1
0
mirror of https://github.com/rfivet/stm32bringup.git synced 2024-12-21 00:06:22 -05:00

ADC conversion of temperature and voltage internal sensors

This commit is contained in:
Renaud 2020-12-29 14:26:39 +08:00
parent f1f238abf8
commit 8c9c4e6d3e
4 changed files with 444 additions and 1 deletions

View File

@ -38,7 +38,8 @@ PROJECT = f030f4
#SRCS = startup.c clocks.c uptime.c #SRCS = startup.c clocks.c uptime.c
#SRCS = startup.txeie.c txeie.c uptime.c #SRCS = startup.txeie.c txeie.c uptime.c
#SRCS = startup.txeie.c gpioa.c dht11main.c dht11.c #SRCS = startup.txeie.c gpioa.c dht11main.c dht11.c
SRCS = startup.txeie.c gpioa.c ds18b20main.c ds18b20.c #SRCS = startup.txeie.c gpioa.c ds18b20main.c ds18b20.c
SRCS = startup.txeie.c adc.c adcmain.c
OBJS = $(SRCS:.c=.o) OBJS = $(SRCS:.c=.o)
LIBOBJS = printf.o putchar.o puts.o LIBOBJS = printf.o putchar.o puts.o
CPU = -mthumb -mcpu=cortex-m0 CPU = -mthumb -mcpu=cortex-m0

394
adc.c Normal file
View File

@ -0,0 +1,394 @@
/* adc.c -- system layer
** Copyright (c) 2020 Renaud Fivet
**
** ADC for temperature sensor and Vrefint
** gpioa low level API and usleep()
** interrupt based serial transmission
** clocks configuration: HSI, HSE, PLL HSI, PLL HSE
** implements system.h interface: uptime, init(), kputc(), kputs(), yield()
** uptime = seconds elapsed since boot
** Serial tx, SysClck 8MHz HSI based, baudrate 9600, Busy wait transmission
** user LED toggled every second
** SysTick interrupt every second
*/
#include "system.h" /* implements system.h */
/** CORE **********************************************************************/
#define SYSTICK ((volatile unsigned long *) 0xE000E010)
#define SYSTICK_CSR SYSTICK[ 0]
#define SYSTICK_RVR SYSTICK[ 1]
#define SYSTICK_CVR SYSTICK[ 2]
#define NVIC ((volatile long *) 0xE000E100)
#define NVIC_ISER NVIC[ 0]
#define unmask_irq( idx) NVIC_ISER = 1 << idx
#define USART1_IRQ_IDX 27
/** PERIPH ********************************************************************/
#define CAT( a, b) a##b
#define RCC ((volatile long *) 0x40021000)
#define RCC_CR RCC[ 0]
#define RCC_CR_HSION 0x00000001 /* 1: Internal High Speed clock enable */
#define RCC_CR_HSEON 0x00010000 /* 16: External High Speed clock enable */
#define RCC_CR_HSERDY 0x00020000 /* 17: External High Speed clock ready flag */
#define RCC_CR_PLLON 0x01000000 /* 24: PLL enable */
#define RCC_CR_PLLRDY 0x02000000 /* 25: PLL clock ready flag */
#define RCC_CFGR RCC[ 1]
#define RCC_CFGR_SW_MSK 0x00000003 /* 1-0: System clock SWitch Mask */
#define RCC_CFGR_SW_HSE 0x00000001 /* 1-0: Switch to HSE as system clock */
#define RCC_CFGR_SW_PLL 0x00000002 /* 1-0: Switch to PLL as system clock */
#define RCC_CFGR_SWS_MSK 0x0000000C /* 3-2: System clock SWitch Status Mask */
#define RCC_CFGR_SWS_HSE 0x00000004 /* 3-2: HSE used as system clock */
#define RCC_CFGR_SWS_PLL 0x00000008 /* 3-2: PLL used as system clock */
#define RCC_CFGR_PLLSRC 0x00010000
#define RCC_CFGR_PLLSRC_HSI 0x00000000 /* HSI / 2 */
#define RCC_CFGR_PLLSRC_HSE 0x00010000 /* HSE */
#define RCC_CFGR_PLLXTPRE 0x00020000
#define RCC_CFGR_PLLXTPRE_DIV1 0x00000000 /* HSE */
#define RCC_CFGR_PLLXTPRE_DIV2 0x00020000 /* HSE / 2 */
#define RCC_CFGR_PLLMUL_MSK (0x00F << 18)
#define RCC_CFGR_PLLMUL( v) ((v - 2) << 18)
#define RCC_AHBENR RCC[ 5]
#define RCC_AHBENR_IOPn( n) (1 << (17 + n))
#define RCC_AHBENR_IOPh( h) RCC_AHBENR_IOPn( CAT( 0x, h) - 0xA)
#define RCC_APB2ENR RCC[ 6]
#define RCC_APB2ENR_USART1EN 0x00004000 /* 14: USART1 clock enable */
#define RCC_APB2ENR_ADCEN 0x00000200 /* 9: ADC clock enable */
#define RCC_CR2 RCC[ 13]
#define RCC_CR2_HSI14ON 0x00000001 /* 1: HSI14 clock enable */
#define RCC_CR2_HSI14RDY 0x00000002 /* 2: HSI14 clock ready */
#define GPIOA ((volatile long *) 0x48000000)
#define GPIOB ((volatile long *) 0x48000400)
#define GPIO( x) CAT( GPIO, x)
#define MODER 0
#define IDR 4
#define ODR 5
#define AFRH 9
#define ADC ((volatile long *) 0x40012400)
#define ADC_ISR ADC[ 0]
#define ADC_ISR_ADRDY 1 /* 0: ADC Ready */
#define ADC_ISR_EOC 4 /* 2: End Of Conversion flag */
#define ADC_CR ADC[ 2]
#define ADC_CR_ADEN 1 /* 0: ADc ENable command */
#define ADC_CR_ADSTART 4 /* 2: ADC Start Conversion command */
#define ADC_CR_ADCAL (1 << 31) /* 31: ADC Start Calibration cmd */
#define ADC_CFGR1 ADC[ 3] /* Configuration Register 1 */
#define ADC_CFGR1_SCANDIR 4 /* 2: Scan sequence direction */
#define ADC_CFGR1_DISCEN (1 << 16) /* 16: Enable Discontinuous mode */
#define ADC_CFGR2 ADC[ 4] /* Configuration Register 2 */
#define ADC_CFGR2_CKMODE (3 << 30) /* 31-30: Clock Mode Mask */
/* 31-30: Default 00 HSI14 */
#define ADC_CFGR2_PCLK2 (1 << 30) /* 31-30: PCLK/2 */
#define ADC_CFGR2_PCLK4 (2 << 30) /* 31-30: PCLK/4 */
#define ADC_SMPR ADC[ 5] /* Sampling Time Register */
#define ADC_CHSELR ADC[ 10] /* Channel Selection Register */
#define ADC_DR ADC[ 16] /* Data Register */
#define ADC_CCR ADC[ 194] /* Common Configuration Register */
#define ADC_CCR_VREFEN (1 << 22) /* 22: Vrefint Enable */
#define ADC_CCR_TSEN (1 << 23) /* 23: Temperature Sensor Enable */
#define USART1 ((volatile long *) 0x40013800)
#define CR1 0 /* Config Register */
#define BRR 3 /* BaudRate Register */
#define ISR 7 /* Interrupt and Status Register */
#define TDR 10 /* Transmit Data Register*/
#define USART_CR1_TXEIE (1 << 7) /* 7: TDR Empty Interrupt Enable */
#define USART_CR1_TE 8 /* 3: Transmit Enable */
#define USART_CR1_RE 4 /* 2: Receive Enable */
#define USART_CR1_UE 1 /* 0: USART Enable */
#define USART_ISR_TXE (1 << 7) /* 7: Transmit Data Register Empty */
/** SYSTEM MEMORY *************************************************************/
/* STM32F030 calibration addresses (at 3.3V and 30C) */
#define TS_CAL ((unsigned short *) 0x1FFFF7B8)
#define VREFINT_CAL ((unsigned short *) 0x1FFFF7BA)
/* user LED ON when PA4 is low */
#define LED_IOP A
#define LED_PIN 4
#define LED_ON 0
/* 8MHz quartz, configure PLL at 28MHz */
//#define HSE 8000000
#define PLL 7
#define BAUD 9600
//#define HSI14 1
#ifdef PLL
# ifdef HSE
# define CLOCK HSE / 2 * PLL
# else /* HSI */
# define CLOCK 8000000 / 2 * PLL
# endif
# if CLOCK < 16000000
# error PLL output below 16MHz
# endif
#elif defined( HSE)
# define CLOCK HSE
#else /* HSI */
# define CLOCK 8000000
#endif
#if CLOCK > 48000000
# error clock frequency exceeds 48MHz
#endif
#if CLOCK % BAUD
# warning baud rate not accurate at that clock frequency
#endif
static unsigned char txbuf[ 8] ; // best if size is a power of 2 for cortex-M0
#define TXBUF_SIZE (sizeof txbuf / sizeof txbuf[ 0])
static unsigned char txbufin ;
static volatile unsigned char txbufout ;
void USART1_Handler( void) {
if( txbufout == txbufin) {
/* Empty buffer => Disable TXEIE */
USART1[ CR1] &= ~USART_CR1_TXEIE ;
} else {
static unsigned char lastc ;
unsigned char c ;
c = txbuf[ txbufout] ;
if( c == '\n' && lastc != '\r')
c = '\r' ;
else
txbufout = (txbufout + 1) % TXBUF_SIZE ;
USART1[ TDR] = c ;
lastc = c ;
}
}
void kputc( unsigned char c) { /* character output */
int nextidx ;
/* Wait if buffer full */
nextidx = (txbufin + 1) % TXBUF_SIZE ;
while( nextidx == txbufout)
yield() ;
txbuf[ txbufin] = c ;
txbufin = nextidx ;
/* Trigger transmission by enabling interrupt */
USART1[ CR1] |= USART_CR1_TXEIE ;
}
int kputs( const char s[]) { /* string output */
int cnt = 0 ;
int c ;
while( (c = *s++) != 0) {
kputc( c) ;
cnt += 1 ;
}
return cnt ;
}
void yield( void) { /* give way */
__asm( "WFI") ; /* Wait for System Tick Interrupt */
}
volatile unsigned uptime ; /* seconds elapsed since boot */
#ifdef LED_ON
static void userLEDtoggle( void) {
GPIO( LED_IOP)[ ODR] ^= 1 << LED_PIN ; /* Toggle User LED */
}
#endif
void SysTick_Handler( void) {
uptime += 1 ;
#ifdef LED_ON
userLEDtoggle() ;
#endif
}
void usleep( unsigned usecs) { /* wait at least usec µs */
#if CLOCK / 8000000 < 1
# error HCLK below 8 MHz
#elif CLOCK % 8000000
# warning HCLK is not multiple of 8 MHz
#endif
usecs = SYSTICK_CVR - (CLOCK / 8000000 * usecs) ;
while( SYSTICK_CVR > usecs) ;
}
/* GPIOA low level API ********************************************************/
void gpioa_input( int pin) { /* Configure GPIOA pin as input */
GPIOA[ MODER] &= ~(3 << (pin * 2)) ; /* Apin as input [00] */
}
void gpioa_output( int pin) { /* Configure GPIOA pin as output */
GPIOA[ MODER] |= 1 << (pin * 2) ; /* Apin output (over [00]) */
}
iolvl_t gpioa_read( int pin) { /* Read level of GPIOA pin */
return LOW != (GPIOA[ IDR] & (1 << pin)) ;
}
static void adc_init( void) {
/* Enable ADC peripheral */
RCC_APB2ENR |= RCC_APB2ENR_ADCEN ;
/* Setup ADC sampling clock */
#ifdef HSI14
RCC_CR2 |= RCC_CR2_HSI14ON ; /* Start HSI14 clock */
do {} while( !( RCC_CR2 & RCC_CR2_HSI14RDY)) ; /* Wait for stable clock */
/* Select HSI14 as sampling clock for ADC */
// ADC_CFGR2 &= ~ADC_CFGR2_CKMODE ; /* Default 00 == HSI14 */
#else
/* Select PCLK/2 as sampling clock for ADC */
ADC_CFGR2 |= ADC_CFGR2_PCLK2 ; /* 01 PCLK/2 Over default 00 */
// ADC_CFGR2 |= ADC_CFGR2_PCLK4 ; /* 10 PCLK/4 Over default 00 */
#endif
/* Calibration */
ADC_CR |= ADC_CR_ADCAL ;
do {} while( ADC_CR & ADC_CR_ADCAL) ; /* Wait end of calibration */
/* Enable Command (below Work Around from Errata necessary with PCLK/4) */
do {
ADC_CR |= ADC_CR_ADEN ;
} while( !( ADC_ISR & ADC_ISR_ADRDY)) ;
/* Select inputs, precision and scan direction */
ADC_CHSELR = 3 << 16 ; /* Channel 16: temperature, Channel 17: Vrefint */
ADC_SMPR = 7 ;
ADC_CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN ;
/* Default scan direction (00) is Temperature before Voltage */
// ADC_CFGR1 &= ~ADC_CFGR1_SCANDIR ; /* Default 0 is low to high */
ADC_CFGR1 |= ADC_CFGR1_DISCEN ; /* Enable Discontinuous mode */
}
static unsigned adc_convert( void) {
/* Either only one channel in sequence or Discontinuous mode ON */
ADC_CR |= ADC_CR_ADSTART ; /* Start ADC conversion */
do {} while( ADC_CR & ADC_CR_ADSTART) ; /* Wait for start command cleared */
return ADC_DR ;
}
void adc_vnt( vnt_cmd_t cmd, short *ptrV, short *ptrC) {
if( cmd == VNT_INIT)
adc_init() ;
if( cmd <= VNT_CAL) {
/* Calibration Values */
*ptrV = *VREFINT_CAL ;
*ptrC = *TS_CAL ;
return ;
}
/* ADC Conversion */
*ptrC = adc_convert() ;
*ptrV = adc_convert() ;
if( cmd == VNT_VNC) {
*ptrV = 330 * *VREFINT_CAL / *ptrV ;
*ptrC = 850 + (1500 - *ptrC) * 10 / 4 ;
}
}
int init( void) {
/* By default SYSCLK == HSI [8MHZ] */
#ifdef HSE
/* Start HSE clock (8 MHz external oscillator) */
RCC_CR |= RCC_CR_HSEON ;
/* Wait for oscillator to stabilize */
do {} while( (RCC_CR & RCC_CR_HSERDY) == 0) ;
#endif
#ifdef PLL
/* Setup PLL HSx/2 * 6 [24MHz] */
/* Default 0: PLL HSI/2 src, PLL MULL * 2 */
RCC_CFGR =
# ifdef HSE
RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLXTPRE_DIV2 |
# endif
RCC_CFGR_PLLMUL( PLL) ;
RCC_CR |= RCC_CR_PLLON ;
do {} while( (RCC_CR & RCC_CR_PLLRDY) == 0) ; /* Wait for PLL */
/* Switch to PLL as system clock SYSCLK == PLL [24MHz] */
RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW_MSK) | RCC_CFGR_SW_PLL ;
do {} while( (RCC_CFGR & RCC_CFGR_SWS_MSK) != RCC_CFGR_SWS_PLL) ;
#elif defined( HSE)
/* Switch to HSE as system clock SYSCLK == HSE [8MHz] */
RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW_MSK) | RCC_CFGR_SW_HSE ;
do {} while( (RCC_CFGR & RCC_CFGR_SWS_MSK) != RCC_CFGR_SWS_HSE) ;
#endif
#ifdef HSE
/* Switch off HSI */
RCC_CR &= ~RCC_CR_HSION ;
#endif
/* SYSTICK */
SYSTICK_RVR = CLOCK / 8 - 1 ; /* HBA / 8 */
SYSTICK_CVR = 0 ;
SYSTICK_CSR = 3 ; /* HBA / 8, Interrupt ON, Enable */
/* SysTick_Handler will execute every 1s from now on */
#ifdef LED_ON
/* User LED ON */
RCC_AHBENR |= RCC_AHBENR_IOPh( LED_IOP) ; /* Enable IOPx periph */
GPIO( LED_IOP)[ MODER] |= 1 << (LED_PIN * 2) ; /* LED_IO Output [01],
** over default 00 */
/* OTYPER Push-Pull by default */
/* Pxn output default LOW at reset */
# if LED_ON
userLEDtoggle() ;
# endif
#endif
/* USART1 9600 8N1 */
RCC_AHBENR |= RCC_AHBENR_IOPh( A) ; /* Enable GPIOA periph */
GPIOA[ MODER] |= 0x0A << (9 * 2) ; /* PA9-10 ALT 10, over default 00 */
GPIOA[ AFRH] |= 0x110 ; /* PA9-10 AF1 0001, over default 0000 */
RCC_APB2ENR |= RCC_APB2ENR_USART1EN ;
USART1[ BRR] = CLOCK / BAUD ; /* PCLK is default source */
USART1[ CR1] |= USART_CR1_UE | USART_CR1_TE ; /* Enable USART & Tx */
/* Unmask USART1 irq */
unmask_irq( USART1_IRQ_IDX) ;
kputs(
#ifdef PLL
"PLL"
#endif
#ifdef HSE
"HSE"
#else
"HSI"
#endif
"\n") ;
return 0 ;
}
/* end of adc.c */

39
adcmain.c Normal file
View File

@ -0,0 +1,39 @@
/* adcmain.c -- ADC reading of reference voltage and temperature sensor */
/* Copyright (c) 2020 Renaud Fivet */
#include <stdio.h>
#include "system.h"
#define RAW
int main( void) {
unsigned last = 0 ;
short calV, calC ;
/* Initialize ADC and fetch calibration values */
adc_vnt( VNT_INIT, &calV, &calC) ;
#ifdef RAW
printf( "%u, %u\n", calV, calC) ;
#endif
for( ;;)
if( uptime == last)
yield() ;
else {
short Vsample, Csample ;
last = uptime ;
#ifdef RAW
adc_vnt( VNT_RAW, &Vsample, &Csample) ;
printf( "%i, %i, %i, %i, ", calV, Vsample, calC, Csample) ;
Vsample = 330 * calV / Vsample ;
Csample = 850 + (1500 - (int) Csample) * 10 / 4 ;
#else
adc_vnt( VNT_VNC, &Vsample, &Csample) ;
#endif
printf( "%i.%i, %i.%i\n", Vsample / 100, Vsample % 100,
Csample / 10, Csample % 10) ;
}
}
/* end of adcmain.c */

View File

@ -22,4 +22,13 @@ iolvl_t gpioa_read( int pin) ; /* Read level of GPIOA pin */
void usleep( unsigned usecs) ; /* wait at least usecs us */ void usleep( unsigned usecs) ; /* wait at least usecs us */
typedef enum {
VNT_INIT,
VNT_CAL,
VNT_RAW,
VNT_VNC
} vnt_cmd_t ;
void adc_vnt( vnt_cmd_t cmd, short *ptrV, short *ptrC) ;
/* end of system.h */ /* end of system.h */