source("ML1_01_intro.R", local = knitr::knit_global())
source("ML1_02_moindres_carres.R", local = knitr::knit_global())
```
# Espace de fonctions
Soit un espace vectoriel composé de fonctions. Une base de cet espace est un ensemble de fonctions ($f_1, f_2, \dots f_N$) tel que toute fonction de l'espace s'exprime comme combinaison linéaire des fonctions de base.
Nous notons ce système linéaire $\mathbf{Ax} = \mathbf{b}$.
# Expression matricielle
Le système linéaire $\mathbf{Ax} = \mathbf{b}$ avec $\mathbf{A} \in \mathbb{R}^{M \times N}$ n'a pas de solution quand le nombre d'observations dépasse le nombre de fonctions de base (c'est-à-dire, $M>N$). Une approche possible est alors de chercher une approximation $\mathbf{Ax} \approx \mathbf{b}$ qui minimise la somme des carrés des erreurs : $\|\mathbf{Ax}-\mathbf{b}\|^2_2$.
Cette dernière expression quadratique en $\mathbf{x}$ correspond à une surface convexe. Donc son minimum peut être calculé en annulant sa dérivée (penser à une courbe $y = a+bx+cx^2$ dont l'unique extremum est atteint lorsque la pente est nulle).
Ainsi, quand $M>N$, la solution approximée $\mathbf{x}$, telle que $\mathbf{Ax} \approx \mathbf{b}$ par minimisation de la somme des carrés des erreurs, est la solution du système linéaire suivant où $\mathbf{A}^T\mathbf{A}$ est appelée la matrice de Gram.
# Méthode des moindres carrés appliquée à la régression polynomiale
Pour un polynôme de degré $N-1$, les fonctions de bases mentionnées ci-dessus sont : $f_1(x)=1$, $f_2(x)=x$, $f_3(x)=x^2$,..., $f_N(x)=x^{N-1}$. Elles permettent de définir la matrice des données $\mathbf{A}$ et la matrice de Gram $\mathbf{A}^T\mathbf{A}$.
Nous reprenons l'exemple synthétique du précédent chapitre et nous résolvons le système linéaire correspondant à la matrice de Gram pour un polynôme de degré fixé.
```{r}
set.seed(1123)
# Image par f d'un échantillon uniforme sur l'intervalle [0,1], avec ajout d'un
# bruit gaussien de moyenne nulle et d'écart type 0.2
data = gendat(10,0.2)
coef = polyreg2(data,3)
plt(data,f)
pltpoly(coef)
```
Ce polynôme de degré trois modélise mieux la fonction génératrice inconnue que celui de degré quatre qui ne commettait aucune erreur sur les données observées.