Interface as proposed by cls, but internally rewritten after a few
considerations.
The code is much shorter and to the point, aligning itself with other
standard functions. It should also be much faster, which is not bad.
Equivalence classes are a hard matter and there's still no "standard"
way to solve the issue.
Previously, tr would just skip those classes, but it's much
better when it resolves a [=c=] to a normal c instead of treating
it as a literal.
Also, reflect recent changes in the manpage (octal escapes) and fix
the markup in some areas.
This is one aspect which I think has blown up the complexity of many
tr-implementations around today.
Instead of complicating the set-theory-based parser itself (he should
still be relying on one rune per char, not multirunes), I added a
preprocessor, which basically scans the code for upcoming '\'s, reads
what he finds, substitutes the real character onto '\'s index and shifts
the entire following array so there are no "holes".
What is left to reflect on is what to do with octal sequences.
I have a local implementation here, which works fine, but imho,
given tr is already so focused on UTF-8, we might as well ignore
POSIX at this point and rather implement the unicode UTF-8 code points,
which are way more contemporary and future-proof.
Reading in \uC3A4 as a an array of 0xC3 and 0xA4 is not the issue,
but I'm still struggling to find a way to turn it into a well-formed
byte sequence. Hit me with a mail if you have a simple solution for
that.
It's standard behaviour to map a whole class of matched objects
to the last element of a given simple set2 instead of just passing
it through.
Also, error out more strictly when the user gives us bogus sets.
tr(1) always used to be a saddening part of sbase, which was
inherently broken and crufted.
But to be fair, the POSIX-standard doesn't make it very simple.
Given the current version was unfixable and broken by design, I
sat down and rewrote tr(1) very close to the concept of set theory
and the POSIX-standard with a few exceptions:
- UTF-8: not allowed in POSIX, but in my opinion a must. This
finally allows you to work with UTF-8 streams without
problems or unexpected behaviour.
- Equivalence classes: Left out, even GNU coreutils ignore them
and depending on LC_COLLATE, which sucks.
- Character classes: No experiments or environment-variable-trickery.
Just plain definitions derived from the POSIX-
standard, working as expected.
I tested this thoroughly, but expect problems to show up in some
way given the wide range of input this program has to handle.
The only thing left on the TODO is to add support for literal
expressions ('\n', '\t', '\001', ...) and probably rethinking
the way [_*n] is unnecessarily restricted to string2.
It actually makes the binaries smaller, the code easier to read
(gems like "val == true", "val == false" are gone) and actually
predictable in the sense of that we actually know what we're
working with (one bitwise operator was quite adventurous and
should now be fixed).
This is also more consistent with the other suckless projects
around which don't use boolean types.
- Added support for character ranges ( a-z )
- Added support for complementary charset ( -c ), only in delete mode
- Added support for octal escape sequences
- Unicode now only works when there are no octal escape sequences,
otherwise behavior is not predictable at first sight.
- tr now supports null characters in the input
- Does not yet have support for character classes ( [:upper:] )