTT while auto Sending
autoSendPTTCheck();
//autoSendPTTCheck();
Check_Cat(3);
}
@ -338,6 +340,7 @@ byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWK
return 0;
}
/**
@ -444,7 +447,7 @@ void setFrequency(unsigned long f){
f = (f / arTuneStep[tuneStepIndex -1]) * arTuneStep[tuneStepIndex -1];
setTXFilters(f);
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (!inTx) ? ifShiftValue : 0));
int appliedTuneValue = 0;
//applied if tune
@ -454,7 +457,7 @@ void setFrequency(unsigned long f){
appliedTuneValue = if1TuneValue;
//In the LSB state, the optimum reception value was found. To apply to USB, 3Khz decrease is required.
if (sdrModeOn && (inTx == 0))
if (sdrModeOn && (!inTx))
appliedTuneValue -= 15; //decrease 1.55Khz
//if (isUSB)
@ -464,13 +467,13 @@ void setFrequency(unsigned long f){
//if1Tune RX, TX Enabled, ATT : only RX Mode
//The IF Tune shall be measured at the LSB. Then, move the 3Khz down for USB.
long if1AdjustValue = ((inTx == 0) ? (attLevel * 100) : 0) + (appliedTuneValue * 100); //if1Tune RX, TX Enabled, ATT : only RX Mode //5600
long if1AdjustValue = ((!inTx) ? (attLevel * 100) : 0) + (appliedTuneValue * 100); //if1Tune RX, TX Enabled, ATT : only RX Mode //5600
//for DIY uBITX (custom filter)
if ((advancedFreqOption1 & 0x80) != 0x00) //Reverse IF Tune (- Value for DIY uBITX)
if1AdjustValue *= -1;
if (sdrModeOn && (inTx == 0)) //IF SDR MODE
if (sdrModeOn && (!inTx)) //IF SDR MODE
{
//Fixed Frequency SDR (Default Frequency : 32Mhz, available change sdr Frequency by uBITX Manager)
//Dynamic Frequency is for SWL without cat
@ -545,7 +548,7 @@ void setFrequency(unsigned long f){
* put the uBitx in tx mode. It takes care of rit settings, sideband settings
* Note: In cw mode, doesnt key the radio, only puts it in tx mode
*/
void startTx(byte txMode, byte isDisplayUpdate){
void startTx(byte txMode, byte isDisplayUpdate = 0){
//Check Hamband only TX //Not found Hamband index by now frequency
if (tuneTXType >= 100 && getIndexHambanBbyFreq(ritOn ? ritTxFrequency : frequency) == -1) {
//no message
@ -555,7 +558,7 @@ void startTx(byte txMode, byte isDisplayUpdate){
if ((isTxType & 0x01) != 0x01)
digitalWrite(TX_RX, 1);
inTx = 1;
inTx = true;
if (ritOn){
//save the current as the rx frequency
@ -615,10 +618,12 @@ void startTx(byte txMode, byte isDisplayUpdate){
//reduce latency time when begin of CW mode
if (isDisplayUpdate == 1)
updateDisplay();
Serial.println("exiting startTx()");
}
void stopTx(void){
inTx = 0;
inTx = false;
digitalWrite(TX_RX, 0); //turn off the tx
SetCarrierFreq();
@ -682,12 +687,12 @@ void checkPTT(){
if (cwTimeout > 0)
return;
if (digitalRead(PTT) == 0 && inTx == 0){
if (digitalRead(PTT) == 0 && !inTx){
startTx(TX_SSB, 1);
delay(50); //debounce the PTT
}
if (digitalRead(PTT) == 1 && inTx == 1)
if (digitalRead(PTT) == 1 && inTx)
stopTx();
}
#ifdef EXTEND_KEY_GROUP1
@ -1292,6 +1297,11 @@ void initPorts(){
pinMode(ANALOG_KEYER, INPUT_PULLUP);
pinMode(ANALOG_SMETER, INPUT); //by KD8CEC
#ifdef USE_ALTKEYER
pinMode(DIGITAL_DOT, INPUT_PULLUP);
pinMode(DIGITAL_DASH, INPUT_PULLUP);
#endif
#ifdef USE_CUSTOM_LPF_FILTER
if (isCustomFilter_A7)
{
@ -1432,6 +1442,8 @@ void setup()
factory_alignment();
#endif
Connect_Interrupts();
}
//Auto save Frequency and Mode with Protected eeprom life by KD8CEC
@ -1460,14 +1472,21 @@ void checkAutoSaveFreqMode()
void loop(){
if (isCWAutoMode == 0){ //when CW AutoKey Mode, disable this process
if (!txCAT)
checkPTT();
#ifdef USE_ALTKEYER
// when using the alternate keyer, don't check the PTT if we're in CW mode, because
// the PTT is also a straight key
// if (!txCAT && (cwMode == 0))
// checkPTT();
#else
// if (!txCAT)
// checkPTT();
#endif
checkButton();
}
else
controlAutoCW();
; //controlAutoCW();
cwKeyer();
//cwKeyer();
//tune only when not tranmsitting
if (!inTx){
@ -1487,7 +1506,8 @@ void loop(){
} //end of check TX Status
//we check CAT after the encoder as it might put the radio into TX
Check_Cat(inTx? 1 : 0);
// Maybe make this do all four versions of Check_Cat depending on state
Check_Cat(inTx ? 1 : 0);
//for SEND SW Serial
#ifdef USE_SW_SERIAL

336
ubitx_20/ubitx_keyer.cpp Normal file
View File

@ -0,0 +1,336 @@
/**
* File name ubitx_keyer.cpp
* CW Keyer
*
* The CW keyer handles either a straight key or an iambic / paddle key.
* D12 for DOT Paddle and D11 for DASH Paddle and D* for PTT/Handkey
*
* Generating CW
* The CW is cleanly generated by unbalancing the front-end mixer
* and putting the local oscillator directly at the CW transmit frequency.
* The sidetone, generated by the Arduino is injected into the volume control
*/
#include "ubitx.h"
#include <Arduino.h>
extern void stopTx(void);
extern void startTx(byte txMode, byte isDisplayUpdate = 0);
extern unsigned long sideTone;
extern int cwSpeed;
// extern long CW_TIMEOUT;
extern long cwTimeout;
#define CW_TIMEOUT (cwTimeout)
extern volatile bool inTx;
// extern volatile int ubitx_mode;
extern char isUSB;
extern char cwMode;
extern volatile unsigned char keyerControl;
// extern volatile unsigned char keyerState;
volatile unsigned char keyerState = IDLE;
// extern unsigned volatile char IAMBICB;
// extern unsigned volatile char PDLSWAP;
// extern volatile unsigned long Ubitx_Voltage;
// extern volatile int Ubitx_Voltage_Timer;
volatile bool keyDown = false; // in cw mode, denotes the carrier is being transmitted
volatile uint8_t Last_Bits = 0xFF;
;
volatile bool Dot_in_Progress = false;
volatile unsigned long Dot_Timer_Count = 0;
volatile bool Dash_in_Progress = false;
volatile unsigned long Dash_Timer_Count = 0;
volatile bool Inter_Bit_in_Progress = false;
volatile unsigned long Inter_Bit_Timer_Count = 0;
volatile bool Turn_Off_Carrier_in_Progress = false;
volatile unsigned long Turn_Off_Carrier_Timer_Count = 0;
volatile bool Ubitx_Voltage_Act = false;
volatile bool PTT_HANDKEY_ACTIVE = false;
volatile long last_interrupt_time = 20;
// extern bool Cat_Lock;
// extern volatile bool TX_In_Progress;
extern volatile bool txCAT;
/**
* Starts transmitting the carrier with the sidetone
* It assumes that we have called cwTxStart and not called cwTxStop
* each time it is called, the cwTimeOut is pushed further into the future
*/
void cwKeydown(void) {
keyDown = 1; // tracks the CW_KEY
tone(CW_TONE, (int)sideTone);
digitalWrite(CW_KEY, 1);
#ifdef XMIT_LED
digitalWrite(ON_AIR, 0); // extinguish the LED on NANO's pin 13
#endif
}
/**
* Stops the CW carrier transmission along with the sidetone
* Pushes the cwTimeout further into the future
*/
void cwKeyUp(void) {
keyDown = 0; // tracks the CW_KEY
noTone(CW_TONE);
digitalWrite(CW_KEY, 0);
#ifdef XMIT_LED
digitalWrite(ON_AIR, 1); // extinguish the LED on NANO's pin 13
#endif
}
void update_PaddleLatch() {
// if (!digitalRead(DIGITAL_DOT) ) keyerControl |= DIT_L;
// if (!digitalRead(DIGITAL_DASH) ) keyerControl |= DAH_L;
if (digitalRead(DIGITAL_DOT) == LOW) {
if (keyerControl & PDLSWAP)
keyerControl |= DAH_L;
else
keyerControl |= DIT_L;
}
if (digitalRead(DIGITAL_DASH) == LOW) {
if (keyerControl & PDLSWAP)
keyerControl |= DIT_L;
else
keyerControl |= DAH_L;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
// interupt handlers
//// timers
ISR(TIMER1_OVF_vect) {
static volatile bool i_am_running = false;
bool continue_loop = true;
if (i_am_running) return;
i_am_running = true;
// process if CW modes
// if( (ubitx_mode == MODE_CW)||(ubitx_mode == MODE_CWR)){
if (cwMode > 0) {
// process DOT and DASH timing
if ((Dot_in_Progress) && (Dot_Timer_Count > 0)) {
if (!inTx) {
keyDown = 0;
startTx(TX_CW);
}
if (keyDown == 0)
cwKeydown();
Dot_Timer_Count = Dot_Timer_Count - 1;
if (Dot_Timer_Count <= 0) {
Dot_Timer_Count = 0;
Dot_in_Progress = false;
cwKeyUp();
}
}
// process Inter Bit Timing
if ((Inter_Bit_in_Progress) && (Inter_Bit_Timer_Count > 0)) {
Inter_Bit_Timer_Count = Inter_Bit_Timer_Count - 1;
if (Inter_Bit_Timer_Count <= 0) {
Inter_Bit_Timer_Count = 0;
Inter_Bit_in_Progress = false;
}
}
// process turning off carrier
if ((Turn_Off_Carrier_in_Progress) && (Turn_Off_Carrier_Timer_Count > 0)) {
Turn_Off_Carrier_Timer_Count = Turn_Off_Carrier_Timer_Count - 1;
if (Turn_Off_Carrier_Timer_Count <= 0) {
Turn_Off_Carrier_in_Progress = false;
Turn_Off_Carrier_Timer_Count = 0;
stopTx();
}
}
// process hand key
if (digitalRead(DIGITAL_KEY) == 0) {
// If interrupts come faster than 5ms, assume it's a bounce and ignore
last_interrupt_time = last_interrupt_time - 1;
if (last_interrupt_time <= 0) {
last_interrupt_time = 0;
if (!inTx) {
keyDown = 0;
startTx(TX_CW);
}
if (keyDown == 0)
cwKeydown();
PTT_HANDKEY_ACTIVE = true;
Turn_Off_Carrier_Timer_Count = CW_TIMEOUT;
}
} else if ((keyDown == 1) && (PTT_HANDKEY_ACTIVE == true)) {
cwKeyUp();
Turn_Off_Carrier_Timer_Count = CW_TIMEOUT;
Turn_Off_Carrier_in_Progress = true;
last_interrupt_time = PTT_HNDKEY_DEBOUNCE_CT;
PTT_HANDKEY_ACTIVE = false;
} else
last_interrupt_time = PTT_HNDKEY_DEBOUNCE_CT;
if (PTT_HANDKEY_ACTIVE == false) {
while (continue_loop) {
switch (keyerState) {
case IDLE:
if ((!digitalRead(DIGITAL_DOT)) || (!digitalRead(DIGITAL_DASH)) ||
(keyerControl & 0x03)) {
update_PaddleLatch();
keyerState = CHK_DIT;
Dot_in_Progress = false;
Dot_Timer_Count = 0;
Turn_Off_Carrier_Timer_Count = 0;
Turn_Off_Carrier_in_Progress = false;
} else {
continue_loop = false;
}
break;
case CHK_DIT:
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
keyerState = KEYED_PREP;
Dot_Timer_Count = cwSpeed;
} else {
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
keyerState = KEYED_PREP;
Dot_Timer_Count = cwSpeed * 3;
} else {
continue_loop = false;
keyerState = IDLE;
}
break;
case KEYED_PREP:
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
Turn_Off_Carrier_Timer_Count = 0;
Turn_Off_Carrier_in_Progress = false;
Dot_in_Progress = true;
break;
case KEYED:
if (Dot_in_Progress == false) { // are we at end of key down ?
Inter_Bit_in_Progress = true;
Inter_Bit_Timer_Count = cwSpeed;
keyerState = INTER_ELEMENT; // next state
} else if (keyerControl & IAMBICB) {
update_PaddleLatch(); // early paddle latch in Iambic B mode
continue_loop = false;
} else
continue_loop = false;
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(); // latch paddle state
if (Inter_Bit_in_Progress == false) { // are we at end of inter-space ?
Turn_Off_Carrier_Timer_Count = CW_TIMEOUT;
Turn_Off_Carrier_in_Progress = true;
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
} else {
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
} else
continue_loop = false;
break;
}
}
}
}
// process PTT
// if( (ubitx_mode == MODE_USB)|| (ubitx_mode == MODE_LSB)){
if (cwMode == 0) {
if (digitalRead(PTT) == 0) {
// If interrupts come faster than 5ms, assume it's a bounce and ignore
last_interrupt_time = last_interrupt_time - 1;
if (last_interrupt_time <= 0) {
last_interrupt_time = 0;
if (!inTx)
startTx(TX_SSB);
}
} else if ((inTx) && (txCAT == false)) {
last_interrupt_time = PTT_HNDKEY_DEBOUNCE_CT;
stopTx();
} else
last_interrupt_time = PTT_HNDKEY_DEBOUNCE_CT;
}
i_am_running = false;
}
void Connect_Interrupts(void) {
keyerControl = 0;
cli();
TIMSK1 |= (1 << TOIE1);
sei();
}
/*
#define N_MORSE (sizeof(morsetab)/sizeof(morsetab[0]))
// Morse table
struct t_mtab { char c, pat; } ;
struct t_mtab morsetab[] = {
{'.', 106}, {',', 115}, {'?', 76}, {'/', 41}, {'A', 6}, {'B', 17}, {'C', 21}, {'D', 9},
{'E', 2}, {'F', 20}, {'G', 11}, {'H', 16}, {'I', 4}, {'J', 30}, {'K', 13}, {'L', 18},
{'M', 7}, {'N', 5}, {'O', 15}, {'P', 22}, {'Q', 27}, {'R', 10}, {'S', 8}, {'T', 3},
{'U', 12}, {'V', 24}, {'W', 14}, {'X', 25}, {'Y', 29}, {'Z', 19}, {'1', 62}, {'2', 60},
{'3', 56}, {'4', 48}, {'5', 32}, {'6', 33}, {'7', 35}, {'8', 39}, {'9', 47}, {'0', 63}
};
///////////////////////////////////////////////////////////////////////////////////////////
// CW generation routines for CQ message
void key(int LENGTH){
if( !inTx ) startTx(TX_CW);
cwKeydown();
delay(LENGTH*2);
cwKeyUp();
delay(cwSpeed*2);
}
void send(char c){
int i ;
if (c == ' ') {
delay(7*cwSpeed) ;
return ;
}
for (i=0; i<N_MORSE; i++){
if (morsetab[i].c == c){
unsigned char p = morsetab[i].pat ;
while (p != 1) {
if (p & 1) Dot_Timer_Count = cwSpeed*3;
else Dot_Timer_Count = cwSpeed;
key(Dot_Timer_Count);
p = p / 2 ;
}
delay(cwSpeed*5) ;
return ;
}
}
}
void sendmsg(char *str){
while (*str) send(*str++);
delay(650);
stopTx();
}
*/

View File

@ -1,369 +0,0 @@
/**
CW Keyer
CW Key logic change with ron's code (ubitx_keyer.cpp)
Ron's logic has been modified to work with the original uBITX by KD8CEC
Original Comment ----------------------------------------------------------------------------
* The CW keyer handles either a straight key or an iambic / paddle key.
* They all use just one analog input line. This is how it works.
* The analog line has the internal pull-up resistor enabled.
* When a straight key is connected, it shorts the pull-up resistor, analog input is 0 volts
* When a paddle is connected, the dot and the dash are connected to the analog pin through
* a 10K and a 2.2K resistors. These produce a 4v and a 2v input to the analog pins.
* So, the readings are as follows :
* 0v - straight key
* 1-2.5 v - paddle dot
* 2.5 to 4.5 v - paddle dash
* 2.0 to 0.5 v - dot and dash pressed
*
* The keyer is written to transparently handle all these cases
*
* Generating CW
* The CW is cleanly generated by unbalancing the front-end mixer
* and putting the local oscillator directly at the CW transmit frequency.
* The sidetone, generated by the Arduino is injected into the volume control
*/
// in milliseconds, this is the parameter that determines how long the tx will hold between cw key downs
//#define CW_TIMEOUT (600l) //Change to CW Delaytime for value save to eeprom
#define PADDLE_DOT 1
#define PADDLE_DASH 2
#define PADDLE_BOTH 3
#define PADDLE_STRAIGHT 4
//we store the last padde's character
//to alternatively send dots and dashes
//when both are simultaneously pressed
char lastPaddle = 0;
//reads the analog keyer pin and reports the paddle
byte getPaddle(){
int paddle = analogRead(ANALOG_KEYER);
if (paddle > 800) // above 4v is up
return 0;
if (paddle > 600) // 4-3v is dot
return PADDLE_DASH;
else if (paddle > 300) //1-2v is dash
return PADDLE_DOT;
else if (paddle > 50)
return PADDLE_BOTH; //both are between 1 and 2v
else
return PADDLE_STRAIGHT; //less than 1v is the straight key
}
/**
* Starts transmitting the carrier with the sidetone
* It assumes that we have called cwTxStart and not called cwTxStop
* each time it is called, the cwTimeOut is pushed further into the future
*/
void cwKeydown(){
keyDown = 1; //tracks the CW_KEY
tone(CW_TONE, (int)sideTone);
digitalWrite(CW_KEY, 1);
//Modified by KD8CEC, for CW Delay Time save to eeprom
//cwTimeout = millis() + CW_TIMEOUT;
cwTimeout = millis() + cwDelayTime * 10;
}
/**
* Stops the cw carrier transmission along with the sidetone
* Pushes the cwTimeout further into the future
*/
void cwKeyUp(){
keyDown = 0; //tracks the CW_KEY
noTone(CW_TONE);
digitalWrite(CW_KEY, 0);
//Modified by KD8CEC, for CW Delay Time save to eeprom
//cwTimeout = millis() + CW_TIMEOUT;
cwTimeout = millis() + cwDelayTime * 10;
}
//Variables for Ron's new logic
#define DIT_L 0x01 // DIT latch
#define DAH_L 0x02 // DAH latch
#define DIT_PROC 0x04 // DIT is being processed
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
static unsigned long ktimer;
unsigned char keyerState = IDLE;
//Below is a test to reduce the keying error. do not delete lines
//create by KD8CEC for compatible with new CW Logic
char update_PaddleLatch(byte isUpdateKeyState) {
unsigned char tmpKeyerControl = 0;
int paddle = analogRead(ANALOG_KEYER);
if (paddle >= cwAdcDashFrom && paddle <= cwAdcDashTo)
tmpKeyerControl |= DAH_L;
else if (paddle >= cwAdcDotFrom && paddle <= cwAdcDotTo)
tmpKeyerControl |= DIT_L;
else if (paddle >= cwAdcBothFrom && paddle <= cwAdcBothTo)
tmpKeyerControl |= (DAH_L | DIT_L) ;
else
{
if (Iambic_Key)
tmpKeyerControl = 0 ;
else if (paddle >= cwAdcSTFrom && paddle <= cwAdcSTTo)
tmpKeyerControl = DIT_L ;
else
tmpKeyerControl = 0 ;
}
if (isUpdateKeyState == 1)
keyerControl |= tmpKeyerControl;
return tmpKeyerControl;
}
/*****************************************************************************
// New logic, by RON
// modified by KD8CEC
******************************************************************************/
void cwKeyer(void){
lastPaddle = 0;
bool continue_loop = true;
unsigned tmpKeyControl = 0;
if( Iambic_Key ) {
while(continue_loop) {
switch (keyerState) {
case IDLE:
tmpKeyControl = update_PaddleLatch(0);
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
update_PaddleLatch(1);
keyerState = CHK_DIT;
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
stopTx();
}
continue_loop = false;
}
break;
case CHK_DIT:
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = cwSpeed;
keyerState = KEYED_PREP;
}else{
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
ktimer = cwSpeed*3;
keyerState = KEYED_PREP;
}else{
keyerState = IDLE;
}
break;
case KEYED_PREP:
//modified KD8CEC
/*
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
*/
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
cwKeydown();
break;
case KEYED:
if (millis() > ktimer) { // are we at end of key down ?
cwKeyUp();
ktimer = millis() + cwSpeed; // inter-element time
keyerState = INTER_ELEMENT; // next state
}else if (keyerControl & IAMBICB) {
update_PaddleLatch(1); // early paddle latch in Iambic B mode
}
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(1); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
}else{
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
}
break;
}
Check_Cat(2);
} //end of while
}
else{
while(1){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
cwKeydown();
while ( update_PaddleLatch(0) == DIT_L )
delay_background(1, 3);
cwKeyUp();
}
else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
stopTx();
}
//if (!cwTimeout) //removed by KD8CEC
// return;
// got back to the beginning of the loop, if no further activity happens on straight key
// we will time out, and return out of this routine
//delay(5);
//delay_background(5, 3); //removed by KD8CEC
//continue; //removed by KD8CEC
return; //Tx stop control by Main Loop
}
Check_Cat(2);
} //end of while
} //end of elese
}
//=======================================================================================
//Before logic
//by Farhan and modified by KD8CEC
//======================================================================================
/**
* The keyer handles the straight key as well as the iambic key
* This module keeps looping until the user stops sending cw
* if the cwTimeout is set to 0, then it means, we have to exit the keyer loop
* Each time the key is hit the cwTimeout is pushed to a time in the future by cwKeyDown()
*/
/*
void cwKeyer(){
byte paddle;
lastPaddle = 0;
while(1){
paddle = getPaddle();
// do nothing if the paddle has not been touched, unless
// we are in the cw mode and we have timed out
if (!paddle){
//modifed by KD8CEC for auto CW Send
if (isCWAutoMode > 1) //if while auto cw sending, dont stop tx by paddle position
return;
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
stopTx();
}
if (!cwTimeout)
return;
Check_Cat(2); //for uBITX on Raspberry pi, when straight keying, disconnect / test complete
continue;
}
//if while auto cw send, stop auto cw
//but isAutoCWHold for Manual Keying with cwAutoSend
if (isCWAutoMode > 1 && isAutoCWHold == 0)
isCWAutoMode = 1; //read status
//Remoark Debug code / Serial Use by CAT Protocol
//Serial.print("paddle:");Serial.println(paddle);
// if we are here, it is only because the key or the paddle is pressed
if (!inTx){
keyDown = 0;
//Modified by KD8CEC, for CW Delay Time save to eeprom
//cwTimeout = millis() + CW_TIMEOUT;
cwTimeout = millis() + cwDelayTime * 10;
startTx(TX_CW, 0); //disable updateDisplay Command for reduce latency time
updateDisplay();
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
}
// star the transmission)
// we store the transmitted character in the lastPaddle
cwKeydown();
if (paddle == PADDLE_DOT){
//delay(cwSpeed);
delay_background(cwSpeed, 3);
lastPaddle = PADDLE_DOT;
}
else if (paddle == PADDLE_DASH){
//delay(cwSpeed * 3);
delay_background(cwSpeed * 3, 3);
lastPaddle = PADDLE_DASH;
}
else if (paddle == PADDLE_BOTH){ //both paddles down
//depending upon what was sent last, send the other
if (lastPaddle == PADDLE_DOT) {
//delay(cwSpeed * 3);
delay_background(cwSpeed * 3, 3);
lastPaddle = PADDLE_DASH;
}else{
//delay(cwSpeed);
delay_background(cwSpeed, 3);
lastPaddle = PADDLE_DOT;
}
}
else if (paddle == PADDLE_STRAIGHT){
while (getPaddle() == PADDLE_STRAIGHT) {
delay(1);
Check_Cat(2);
}
lastPaddle = PADDLE_STRAIGHT;
}
cwKeyUp();
//introduce a dot long gap between characters if the keyer was used
if (lastPaddle != PADDLE_STRAIGHT)
delay(cwSpeed);
}
}
*/

View File

@ -93,7 +93,7 @@ char L_ritOn;
unsigned long L_ritTxFrequency; //ritTxFrequency
#define CMD_IS_TX 't' //ct
char L_inTx;
bool L_inTx;
#define CMD_IS_DIALLOCK 'l' //cl
byte L_isDialLock; //byte isDialLock

View File

@ -8,6 +8,10 @@ Ian KD8CEC
#include "ubitx.h"
#include "ubitx_eemap.h"
extern void cwKeydown();
extern void cwKeyUp();
extern volatile bool keyDown;
//Current Frequency and mode to active VFO by KD8CEC
void FrequencyToVFO(byte isSaveFreq)
{

View File

@ -145,9 +145,9 @@ void si5351_set_calibration(int32_t cal){
void SetCarrierFreq()
{
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (inTx == 0) ? ifShiftValue : 0));
unsigned long appliedCarrier = ((cwMode == 0 ? usbCarrier : cwmCarrier) + (isIFShift && (!inTx) ? ifShiftValue : 0));
//si5351bx_setfreq(0, (sdrModeOn ? 0 : appliedCarrier));
si5351bx_setfreq(0, ((sdrModeOn && (inTx == 0)) ? 0 : appliedCarrier)); //found bug by KG4GEK
si5351bx_setfreq(0, ((sdrModeOn && (!inTx)) ? 0 : appliedCarrier)); //found bug by KG4GEK
/*