intro_to_ml/19_nystroem_approximation_code.R

112 lines
3.0 KiB
R

# compute the gaussian kernel between each row of X1 and each row of X2
# should be done more efficiently
gausskernel <-
function(X1, X2, sigma2)
{
n1 <- dim(X1)[1]
n2 <- dim(X2)[1]
K <- matrix(nrow = n1, ncol = n2)
for(i in 1:n1)
for(j in 1:n2)
K[i,j] <- sum(X1[i,] - X2[j,])^2
K <- exp(-1*K/sigma2)
}
# Nystroem Approximation Kernel Ridge Regression
nakr <-
function(X, y, sigma2=NULL, lambda=1E-4, landmarks=NULL, nb.landmarks=NULL)
{
X <- as.matrix(X)
n <- nrow(X)
p <- ncol(X)
if(is.null(sigma2)) { sigma2 <- p }
if(is.null(landmarks)) {
if(is.null(nb.landmarks)) { nb.landmarks <- round(sqrt(n)) }
splidx <- sample(1:n, nb.landmarks, replace = FALSE)
} else {
splidx <- which(rownames(X) %in% as.character(landmarks))
nb.landmarks <- length(splidx)
}
splidx <- sort(splidx)
X <- scale(X)
y <- scale(y)
C <- gausskernel(X, as.matrix(X[splidx,]), sigma2)
K11 <- C[splidx,]
svdK11 <- svd(K11)
# K11 will often be ill-formed, thus we drop the bottom singular values
k <- which(svdK11$d < 1E-12)[1] - 1
US <- svdK11$u[,1:k] %*% diag(1 / sqrt(svdK11$d[1:k]))
L <- C %*% US
Ginv <- t(L) %*% L
diag(Ginv) <- diag(Ginv) + lambda
Ginv <- chol2inv(chol(Ginv))
Ginv <- L %*% Ginv %*% t(L)
Ginv <- - Ginv / lambda
diag(Ginv) <- diag(Ginv) + (1/lambda)
coef <- Ginv %*% y
K11inv <- svdK11$v[,1:k] %*% diag(1/svdK11$d[1:k]) %*% t(svdK11$u[,1:k])
beta <- K11inv %*% t(C) %*% coef
r <- list(X=X,
y=y,
sigma2=sigma2,
lambda=lambda,
splidx=splidx,
coef=coef,
beta=beta
)
class(r) <- "nakr"
return(r)
}
predict.nakr <-
function(o, newdata)
{
if(class(o) != "nakr") {
warning("Object is not of class 'nakr'")
UseMethod("predict")
return(invisible(NULL))
}
newdata <- as.matrix(newdata)
if(ncol(o$X)!=ncol(newdata)) {
stop("Not the same number of variables btwn fitted nakr object and new data")
}
newdata <- scale(newdata,center=attr(o$X,"scaled:center"),
scale=attr(o$X,"scaled:scale"))
Ktest <- gausskernel(newdata, as.matrix(o$X[o$splidx,]), o$sigma2)
yh <- Ktest %*% o$beta
yh <- (yh * attr(o$y,"scaled:scale")) + attr(o$y,"scaled:center")
}
kfold.nakr <-
function(X, y, K=5, lambdas=NULL, sigma2=NULL, landmarks=NULL, nb.landmarks=NULL)
{
if(is.null(lambdas)) { lambdas <- 10^seq(-8, 2, by=1) }
N <- nrow(X)
folds <- rep_len(1:K, N)
folds <- sample(folds, N)
maes <- matrix(data = NA, nrow = K, ncol = length(lambdas))
colnames(maes) <- lambdas
lambda_idx <- 1
for(lambda in lambdas) {
for(k in 1:K) {
fold <- folds == k
nakrm <- nakr(X[!fold,], y[!fold], sigma2, lambda, landmarks, nb.landmarks)
pred <- predict(nakrm, X[fold,])
maes[k,lambda_idx] <- mean(abs(pred - y[fold]))
}
lambda_idx <- lambda_idx + 1
}
mmaes <- colMeans(maes)
minmmaes <- min(mmaes)
bestlambda <- lambdas[which(mmaes == minmmaes)]
nakrm <- nakr(X, y, sigma2, bestlambda, landmarks, nb.landmarks)
}