@ -34,7 +34,7 @@ Puisque $\sum_i CTR_{i,\alpha} = 1$, nous pouvons considérer, de façon heurist
Nous pouvons similairement mesurer combien l'axe $\mathbf{v_\alpha}$ contribue à expliquer l'écart au centre de gravité d'une observation $\mathbf{x_i}$ :
Avec $d_{i,g}^2$ le carré de la distance de l'observation $\mathbf{x_i}$ au centre de gravité $g$. $d_{i,g}^2 = \sum_j \left(x_{i,j}-g_j\right)^2$. Si les données sont centrées alors $d_{i,g}^2 = \sum_j x_{i,j}^2$. La somme des carrés des distances au centre de gravité pour toutes les observations est égale à la variance totale des données, ou inertie totale : $\sum_i d_{i,j}^2 = \mathcal{I} = \sum_\alpha \lambda_\alpha$.
Avec $d_{i,g}^2$ le carré de la distance de l'observation $\mathbf{x_i}$ au centre de gravité $g$. $d_{i,g}^2 = \sum_j \left(x_{i,j}-g_j\right)^2$. Si les données sont centrées alors $d_{i,g}^2 = \sum_j x_{i,j}^2$. La somme des carrés des distances au centre de gravité pour toutes les observations est égale à la variance totale des données, ou inertie totale : $\sum_i d_{i,g}^2 = \mathcal{I} = \sum_\alpha \lambda_\alpha$.