one hot encoding function / correspondence analysis based landmarks for nystroem approx / experiment on housing dataset
This commit is contained in:
parent
7a656f6597
commit
d3639fe2ef
106
19_b_nystroem_approximation_housing_experiment_code.R
Normal file
106
19_b_nystroem_approximation_housing_experiment_code.R
Normal file
@ -0,0 +1,106 @@
|
||||
source("05_d_svd_mca_code.R")
|
||||
source("04_validation_croisee_code.R")
|
||||
source("19_nystroem_approximation_code.R")
|
||||
|
||||
datasetHousing.nakr <-
|
||||
function()
|
||||
{
|
||||
dat <- read.csv(file="data/housing.csv", header=TRUE)
|
||||
|
||||
dat$ocean_proximity <- as.factor(dat$ocean_proximity)
|
||||
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="<1H OCEAN"] <- "O:<1H"
|
||||
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="ISLAND"] <- "O:ISL"
|
||||
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="INLAND"] <- "O:INL"
|
||||
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="NEAR BAY"] <- "O:NB"
|
||||
levels(dat$ocean_proximity)[levels(dat$ocean_proximity)=="NEAR OCEAN"] <- "O:NO"
|
||||
|
||||
dat$total_bedrooms[is.na(dat$total_bedrooms)] <- median(dat$total_bedrooms, na.rm=TRUE)
|
||||
dat <- dat[dat$ocean_proximity != "O:ISL", ]
|
||||
# suppression des modalités vides (ici "O:ISL")
|
||||
dat <- droplevels(dat)
|
||||
dat['rooms'] <- dat['total_rooms'] / dat['households']
|
||||
dat['bedrooms'] <- dat['total_bedrooms'] / dat['households']
|
||||
dat['pop'] <- dat['population'] / dat['households']
|
||||
dat <- dat[dat$median_house_value < 500001, ]
|
||||
|
||||
dat <- dat[c('longitude', 'latitude', 'housing_median_age', 'households',
|
||||
'median_income', 'median_house_value', 'ocean_proximity',
|
||||
'rooms', 'bedrooms', 'pop')]
|
||||
|
||||
Z <- onehot_enc(dat[c('ocean_proximity')])
|
||||
dat <- cbind(dat, as.data.frame(Z))
|
||||
dat <- dat[,!(colnames(dat) %in% c('ocean_proximity'))]
|
||||
|
||||
dat.all <- dat
|
||||
dat <- list(X = dat[,!(colnames(dat) %in% c('median_house_value'))],
|
||||
Y = dat[,c('median_house_value')])
|
||||
split <- splitdata(dat, 0.8)
|
||||
entr <- split$entr
|
||||
test <- split$test
|
||||
|
||||
r <- list( dat=dat.all, entr=entr, test=test )
|
||||
return(r)
|
||||
}
|
||||
|
||||
# test.tbl <- table(c(4,2,4,2,1,1,1))
|
||||
# all(intersperse(test.tbl) == c(1, 2, 4, 1, 2, 4, 1))
|
||||
intersperse <-
|
||||
function(tbl)
|
||||
{
|
||||
n <- sum(tbl)
|
||||
values <- as.numeric(names(tbl))
|
||||
r <- numeric(n)
|
||||
i <- 1
|
||||
while(i <= n)
|
||||
{
|
||||
for(j in 1:length(tbl))
|
||||
{
|
||||
if(tbl[j] != 0)
|
||||
{
|
||||
r[i] <- values[j]
|
||||
i <- i + 1
|
||||
tbl[j] <- tbl[j] - 1
|
||||
}
|
||||
}
|
||||
}
|
||||
return(r)
|
||||
}
|
||||
|
||||
# sample the landmarks from the clusters of individuals
|
||||
# obtained after correspondence analysis
|
||||
landmarks.by.ca.clst <-
|
||||
function(cam, X, nbLandmarks)
|
||||
{
|
||||
if(nbLandmarks > nrow(X))
|
||||
{
|
||||
stop("The number of landmarks must be less than the number of training samples.")
|
||||
}
|
||||
landmarks <- numeric(nbLandmarks)
|
||||
clst <- cam$clsti$cluster[as.numeric(rownames(X))]
|
||||
clst.tbl <- table(clst)
|
||||
nb.by.clst <- table((intersperse(clst.tbl))[1:nbLandmarks])
|
||||
clst.id <- as.numeric(names(nb.by.clst))
|
||||
set.seed(1123)
|
||||
clst <- sample(clst)
|
||||
offset <- 0
|
||||
for (i in 1:length(nb.by.clst))
|
||||
{
|
||||
k <- as.numeric(nb.by.clst[i])
|
||||
landmarks[(offset+1):(offset+k)] <- as.numeric(names((clst[clst==clst.id[i]])[1:k]))
|
||||
offset <- offset+k
|
||||
}
|
||||
return(landmarks)
|
||||
}
|
||||
|
||||
hous.dat.nakr <- datasetHousing.nakr()
|
||||
X.entr <- hous.dat.nakr$entr$X
|
||||
Y.entr <- hous.dat.nakr$entr$Y
|
||||
X.test <- hous.dat.nakr$test$X
|
||||
Y.test <- hous.dat.nakr$test$Y
|
||||
hous.dat.ca <- datasetHousing.mca()
|
||||
hous.cam <- mca(hous.dat.ca)
|
||||
nb.landmarks <- round(sqrt(nrow(X.entr)))
|
||||
landmarks <- landmarks.by.ca.clst(hous.cam, X.entr, nb.landmarks)
|
||||
nakrm <- kfold.nakr(X.entr, Y.entr, landmarks=landmarks)
|
||||
nakrm.yh <- predict(nakrm, X.test)
|
||||
nakrm.mae <- mean(abs(nakrm.yh - Y.test))
|
@ -196,7 +196,7 @@ Nous reprenons le jeu de données synthétique utilisé depuis le premier module
|
||||
entr <- splitres$entr
|
||||
test <- splitres$test
|
||||
|
||||
nakrm <- nakr(entr$X,entr$Y, nspl=15)
|
||||
nakrm <- nakr(entr$X,entr$Y, nb.landmarks=25)
|
||||
yh <- predict(nakrm,test$X)
|
||||
plt(test,f)
|
||||
points(test$X, yh, pch=4)
|
||||
|
@ -14,20 +14,20 @@ function(X1, X2, sigma2)
|
||||
|
||||
# Nystroem Approximation Kernel Ridge Regression
|
||||
nakr <-
|
||||
function(X, y, sigma2=NULL, lambdas=NULL, splidx=NULL, nspl=NULL)
|
||||
function(X, y, sigma2=NULL, lambda=1E-4, landmarks=NULL, nb.landmarks=NULL)
|
||||
{
|
||||
X <- as.matrix(X)
|
||||
n <- nrow(X)
|
||||
p <- ncol(X)
|
||||
|
||||
if(is.null(lambdas)) { lambdas <- 10^seq(-8, 2,by=0.5) }
|
||||
if(is.null(sigma2)) { sigma2 <- p }
|
||||
|
||||
if(is.null(splidx)) {
|
||||
if(is.null(nspl)) { nspl <- round(sqrt(n)) }
|
||||
splidx <- sample(1:n, nspl, replace = FALSE)
|
||||
if(is.null(landmarks)) {
|
||||
if(is.null(nb.landmarks)) { nb.landmarks <- round(sqrt(n)) }
|
||||
splidx <- sample(1:n, nb.landmarks, replace = FALSE)
|
||||
} else {
|
||||
nspl <- length(splidx)
|
||||
splidx <- which(rownames(X) %in% as.character(landmarks))
|
||||
nb.landmarks <- length(splidx)
|
||||
}
|
||||
splidx <- sort(splidx)
|
||||
|
||||
@ -39,35 +39,28 @@ function(X, y, sigma2=NULL, lambdas=NULL, splidx=NULL, nspl=NULL)
|
||||
|
||||
svdK11 <- svd(K11)
|
||||
# K11 will often be ill-formed, thus we drop the bottom singular values
|
||||
k <- 0.8 * nspl
|
||||
k <- which(svdK11$d < 1E-12)[1] - 1
|
||||
|
||||
US <- svdK11$u[,1:k] %*% diag(1 / sqrt(svdK11$d[1:k]))
|
||||
L <- C %*% US
|
||||
LtL <- t(L) %*% L
|
||||
Ginv <- t(L) %*% L
|
||||
diag(Ginv) <- diag(Ginv) + lambda
|
||||
Ginv <- chol2inv(chol(Ginv))
|
||||
Ginv <- L %*% Ginv %*% t(L)
|
||||
Ginv <- - Ginv / lambda
|
||||
diag(Ginv) <- diag(Ginv) + (1/lambda)
|
||||
coef <- Ginv %*% y
|
||||
|
||||
looe <- double(length(lambdas))
|
||||
coef <- matrix(data = NA, nrow = n, ncol = length(lambdas))
|
||||
i <- 1
|
||||
for(lambda in lambdas) {
|
||||
Ginv <- LtL
|
||||
diag(Ginv) <- diag(Ginv) + lambda
|
||||
Ginv <- solve(Ginv)
|
||||
Ginv <- L %*% Ginv %*% t(L)
|
||||
Ginv <- - Ginv / lambda
|
||||
diag(Ginv) <- diag(Ginv) + (1/lambda)
|
||||
coef[,i] <- Ginv %*% y
|
||||
looe[i] <- mean((coef[,i]/diag(Ginv))^2)
|
||||
i <- i+1
|
||||
}
|
||||
looe.min <- min(looe)
|
||||
lambda <- lambdas[which(looe == looe.min)]
|
||||
coef <- coef[,which(looe == looe.min)]
|
||||
K11inv <- svdK11$v[,1:k] %*% diag(1/svdK11$d[1:k]) %*% t(svdK11$u[,1:k])
|
||||
beta <- K11inv %*% t(C) %*% coef
|
||||
|
||||
r <- list(X=X,
|
||||
y=y,
|
||||
sigma2=sigma2,
|
||||
lambda=lambda,
|
||||
splidx=splidx,
|
||||
coef=coef,
|
||||
looe=looe.min,
|
||||
lambda=lambda
|
||||
beta=beta
|
||||
)
|
||||
class(r) <- "nakr"
|
||||
return(r)
|
||||
@ -87,7 +80,33 @@ function(o, newdata)
|
||||
}
|
||||
newdata <- scale(newdata,center=attr(o$X,"scaled:center"),
|
||||
scale=attr(o$X,"scaled:scale"))
|
||||
Ktest <- gausskernel(newdata, o$X, o$sigma2)
|
||||
yh <- Ktest %*% o$coef
|
||||
Ktest <- gausskernel(newdata, as.matrix(o$X[o$splidx,]), o$sigma2)
|
||||
yh <- Ktest %*% o$beta
|
||||
yh <- (yh * attr(o$y,"scaled:scale")) + attr(o$y,"scaled:center")
|
||||
}
|
||||
|
||||
kfold.nakr <-
|
||||
function(X, y, K=5, lambdas=NULL, sigma2=NULL, landmarks=NULL, nb.landmarks=NULL)
|
||||
{
|
||||
if(is.null(lambdas)) { lambdas <- 10^seq(-8, 2, by=1) }
|
||||
|
||||
N <- nrow(X)
|
||||
folds <- rep_len(1:K, N)
|
||||
folds <- sample(folds, N)
|
||||
maes <- matrix(data = NA, nrow = K, ncol = length(lambdas))
|
||||
colnames(maes) <- lambdas
|
||||
lambda_idx <- 1
|
||||
for(lambda in lambdas) {
|
||||
for(k in 1:K) {
|
||||
fold <- folds == k
|
||||
nakrm <- nakr(X[!fold,], y[!fold], sigma2, lambda, landmarks, nb.landmarks)
|
||||
pred <- predict(nakrm, X[fold,])
|
||||
maes[k,lambda_idx] <- mean(abs(pred - y[fold]))
|
||||
}
|
||||
lambda_idx <- lambda_idx + 1
|
||||
}
|
||||
mmaes <- colMeans(maes)
|
||||
minmmaes <- min(mmaes)
|
||||
bestlambda <- lambdas[which(mmaes == minmmaes)]
|
||||
nakrm <- nakr(X, y, sigma2, bestlambda, landmarks, nb.landmarks)
|
||||
}
|
Loading…
Reference in New Issue
Block a user