Nous avons montré que la projection orthogonale des lignes $\mathbf{x_i}$ de $\mathbf{X}$ sur $\mathbf{v_1},\dots,\mathbf{v_k}$ est la meilleure approximation $k$-dimensionnelle de $\mathbf{X}$ au sens de la minimisation des résidus au carré. Les axes de vecteurs directeurs $\mathbf{v_\alpha}$ sont appelés les \emph{axes principaux} ou \emph{axes factoriels}. Les coordonnées des observations sur les axes principaux sont appelées \emph{facteurs}. Notons $\mathbf{F}$ la matrice dont les lignes sont les facteurs :
Nous vérifions ainsi que, par construction, les facteurs sont orthogonaux et que $\lambda_\alpha$ est la somme des facteurs au carré sur l'axe $\mathbf{v_\alpha}$, autrement dit, la variance expliquéee par cet axe.
Puisque $\sum_i CTR_{i,\alpha} = 1$, nous pouvons considérer, de façon heuristique, que les observations qui contribuent le plus à expliquer l'axe $\mathbf{v_\alpha}$ sont telles que $CTR_{i,\alpha} \geq 1/n$. Les observations dont les contributions sont les plus importantes et de signes opposés peuvent permettre d'interpréter un axe en fonction de l'opposition de ses pôles.
Nous pouvons similairement mesurer combien l'axe $\mathbf{v_\alpha}$ contribue à expliquer l'écart au centre de gravité d'une observation $\mathbf{x_i}$ :
Avec $d_{i,g}^2$ le carré de la distance de l'observation $\mathbf{x_i}$ au centre de gravité $g$. $d_{i,g}^2 = \sum_j \left(x_{i,j}-g_j\right)^2$. Si les données sont centrées alors $d_{i,g}^2 = \sum_j x_{i,j}^2$. La somme des carrés des distances au centre de gravité pour toutes les observations est égale à la variance totale des données, ou inertie totale : $\sum_i d_{i,g}^2 = \mathcal{I} = \sum_\alpha \lambda_\alpha$.
Les axes factoriels $\mathbf{v_\alpha}$ sont des combinaisons linéaires des variables initiales. Lorsque la matrice initiale est centrée et réduite, les éléments de $(\lambda_\alpha/\sqrt{n-1})\mathbf{v_\alpha}$ représentent les corrélations entre les variables initiales et l'axe $\mathbf{v_\alpha}$. Ainsi, nous pouvons mesurer la contribution des variables initiales à l'expression de la variance expliquée par chaque axe factoriel (l'expression est au carré pour que la somme des contributions des variables à l'axe $\mathbf{v_\alpha}$ soit égale à $1$) :
Nous écrivons une fonction `print.fa` qui affiche sur les axes factoriels `d1` (par défaut $1$) et `d2` (par défaut $2$) les centres des clusters qui contribuent le plus à ces axes.
Nous écrivons une fonction `away.fa` qui retourne le cluster (son identifiant, sa taille et les noms des observations qui le composent) qui a le plus d'inertie (i.e., qui est le plus éloigné du centre d'inertie, c'est-à-dire l'origine du repère pour des données centrées) le long de l'axe factoriel `d` (par défaut $1$).
Considérons le jeu de données `abalone` introduit dans un précédent module. Nous retirons les observations pour lesquelles la variable `height` est nulle.
Le cluster `r far$id` (`far$id`) qui explique le plus la variance du deuxième axe factoriel semble anormalement important. Il contribue à expliquer `r round(fam$ctr[far$id,2]*100, 2)` % (`round(fam$ctr[far$id,2]*100, 2)`) de la variance du second axe. Il est composé de seulement `r far$size` (`far$size`) élément :
Après cette correction, nous voyons qu'une part encore plus importante de la variance est expliquée par le premier axe factoriel. Cela peut nous indiquer que les variables explicatives sont très corrélées.
Nous calculons à nouveau les facteurs et les contributions des observations aux axes factoriels. Nous affichons, sur les deux premiers axes factoriels, les centres des clusters qui contribuent le plus à ces axes.
Le cluster `r far$id` est intrigant. Sa taille est : `r far$size`. C'est encore un singleton qui correspond à l'observation `r far$names` du jeu de données original. Nous découvrons qu'il s'agit sans doute d'une anomalie pour la variable `height` :
Nous vérifions que cette observation, sans doute anormale, est presque entièrement expliquée par les deux premiers axes factoriels. Nous ne prenons donc pas de risque à considérer comme significatif son écart à l'origine dans le plan formé par ces deux axes.
Nous voyons à nouveau que toutes les variables sont très corrélées car elles contribuent toutes fortement à la variance expliquée par le premier axe principal.