Restore math library

This commit is contained in:
Ziyao 2022-04-14 15:49:55 +08:00
parent 9e65a3c710
commit ea670ff2d8
454 changed files with 20617 additions and 0 deletions

71
src/math/__cos.c Normal file
View File

@ -0,0 +1,71 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_cos.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __cos( x, y )
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
*
* Algorithm
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
* 3. cos(x) is approximated by a polynomial of degree 14 on
* [0,pi/4]
* 4 14
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
* where the remez error is
*
* | 2 4 6 8 10 12 14 | -58
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
* | |
*
* 4 6 8 10 12 14
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
* cos(x) ~ 1 - x*x/2 + r
* since cos(x+y) ~ cos(x) - sin(x)*y
* ~ cos(x) - x*y,
* a correction term is necessary in cos(x) and hence
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
* For better accuracy, rearrange to
* cos(x+y) ~ w + (tmp + (r-x*y))
* where w = 1 - x*x/2 and tmp is a tiny correction term
* (1 - x*x/2 == w + tmp exactly in infinite precision).
* The exactness of w + tmp in infinite precision depends on w
* and tmp having the same precision as x. If they have extra
* precision due to compiler bugs, then the extra precision is
* only good provided it is retained in all terms of the final
* expression for cos(). Retention happens in all cases tested
* under FreeBSD, so don't pessimize things by forcibly clipping
* any extra precision in w.
*/
#include "libm.h"
static const double
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
double __cos(double x, double y)
{
double_t hz,z,r,w;
z = x*x;
w = z*z;
r = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6));
hz = 0.5*z;
w = 1.0-hz;
return w + (((1.0-w)-hz) + (z*r-x*y));
}

35
src/math/__cosdf.c Normal file
View File

@ -0,0 +1,35 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_cosf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
* Debugged and optimized by Bruce D. Evans.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
static const double
C0 = -0x1ffffffd0c5e81.0p-54, /* -0.499999997251031003120 */
C1 = 0x155553e1053a42.0p-57, /* 0.0416666233237390631894 */
C2 = -0x16c087e80f1e27.0p-62, /* -0.00138867637746099294692 */
C3 = 0x199342e0ee5069.0p-68; /* 0.0000243904487962774090654 */
float __cosdf(double x)
{
double_t r, w, z;
/* Try to optimize for parallel evaluation as in __tandf.c. */
z = x*x;
w = z*z;
r = C2+z*C3;
return ((1.0+z*C0) + w*C1) + (w*z)*r;
}

96
src/math/__cosl.c Normal file
View File

@ -0,0 +1,96 @@
/* origin: FreeBSD /usr/src/lib/msun/ld80/k_cosl.c */
/* origin: FreeBSD /usr/src/lib/msun/ld128/k_cosl.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#if LDBL_MANT_DIG == 64
/*
* ld80 version of __cos.c. See __cos.c for most comments.
*/
/*
* Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
* |cos(x) - c(x)| < 2**-75.1
*
* The coefficients of c(x) were generated by a pari-gp script using
* a Remez algorithm that searches for the best higher coefficients
* after rounding leading coefficients to a specified precision.
*
* Simpler methods like Chebyshev or basic Remez barely suffice for
* cos() in 64-bit precision, because we want the coefficient of x^2
* to be precisely -0.5 so that multiplying by it is exact, and plain
* rounding of the coefficients of a good polynomial approximation only
* gives this up to about 64-bit precision. Plain rounding also gives
* a mediocre approximation for the coefficient of x^4, but a rounding
* error of 0.5 ulps for this coefficient would only contribute ~0.01
* ulps to the final error, so this is unimportant. Rounding errors in
* higher coefficients are even less important.
*
* In fact, coefficients above the x^4 one only need to have 53-bit
* precision, and this is more efficient. We get this optimization
* almost for free from the complications needed to search for the best
* higher coefficients.
*/
static const long double
C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */
static const double
C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */
C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */
C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */
C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */
C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */
#define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7)))))))
#elif LDBL_MANT_DIG == 113
/*
* ld128 version of __cos.c. See __cos.c for most comments.
*/
/*
* Domain [-0.7854, 0.7854], range ~[-1.80e-37, 1.79e-37]:
* |cos(x) - c(x))| < 2**-122.0
*
* 113-bit precision requires more care than 64-bit precision, since
* simple methods give a minimax polynomial with coefficient for x^2
* that is 1 ulp below 0.5, but we want it to be precisely 0.5. See
* above for more details.
*/
static const long double
C1 = 0.04166666666666666666666666666666658424671L,
C2 = -0.001388888888888888888888888888863490893732L,
C3 = 0.00002480158730158730158730158600795304914210L,
C4 = -0.2755731922398589065255474947078934284324e-6L,
C5 = 0.2087675698786809897659225313136400793948e-8L,
C6 = -0.1147074559772972315817149986812031204775e-10L,
C7 = 0.4779477332386808976875457937252120293400e-13L;
static const double
C8 = -0.1561920696721507929516718307820958119868e-15,
C9 = 0.4110317413744594971475941557607804508039e-18,
C10 = -0.8896592467191938803288521958313920156409e-21,
C11 = 0.1601061435794535138244346256065192782581e-23;
#define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*(C7+ \
z*(C8+z*(C9+z*(C10+z*C11)))))))))))
#endif
long double __cosl(long double x, long double y)
{
long double hz,z,r,w;
z = x*x;
r = POLY(z);
hz = 0.5*z;
w = 1.0-hz;
return w + (((1.0-w)-hz) + (z*r-x*y));
}
#endif

17
src/math/__expo2.c Normal file
View File

@ -0,0 +1,17 @@
#include "libm.h"
/* k is such that k*ln2 has minimal relative error and x - kln2 > log(DBL_MIN) */
static const int k = 2043;
static const double kln2 = 0x1.62066151add8bp+10;
/* exp(x)/2 for x >= log(DBL_MAX), slightly better than 0.5*exp(x/2)*exp(x/2) */
double __expo2(double x, double sign)
{
double scale;
/* note that k is odd and scale*scale overflows */
INSERT_WORDS(scale, (uint32_t)(0x3ff + k/2) << 20, 0);
/* exp(x - k ln2) * 2**(k-1) */
/* in directed rounding correct sign before rounding or overflow is important */
return exp(x - kln2) * (sign * scale) * scale;
}

17
src/math/__expo2f.c Normal file
View File

@ -0,0 +1,17 @@
#include "libm.h"
/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
static const int k = 235;
static const float kln2 = 0x1.45c778p+7f;
/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
float __expo2f(float x, float sign)
{
float scale;
/* note that k is odd and scale*scale overflows */
SET_FLOAT_WORD(scale, (uint32_t)(0x7f + k/2) << 23);
/* exp(x - k ln2) * 2**(k-1) */
/* in directed rounding correct sign before rounding or overflow is important */
return expf(x - kln2) * (sign * scale) * scale;
}

11
src/math/__fpclassify.c Normal file
View File

@ -0,0 +1,11 @@
#include <math.h>
#include <stdint.h>
int __fpclassify(double x)
{
union {double f; uint64_t i;} u = {x};
int e = u.i>>52 & 0x7ff;
if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
if (e==0x7ff) return u.i<<12 ? FP_NAN : FP_INFINITE;
return FP_NORMAL;
}

11
src/math/__fpclassifyf.c Normal file
View File

@ -0,0 +1,11 @@
#include <math.h>
#include <stdint.h>
int __fpclassifyf(float x)
{
union {float f; uint32_t i;} u = {x};
int e = u.i>>23 & 0xff;
if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
if (e==0xff) return u.i<<9 ? FP_NAN : FP_INFINITE;
return FP_NORMAL;
}

42
src/math/__fpclassifyl.c Normal file
View File

@ -0,0 +1,42 @@
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
int __fpclassifyl(long double x)
{
return __fpclassify(x);
}
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
int __fpclassifyl(long double x)
{
union ldshape u = {x};
int e = u.i.se & 0x7fff;
int msb = u.i.m>>63;
if (!e && !msb)
return u.i.m ? FP_SUBNORMAL : FP_ZERO;
if (e == 0x7fff) {
/* The x86 variant of 80-bit extended precision only admits
* one representation of each infinity, with the mantissa msb
* necessarily set. The version with it clear is invalid/nan.
* The m68k variant, however, allows either, and tooling uses
* the version with it clear. */
if (__BYTE_ORDER == __LITTLE_ENDIAN && !msb)
return FP_NAN;
return u.i.m << 1 ? FP_NAN : FP_INFINITE;
}
if (!msb)
return FP_NAN;
return FP_NORMAL;
}
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
int __fpclassifyl(long double x)
{
union ldshape u = {x};
int e = u.i.se & 0x7fff;
u.i.se = 0;
if (!e)
return u.i2.lo | u.i2.hi ? FP_SUBNORMAL : FP_ZERO;
if (e == 0x7fff)
return u.i2.lo | u.i2.hi ? FP_NAN : FP_INFINITE;
return FP_NORMAL;
}
#endif

63
src/math/__invtrigl.c Normal file
View File

@ -0,0 +1,63 @@
#include <float.h>
#include "__invtrigl.h"
#if LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
static const long double
pS0 = 1.66666666666666666631e-01L,
pS1 = -4.16313987993683104320e-01L,
pS2 = 3.69068046323246813704e-01L,
pS3 = -1.36213932016738603108e-01L,
pS4 = 1.78324189708471965733e-02L,
pS5 = -2.19216428382605211588e-04L,
pS6 = -7.10526623669075243183e-06L,
qS1 = -2.94788392796209867269e+00L,
qS2 = 3.27309890266528636716e+00L,
qS3 = -1.68285799854822427013e+00L,
qS4 = 3.90699412641738801874e-01L,
qS5 = -3.14365703596053263322e-02L;
const long double pio2_hi = 1.57079632679489661926L;
const long double pio2_lo = -2.50827880633416601173e-20L;
/* used in asinl() and acosl() */
/* R(x^2) is a rational approximation of (asin(x)-x)/x^3 with Remez algorithm */
long double __invtrigl_R(long double z)
{
long double p, q;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*(pS5+z*pS6))))));
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*(qS4+z*qS5))));
return p/q;
}
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
static const long double
pS0 = 1.66666666666666666666666666666700314e-01L,
pS1 = -7.32816946414566252574527475428622708e-01L,
pS2 = 1.34215708714992334609030036562143589e+00L,
pS3 = -1.32483151677116409805070261790752040e+00L,
pS4 = 7.61206183613632558824485341162121989e-01L,
pS5 = -2.56165783329023486777386833928147375e-01L,
pS6 = 4.80718586374448793411019434585413855e-02L,
pS7 = -4.42523267167024279410230886239774718e-03L,
pS8 = 1.44551535183911458253205638280410064e-04L,
pS9 = -2.10558957916600254061591040482706179e-07L,
qS1 = -4.84690167848739751544716485245697428e+00L,
qS2 = 9.96619113536172610135016921140206980e+00L,
qS3 = -1.13177895428973036660836798461641458e+01L,
qS4 = 7.74004374389488266169304117714658761e+00L,
qS5 = -3.25871986053534084709023539900339905e+00L,
qS6 = 8.27830318881232209752469022352928864e-01L,
qS7 = -1.18768052702942805423330715206348004e-01L,
qS8 = 8.32600764660522313269101537926539470e-03L,
qS9 = -1.99407384882605586705979504567947007e-04L;
const long double pio2_hi = 1.57079632679489661923132169163975140L;
const long double pio2_lo = 4.33590506506189051239852201302167613e-35L;
long double __invtrigl_R(long double z)
{
long double p, q;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*(pS5+z*(pS6+z*(pS7+z*(pS8+z*pS9)))))))));
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*(qS4+z*(qS5+z*(qS6+z*(qS7+z*(qS8+z*qS9))))))));
return p/q;
}
#endif

8
src/math/__invtrigl.h Normal file
View File

@ -0,0 +1,8 @@
#include <features.h>
/* shared by acosl, asinl and atan2l */
#define pio2_hi __pio2_hi
#define pio2_lo __pio2_lo
hidden extern const long double pio2_hi, pio2_lo;
hidden long double __invtrigl_R(long double z);

View File

@ -0,0 +1,6 @@
#include "libm.h"
double __math_divzero(uint32_t sign)
{
return fp_barrier(sign ? -1.0 : 1.0) / 0.0;
}

View File

@ -0,0 +1,6 @@
#include "libm.h"
float __math_divzerof(uint32_t sign)
{
return fp_barrierf(sign ? -1.0f : 1.0f) / 0.0f;
}

View File

@ -0,0 +1,6 @@
#include "libm.h"
double __math_invalid(double x)
{
return (x - x) / (x - x);
}

View File

@ -0,0 +1,6 @@
#include "libm.h"
float __math_invalidf(float x)
{
return (x - x) / (x - x);
}

View File

@ -0,0 +1,9 @@
#include <float.h>
#include "libm.h"
#if LDBL_MANT_DIG != DBL_MANT_DIG
long double __math_invalidl(long double x)
{
return (x - x) / (x - x);
}
#endif

6
src/math/__math_oflow.c Normal file
View File

@ -0,0 +1,6 @@
#include "libm.h"
double __math_oflow(uint32_t sign)
{
return __math_xflow(sign, 0x1p769);
}

6
src/math/__math_oflowf.c Normal file
View File

@ -0,0 +1,6 @@
#include "libm.h"
float __math_oflowf(uint32_t sign)
{
return __math_xflowf(sign, 0x1p97f);
}

6
src/math/__math_uflow.c Normal file
View File

@ -0,0 +1,6 @@
#include "libm.h"
double __math_uflow(uint32_t sign)
{
return __math_xflow(sign, 0x1p-767);
}

6
src/math/__math_uflowf.c Normal file
View File

@ -0,0 +1,6 @@
#include "libm.h"
float __math_uflowf(uint32_t sign)
{
return __math_xflowf(sign, 0x1p-95f);
}

6
src/math/__math_xflow.c Normal file
View File

@ -0,0 +1,6 @@
#include "libm.h"
double __math_xflow(uint32_t sign, double y)
{
return eval_as_double(fp_barrier(sign ? -y : y) * y);
}

6
src/math/__math_xflowf.c Normal file
View File

@ -0,0 +1,6 @@
#include "libm.h"
float __math_xflowf(uint32_t sign, float y)
{
return eval_as_float(fp_barrierf(sign ? -y : y) * y);
}

93
src/math/__polevll.c Normal file
View File

@ -0,0 +1,93 @@
/* origin: OpenBSD /usr/src/lib/libm/src/polevll.c */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Evaluate polynomial
*
*
* SYNOPSIS:
*
* int N;
* long double x, y, coef[N+1], polevl[];
*
* y = polevll( x, coef, N );
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evll() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevll().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
#else
/*
* Polynomial evaluator:
* P[0] x^n + P[1] x^(n-1) + ... + P[n]
*/
long double __polevll(long double x, const long double *P, int n)
{
long double y;
y = *P++;
do {
y = y * x + *P++;
} while (--n);
return y;
}
/*
* Polynomial evaluator:
* x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
*/
long double __p1evll(long double x, const long double *P, int n)
{
long double y;
n -= 1;
y = x + *P++;
do {
y = y * x + *P++;
} while (--n);
return y;
}
#endif

190
src/math/__rem_pio2.c Normal file
View File

@ -0,0 +1,190 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* Optimized by Bruce D. Evans.
*/
/* __rem_pio2(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __rem_pio2_large() for large x
*/
#include "libm.h"
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
#define EPS DBL_EPSILON
#elif FLT_EVAL_METHOD==2
#define EPS LDBL_EPSILON
#endif
/*
* invpio2: 53 bits of 2/pi
* pio2_1: first 33 bit of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 33 bit of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 33 bit of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
static const double
toint = 1.5/EPS,
pio4 = 0x1.921fb54442d18p-1,
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
/* caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
int __rem_pio2(double x, double *y)
{
union {double f; uint64_t i;} u = {x};
double_t z,w,t,r,fn;
double tx[3],ty[2];
uint32_t ix;
int sign, n, ex, ey, i;
sign = u.i>>63;
ix = u.i>>32 & 0x7fffffff;
if (ix <= 0x400f6a7a) { /* |x| ~<= 5pi/4 */
if ((ix & 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */
goto medium; /* cancellation -- use medium case */
if (ix <= 0x4002d97c) { /* |x| ~<= 3pi/4 */
if (!sign) {
z = x - pio2_1; /* one round good to 85 bits */
y[0] = z - pio2_1t;
y[1] = (z-y[0]) - pio2_1t;
return 1;
} else {
z = x + pio2_1;
y[0] = z + pio2_1t;
y[1] = (z-y[0]) + pio2_1t;
return -1;
}
} else {
if (!sign) {
z = x - 2*pio2_1;
y[0] = z - 2*pio2_1t;
y[1] = (z-y[0]) - 2*pio2_1t;
return 2;
} else {
z = x + 2*pio2_1;
y[0] = z + 2*pio2_1t;
y[1] = (z-y[0]) + 2*pio2_1t;
return -2;
}
}
}
if (ix <= 0x401c463b) { /* |x| ~<= 9pi/4 */
if (ix <= 0x4015fdbc) { /* |x| ~<= 7pi/4 */
if (ix == 0x4012d97c) /* |x| ~= 3pi/2 */
goto medium;
if (!sign) {
z = x - 3*pio2_1;
y[0] = z - 3*pio2_1t;
y[1] = (z-y[0]) - 3*pio2_1t;
return 3;
} else {
z = x + 3*pio2_1;
y[0] = z + 3*pio2_1t;
y[1] = (z-y[0]) + 3*pio2_1t;
return -3;
}
} else {
if (ix == 0x401921fb) /* |x| ~= 4pi/2 */
goto medium;
if (!sign) {
z = x - 4*pio2_1;
y[0] = z - 4*pio2_1t;
y[1] = (z-y[0]) - 4*pio2_1t;
return 4;
} else {
z = x + 4*pio2_1;
y[0] = z + 4*pio2_1t;
y[1] = (z-y[0]) + 4*pio2_1t;
return -4;
}
}
}
if (ix < 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
medium:
/* rint(x/(pi/2)) */
fn = (double_t)x*invpio2 + toint - toint;
n = (int32_t)fn;
r = x - fn*pio2_1;
w = fn*pio2_1t; /* 1st round, good to 85 bits */
/* Matters with directed rounding. */
if (predict_false(r - w < -pio4)) {
n--;
fn--;
r = x - fn*pio2_1;
w = fn*pio2_1t;
} else if (predict_false(r - w > pio4)) {
n++;
fn++;
r = x - fn*pio2_1;
w = fn*pio2_1t;
}
y[0] = r - w;
u.f = y[0];
ey = u.i>>52 & 0x7ff;
ex = ix>>20;
if (ex - ey > 16) { /* 2nd round, good to 118 bits */
t = r;
w = fn*pio2_2;
r = t - w;
w = fn*pio2_2t - ((t-r)-w);
y[0] = r - w;
u.f = y[0];
ey = u.i>>52 & 0x7ff;
if (ex - ey > 49) { /* 3rd round, good to 151 bits, covers all cases */
t = r;
w = fn*pio2_3;
r = t - w;
w = fn*pio2_3t - ((t-r)-w);
y[0] = r - w;
}
}
y[1] = (r - y[0]) - w;
return n;
}
/*
* all other (large) arguments
*/
if (ix >= 0x7ff00000) { /* x is inf or NaN */
y[0] = y[1] = x - x;
return 0;
}
/* set z = scalbn(|x|,-ilogb(x)+23) */
u.f = x;
u.i &= (uint64_t)-1>>12;
u.i |= (uint64_t)(0x3ff + 23)<<52;
z = u.f;
for (i=0; i < 2; i++) {
tx[i] = (double)(int32_t)z;
z = (z-tx[i])*0x1p24;
}
tx[i] = z;
/* skip zero terms, first term is non-zero */
while (tx[i] == 0.0)
i--;
n = __rem_pio2_large(tx,ty,(int)(ix>>20)-(0x3ff+23),i+1,1);
if (sign) {
y[0] = -ty[0];
y[1] = -ty[1];
return -n;
}
y[0] = ty[0];
y[1] = ty[1];
return n;
}

442
src/math/__rem_pio2_large.c Normal file
View File

@ -0,0 +1,442 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __rem_pio2_large(x,y,e0,nx,prec)
* double x[],y[]; int e0,nx,prec;
*
* __rem_pio2_large return the last three digits of N with
* y = x - N*pi/2
* so that |y| < pi/2.
*
* The method is to compute the integer (mod 8) and fraction parts of
* (2/pi)*x without doing the full multiplication. In general we
* skip the part of the product that are known to be a huge integer (
* more accurately, = 0 mod 8 ). Thus the number of operations are
* independent of the exponent of the input.
*
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
*
* Input parameters:
* x[] The input value (must be positive) is broken into nx
* pieces of 24-bit integers in double precision format.
* x[i] will be the i-th 24 bit of x. The scaled exponent
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
* match x's up to 24 bits.
*
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
* e0 = ilogb(z)-23
* z = scalbn(z,-e0)
* for i = 0,1,2
* x[i] = floor(z)
* z = (z-x[i])*2**24
*
*
* y[] ouput result in an array of double precision numbers.
* The dimension of y[] is:
* 24-bit precision 1
* 53-bit precision 2
* 64-bit precision 2
* 113-bit precision 3
* The actual value is the sum of them. Thus for 113-bit
* precison, one may have to do something like:
*
* long double t,w,r_head, r_tail;
* t = (long double)y[2] + (long double)y[1];
* w = (long double)y[0];
* r_head = t+w;
* r_tail = w - (r_head - t);
*
* e0 The exponent of x[0]. Must be <= 16360 or you need to
* expand the ipio2 table.
*
* nx dimension of x[]
*
* prec an integer indicating the precision:
* 0 24 bits (single)
* 1 53 bits (double)
* 2 64 bits (extended)
* 3 113 bits (quad)
*
* External function:
* double scalbn(), floor();
*
*
* Here is the description of some local variables:
*
* jk jk+1 is the initial number of terms of ipio2[] needed
* in the computation. The minimum and recommended value
* for jk is 3,4,4,6 for single, double, extended, and quad.
* jk+1 must be 2 larger than you might expect so that our
* recomputation test works. (Up to 24 bits in the integer
* part (the 24 bits of it that we compute) and 23 bits in
* the fraction part may be lost to cancelation before we
* recompute.)
*
* jz local integer variable indicating the number of
* terms of ipio2[] used.
*
* jx nx - 1
*
* jv index for pointing to the suitable ipio2[] for the
* computation. In general, we want
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
* is an integer. Thus
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
* Hence jv = max(0,(e0-3)/24).
*
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
*
* q[] double array with integral value, representing the
* 24-bits chunk of the product of x and 2/pi.
*
* q0 the corresponding exponent of q[0]. Note that the
* exponent for q[i] would be q0-24*i.
*
* PIo2[] double precision array, obtained by cutting pi/2
* into 24 bits chunks.
*
* f[] ipio2[] in floating point
*
* iq[] integer array by breaking up q[] in 24-bits chunk.
*
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
*
* ih integer. If >0 it indicates q[] is >= 0.5, hence
* it also indicates the *sign* of the result.
*
*/
/*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "libm.h"
static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
/*
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
*
* integer array, contains the (24*i)-th to (24*i+23)-th
* bit of 2/pi after binary point. The corresponding
* floating value is
*
* ipio2[i] * 2^(-24(i+1)).
*
* NB: This table must have at least (e0-3)/24 + jk terms.
* For quad precision (e0 <= 16360, jk = 6), this is 686.
*/
static const int32_t ipio2[] = {
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
#if LDBL_MAX_EXP > 1024
0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
#endif
};
static const double PIo2[] = {
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
};
int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
{
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
double z,fw,f[20],fq[20],q[20];
/* initialize jk*/
jk = init_jk[prec];
jp = jk;
/* determine jx,jv,q0, note that 3>q0 */
jx = nx-1;
jv = (e0-3)/24; if(jv<0) jv=0;
q0 = e0-24*(jv+1);
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
j = jv-jx; m = jx+jk;
for (i=0; i<=m; i++,j++)
f[i] = j<0 ? 0.0 : (double)ipio2[j];
/* compute q[0],q[1],...q[jk] */
for (i=0; i<=jk; i++) {
for (j=0,fw=0.0; j<=jx; j++)
fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz = jk;
recompute:
/* distill q[] into iq[] reversingly */
for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
fw = (double)(int32_t)(0x1p-24*z);
iq[i] = (int32_t)(z - 0x1p24*fw);
z = q[j-1]+fw;
}
/* compute n */
z = scalbn(z,q0); /* actual value of z */
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
n = (int32_t)z;
z -= (double)n;
ih = 0;
if (q0 > 0) { /* need iq[jz-1] to determine n */
i = iq[jz-1]>>(24-q0); n += i;
iq[jz-1] -= i<<(24-q0);
ih = iq[jz-1]>>(23-q0);
}
else if (q0 == 0) ih = iq[jz-1]>>23;
else if (z >= 0.5) ih = 2;
if (ih > 0) { /* q > 0.5 */
n += 1; carry = 0;
for (i=0; i<jz; i++) { /* compute 1-q */
j = iq[i];
if (carry == 0) {
if (j != 0) {
carry = 1;
iq[i] = 0x1000000 - j;
}
} else
iq[i] = 0xffffff - j;
}
if (q0 > 0) { /* rare case: chance is 1 in 12 */
switch(q0) {
case 1:
iq[jz-1] &= 0x7fffff; break;
case 2:
iq[jz-1] &= 0x3fffff; break;
}
}
if (ih == 2) {
z = 1.0 - z;
if (carry != 0)
z -= scalbn(1.0,q0);
}
}
/* check if recomputation is needed */
if (z == 0.0) {
j = 0;
for (i=jz-1; i>=jk; i--) j |= iq[i];
if (j == 0) { /* need recomputation */
for (k=1; iq[jk-k]==0; k++); /* k = no. of terms needed */
for (i=jz+1; i<=jz+k; i++) { /* add q[jz+1] to q[jz+k] */
f[jx+i] = (double)ipio2[jv+i];
for (j=0,fw=0.0; j<=jx; j++)
fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz += k;
goto recompute;
}
}
/* chop off zero terms */
if (z == 0.0) {
jz -= 1;
q0 -= 24;
while (iq[jz] == 0) {
jz--;
q0 -= 24;
}
} else { /* break z into 24-bit if necessary */
z = scalbn(z,-q0);
if (z >= 0x1p24) {
fw = (double)(int32_t)(0x1p-24*z);
iq[jz] = (int32_t)(z - 0x1p24*fw);
jz += 1;
q0 += 24;
iq[jz] = (int32_t)fw;
} else
iq[jz] = (int32_t)z;
}
/* convert integer "bit" chunk to floating-point value */
fw = scalbn(1.0,q0);
for (i=jz; i>=0; i--) {
q[i] = fw*(double)iq[i];
fw *= 0x1p-24;
}
/* compute PIo2[0,...,jp]*q[jz,...,0] */
for(i=jz; i>=0; i--) {
for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)
fw += PIo2[k]*q[i+k];
fq[jz-i] = fw;
}
/* compress fq[] into y[] */
switch(prec) {
case 0:
fw = 0.0;
for (i=jz; i>=0; i--)
fw += fq[i];
y[0] = ih==0 ? fw : -fw;
break;
case 1:
case 2:
fw = 0.0;
for (i=jz; i>=0; i--)
fw += fq[i];
// TODO: drop excess precision here once double_t is used
fw = (double)fw;
y[0] = ih==0 ? fw : -fw;
fw = fq[0]-fw;
for (i=1; i<=jz; i++)
fw += fq[i];
y[1] = ih==0 ? fw : -fw;
break;
case 3: /* painful */
for (i=jz; i>0; i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (i=jz; i>1; i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (fw=0.0,i=jz; i>=2; i--)
fw += fq[i];
if (ih==0) {
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
} else {
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
}
}
return n&7;
}

86
src/math/__rem_pio2f.c Normal file
View File

@ -0,0 +1,86 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2f.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
* Debugged and optimized by Bruce D. Evans.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __rem_pio2f(x,y)
*
* return the remainder of x rem pi/2 in *y
* use double precision for everything except passing x
* use __rem_pio2_large() for large x
*/
#include "libm.h"
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
#define EPS DBL_EPSILON
#elif FLT_EVAL_METHOD==2
#define EPS LDBL_EPSILON
#endif
/*
* invpio2: 53 bits of 2/pi
* pio2_1: first 25 bits of pi/2
* pio2_1t: pi/2 - pio2_1
*/
static const double
toint = 1.5/EPS,
pio4 = 0x1.921fb6p-1,
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
pio2_1 = 1.57079631090164184570e+00, /* 0x3FF921FB, 0x50000000 */
pio2_1t = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */
int __rem_pio2f(float x, double *y)
{
union {float f; uint32_t i;} u = {x};
double tx[1],ty[1];
double_t fn;
uint32_t ix;
int n, sign, e0;
ix = u.i & 0x7fffffff;
/* 25+53 bit pi is good enough for medium size */
if (ix < 0x4dc90fdb) { /* |x| ~< 2^28*(pi/2), medium size */
/* Use a specialized rint() to get fn. */
fn = (double_t)x*invpio2 + toint - toint;
n = (int32_t)fn;
*y = x - fn*pio2_1 - fn*pio2_1t;
/* Matters with directed rounding. */
if (predict_false(*y < -pio4)) {
n--;
fn--;
*y = x - fn*pio2_1 - fn*pio2_1t;
} else if (predict_false(*y > pio4)) {
n++;
fn++;
*y = x - fn*pio2_1 - fn*pio2_1t;
}
return n;
}
if(ix>=0x7f800000) { /* x is inf or NaN */
*y = x-x;
return 0;
}
/* scale x into [2^23, 2^24-1] */
sign = u.i>>31;
e0 = (ix>>23) - (0x7f+23); /* e0 = ilogb(|x|)-23, positive */
u.i = ix - (e0<<23);
tx[0] = u.f;
n = __rem_pio2_large(tx,ty,e0,1,0);
if (sign) {
*y = -ty[0];
return -n;
}
*y = ty[0];
return n;
}

155
src/math/__rem_pio2l.c Normal file
View File

@ -0,0 +1,155 @@
/* origin: FreeBSD /usr/src/lib/msun/ld80/e_rem_pio2.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* Optimized by Bruce D. Evans.
*/
#include "libm.h"
#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
/* ld80 and ld128 version of __rem_pio2(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __rem_pio2_large() for large x
*/
static const long double toint = 1.5/LDBL_EPSILON;
#if LDBL_MANT_DIG == 64
/* u ~< 0x1p25*pi/2 */
#define SMALL(u) (((u.i.se & 0x7fffU)<<16 | u.i.m>>48) < ((0x3fff + 25)<<16 | 0x921f>>1 | 0x8000))
#define QUOBITS(x) ((uint32_t)(int32_t)x & 0x7fffffff)
#define ROUND1 22
#define ROUND2 61
#define NX 3
#define NY 2
/*
* invpio2: 64 bits of 2/pi
* pio2_1: first 39 bits of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 39 bits of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 39 bits of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
static const double
pio2_1 = 1.57079632679597125389e+00, /* 0x3FF921FB, 0x54444000 */
pio2_2 = -1.07463465549783099519e-12, /* -0x12e7b967674000.0p-92 */
pio2_3 = 6.36831716351370313614e-25; /* 0x18a2e037074000.0p-133 */
static const long double
pio4 = 0x1.921fb54442d1846ap-1L,
invpio2 = 6.36619772367581343076e-01L, /* 0xa2f9836e4e44152a.0p-64 */
pio2_1t = -1.07463465549719416346e-12L, /* -0x973dcb3b399d747f.0p-103 */
pio2_2t = 6.36831716351095013979e-25L, /* 0xc51701b839a25205.0p-144 */
pio2_3t = -2.75299651904407171810e-37L; /* -0xbb5bf6c7ddd660ce.0p-185 */
#elif LDBL_MANT_DIG == 113
/* u ~< 0x1p45*pi/2 */
#define SMALL(u) (((u.i.se & 0x7fffU)<<16 | u.i.top) < ((0x3fff + 45)<<16 | 0x921f))
#define QUOBITS(x) ((uint32_t)(int64_t)x & 0x7fffffff)
#define ROUND1 51
#define ROUND2 119
#define NX 5
#define NY 3
static const long double
pio4 = 0x1.921fb54442d18469898cc51701b8p-1L,
invpio2 = 6.3661977236758134307553505349005747e-01L, /* 0x145f306dc9c882a53f84eafa3ea6a.0p-113 */
pio2_1 = 1.5707963267948966192292994253909555e+00L, /* 0x1921fb54442d18469800000000000.0p-112 */
pio2_1t = 2.0222662487959507323996846200947577e-21L, /* 0x13198a2e03707344a4093822299f3.0p-181 */
pio2_2 = 2.0222662487959507323994779168837751e-21L, /* 0x13198a2e03707344a400000000000.0p-181 */
pio2_2t = 2.0670321098263988236496903051604844e-43L, /* 0x127044533e63a0105df531d89cd91.0p-254 */
pio2_3 = 2.0670321098263988236499468110329591e-43L, /* 0x127044533e63a0105e00000000000.0p-254 */
pio2_3t = -2.5650587247459238361625433492959285e-65L; /* -0x159c4ec64ddaeb5f78671cbfb2210.0p-327 */
#endif
int __rem_pio2l(long double x, long double *y)
{
union ldshape u,uz;
long double z,w,t,r,fn;
double tx[NX],ty[NY];
int ex,ey,n,i;
u.f = x;
ex = u.i.se & 0x7fff;
if (SMALL(u)) {
/* rint(x/(pi/2)) */
fn = x*invpio2 + toint - toint;
n = QUOBITS(fn);
r = x-fn*pio2_1;
w = fn*pio2_1t; /* 1st round good to 102/180 bits (ld80/ld128) */
/* Matters with directed rounding. */
if (predict_false(r - w < -pio4)) {
n--;
fn--;
r = x - fn*pio2_1;
w = fn*pio2_1t;
} else if (predict_false(r - w > pio4)) {
n++;
fn++;
r = x - fn*pio2_1;
w = fn*pio2_1t;
}
y[0] = r-w;
u.f = y[0];
ey = u.i.se & 0x7fff;
if (ex - ey > ROUND1) { /* 2nd iteration needed, good to 141/248 (ld80/ld128) */
t = r;
w = fn*pio2_2;
r = t-w;
w = fn*pio2_2t-((t-r)-w);
y[0] = r-w;
u.f = y[0];
ey = u.i.se & 0x7fff;
if (ex - ey > ROUND2) { /* 3rd iteration, good to 180/316 bits */
t = r; /* will cover all possible cases (not verified for ld128) */
w = fn*pio2_3;
r = t-w;
w = fn*pio2_3t-((t-r)-w);
y[0] = r-w;
}
}
y[1] = (r - y[0]) - w;
return n;
}
/*
* all other (large) arguments
*/
if (ex == 0x7fff) { /* x is inf or NaN */
y[0] = y[1] = x - x;
return 0;
}
/* set z = scalbn(|x|,-ilogb(x)+23) */
uz.f = x;
uz.i.se = 0x3fff + 23;
z = uz.f;
for (i=0; i < NX - 1; i++) {
tx[i] = (double)(int32_t)z;
z = (z-tx[i])*0x1p24;
}
tx[i] = z;
while (tx[i] == 0)
i--;
n = __rem_pio2_large(tx, ty, ex-0x3fff-23, i+1, NY);
w = ty[1];
if (NY == 3)
w += ty[2];
r = ty[0] + w;
/* TODO: for ld128 this does not follow the recommendation of the
comments of __rem_pio2_large which seem wrong if |ty[0]| > |ty[1]+ty[2]| */
w -= r - ty[0];
if (u.i.se >> 15) {
y[0] = -r;
y[1] = -w;
return -n;
}
y[0] = r;
y[1] = w;
return n;
}
#endif

13
src/math/__signbit.c Normal file
View File

@ -0,0 +1,13 @@
#include "libm.h"
// FIXME: macro in math.h
int __signbit(double x)
{
union {
double d;
uint64_t i;
} y = { x };
return y.i>>63;
}

11
src/math/__signbitf.c Normal file
View File

@ -0,0 +1,11 @@
#include "libm.h"
// FIXME: macro in math.h
int __signbitf(float x)
{
union {
float f;
uint32_t i;
} y = { x };
return y.i>>31;
}

14
src/math/__signbitl.c Normal file
View File

@ -0,0 +1,14 @@
#include "libm.h"
#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
int __signbitl(long double x)
{
union ldshape u = {x};
return u.i.se >> 15;
}
#elif LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
int __signbitl(long double x)
{
return __signbit(x);
}
#endif

64
src/math/__sin.c Normal file
View File

@ -0,0 +1,64 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_sin.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __sin( x, y, iy)
* kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
*
* Algorithm
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
* 2. Callers must return sin(-0) = -0 without calling here since our
* odd polynomial is not evaluated in a way that preserves -0.
* Callers may do the optimization sin(x) ~ x for tiny x.
* 3. sin(x) is approximated by a polynomial of degree 13 on
* [0,pi/4]
* 3 13
* sin(x) ~ x + S1*x + ... + S6*x
* where
*
* |sin(x) 2 4 6 8 10 12 | -58
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
* | x |
*
* 4. sin(x+y) = sin(x) + sin'(x')*y
* ~ sin(x) + (1-x*x/2)*y
* For better accuracy, let
* 3 2 2 2 2
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
* then 3 2
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
*/
#include "libm.h"
static const double
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
double __sin(double x, double y, int iy)
{
double_t z,r,v,w;
z = x*x;
w = z*z;
r = S2 + z*(S3 + z*S4) + z*w*(S5 + z*S6);
v = z*x;
if (iy == 0)
return x + v*(S1 + z*r);
else
return x - ((z*(0.5*y - v*r) - y) - v*S1);
}

36
src/math/__sindf.c Normal file
View File

@ -0,0 +1,36 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_sinf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
* Optimized by Bruce D. Evans.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
static const double
S1 = -0x15555554cbac77.0p-55, /* -0.166666666416265235595 */
S2 = 0x111110896efbb2.0p-59, /* 0.0083333293858894631756 */
S3 = -0x1a00f9e2cae774.0p-65, /* -0.000198393348360966317347 */
S4 = 0x16cd878c3b46a7.0p-71; /* 0.0000027183114939898219064 */
float __sindf(double x)
{
double_t r, s, w, z;
/* Try to optimize for parallel evaluation as in __tandf.c. */
z = x*x;
w = z*z;
r = S3 + z*S4;
s = z*x;
return (x + s*(S1 + z*S2)) + s*w*r;
}

78
src/math/__sinl.c Normal file
View File

@ -0,0 +1,78 @@
/* origin: FreeBSD /usr/src/lib/msun/ld80/k_sinl.c */
/* origin: FreeBSD /usr/src/lib/msun/ld128/k_sinl.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#if LDBL_MANT_DIG == 64
/*
* ld80 version of __sin.c. See __sin.c for most comments.
*/
/*
* Domain [-0.7854, 0.7854], range ~[-1.89e-22, 1.915e-22]
* |sin(x)/x - s(x)| < 2**-72.1
*
* See __cosl.c for more details about the polynomial.
*/
static const long double
S1 = -0.166666666666666666671L; /* -0xaaaaaaaaaaaaaaab.0p-66 */
static const double
S2 = 0.0083333333333333332, /* 0x11111111111111.0p-59 */
S3 = -0.00019841269841269427, /* -0x1a01a01a019f81.0p-65 */
S4 = 0.0000027557319223597490, /* 0x171de3a55560f7.0p-71 */
S5 = -0.000000025052108218074604, /* -0x1ae64564f16cad.0p-78 */
S6 = 1.6059006598854211e-10, /* 0x161242b90243b5.0p-85 */
S7 = -7.6429779983024564e-13, /* -0x1ae42ebd1b2e00.0p-93 */
S8 = 2.6174587166648325e-15; /* 0x179372ea0b3f64.0p-101 */
#define POLY(z) (S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8))))))
#elif LDBL_MANT_DIG == 113
/*
* ld128 version of __sin.c. See __sin.c for most comments.
*/
/*
* Domain [-0.7854, 0.7854], range ~[-1.53e-37, 1.659e-37]
* |sin(x)/x - s(x)| < 2**-122.1
*
* See __cosl.c for more details about the polynomial.
*/
static const long double
S1 = -0.16666666666666666666666666666666666606732416116558L,
S2 = 0.0083333333333333333333333333333331135404851288270047L,
S3 = -0.00019841269841269841269841269839935785325638310428717L,
S4 = 0.27557319223985890652557316053039946268333231205686e-5L,
S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
S6 = 0.16059043836821614596571832194524392581082444805729e-9L,
S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
S8 = 0.28114572543451292625024967174638477283187397621303e-14L;
static const double
S9 = -0.82206352458348947812512122163446202498005154296863e-17,
S10 = 0.19572940011906109418080609928334380560135358385256e-19,
S11 = -0.38680813379701966970673724299207480965452616911420e-22,
S12 = 0.64038150078671872796678569586315881020659912139412e-25;
#define POLY(z) (S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*(S8+ \
z*(S9+z*(S10+z*(S11+z*S12))))))))))
#endif
long double __sinl(long double x, long double y, int iy)
{
long double z,r,v;
z = x*x;
v = z*x;
r = POLY(z);
if (iy == 0)
return x+v*(S1+z*r);
return x-((z*(0.5*y-v*r)-y)-v*S1);
}
#endif

110
src/math/__tan.c Normal file
View File

@ -0,0 +1,110 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
/*
* ====================================================
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __tan( x, y, k )
* kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
*
* Algorithm
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
* 2. Callers must return tan(-0) = -0 without calling here since our
* odd polynomial is not evaluated in a way that preserves -0.
* Callers may do the optimization tan(x) ~ x for tiny x.
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
* [0,0.67434]
* 3 27
* tan(x) ~ x + T1*x + ... + T13*x
* where
*
* |tan(x) 2 4 26 | -59.2
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
* | x |
*
* Note: tan(x+y) = tan(x) + tan'(x)*y
* ~ tan(x) + (1+x*x)*y
* Therefore, for better accuracy in computing tan(x+y), let
* 3 2 2 2 2
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
* then
* 3 2
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
*
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
*/
#include "libm.h"
static const double T[] = {
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
},
pio4 = 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
pio4lo = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
double __tan(double x, double y, int odd)
{
double_t z, r, v, w, s, a;
double w0, a0;
uint32_t hx;
int big, sign;
GET_HIGH_WORD(hx,x);
big = (hx&0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
if (big) {
sign = hx>>31;
if (sign) {
x = -x;
y = -y;
}
x = (pio4 - x) + (pio4lo - y);
y = 0.0;
}
z = x * x;
w = z * z;
/*
* Break x^5*(T[1]+x^2*T[2]+...) into
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
*/
r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));
v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));
s = z * x;
r = y + z*(s*(r + v) + y) + s*T[0];
w = x + r;
if (big) {
s = 1 - 2*odd;
v = s - 2.0 * (x + (r - w*w/(w + s)));
return sign ? -v : v;
}
if (!odd)
return w;
/* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
w0 = w;
SET_LOW_WORD(w0, 0);
v = r - (w0 - x); /* w0+v = r+x */
a0 = a = -1.0 / w;
SET_LOW_WORD(a0, 0);
return a0 + a*(1.0 + a0*w0 + a0*v);
}

54
src/math/__tandf.c Normal file
View File

@ -0,0 +1,54 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_tanf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
* Optimized by Bruce D. Evans.
*/
/*
* ====================================================
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
static const double T[] = {
0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
};
float __tandf(double x, int odd)
{
double_t z,r,w,s,t,u;
z = x*x;
/*
* Split up the polynomial into small independent terms to give
* opportunities for parallel evaluation. The chosen splitting is
* micro-optimized for Athlons (XP, X64). It costs 2 multiplications
* relative to Horner's method on sequential machines.
*
* We add the small terms from lowest degree up for efficiency on
* non-sequential machines (the lowest degree terms tend to be ready
* earlier). Apart from this, we don't care about order of
* operations, and don't need to to care since we have precision to
* spare. However, the chosen splitting is good for accuracy too,
* and would give results as accurate as Horner's method if the
* small terms were added from highest degree down.
*/
r = T[4] + z*T[5];
t = T[2] + z*T[3];
w = z*z;
s = z*x;
u = T[0] + z*T[1];
r = (x + s*u) + (s*w)*(t + w*r);
return odd ? -1.0/r : r;
}

143
src/math/__tanl.c Normal file
View File

@ -0,0 +1,143 @@
/* origin: FreeBSD /usr/src/lib/msun/ld80/k_tanl.c */
/* origin: FreeBSD /usr/src/lib/msun/ld128/k_tanl.c */
/*
* ====================================================
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#if LDBL_MANT_DIG == 64
/*
* ld80 version of __tan.c. See __tan.c for most comments.
*/
/*
* Domain [-0.67434, 0.67434], range ~[-2.25e-22, 1.921e-22]
* |tan(x)/x - t(x)| < 2**-71.9
*
* See __cosl.c for more details about the polynomial.
*/
static const long double
T3 = 0.333333333333333333180L, /* 0xaaaaaaaaaaaaaaa5.0p-65 */
T5 = 0.133333333333333372290L, /* 0x88888888888893c3.0p-66 */
T7 = 0.0539682539682504975744L, /* 0xdd0dd0dd0dc13ba2.0p-68 */
pio4 = 0.785398163397448309628L, /* 0xc90fdaa22168c235.0p-64 */
pio4lo = -1.25413940316708300586e-20L; /* -0xece675d1fc8f8cbb.0p-130 */
static const double
T9 = 0.021869488536312216, /* 0x1664f4882cc1c2.0p-58 */
T11 = 0.0088632355256619590, /* 0x1226e355c17612.0p-59 */
T13 = 0.0035921281113786528, /* 0x1d6d3d185d7ff8.0p-61 */
T15 = 0.0014558334756312418, /* 0x17da354aa3f96b.0p-62 */
T17 = 0.00059003538700862256, /* 0x13559358685b83.0p-63 */
T19 = 0.00023907843576635544, /* 0x1f56242026b5be.0p-65 */
T21 = 0.000097154625656538905, /* 0x1977efc26806f4.0p-66 */
T23 = 0.000038440165747303162, /* 0x14275a09b3ceac.0p-67 */
T25 = 0.000018082171885432524, /* 0x12f5e563e5487e.0p-68 */
T27 = 0.0000024196006108814377, /* 0x144c0d80cc6896.0p-71 */
T29 = 0.0000078293456938132840, /* 0x106b59141a6cb3.0p-69 */
T31 = -0.0000032609076735050182, /* -0x1b5abef3ba4b59.0p-71 */
T33 = 0.0000023261313142559411; /* 0x13835436c0c87f.0p-71 */
#define RPOLY(w) (T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 + \
w * (T25 + w * (T29 + w * T33)))))))
#define VPOLY(w) (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 + \
w * (T27 + w * T31))))))
#elif LDBL_MANT_DIG == 113
/*
* ld128 version of __tan.c. See __tan.c for most comments.
*/
/*
* Domain [-0.67434, 0.67434], range ~[-3.37e-36, 1.982e-37]
* |tan(x)/x - t(x)| < 2**-117.8 (XXX should be ~1e-37)
*
* See __cosl.c for more details about the polynomial.
*/
static const long double
T3 = 0x1.5555555555555555555555555553p-2L,
T5 = 0x1.1111111111111111111111111eb5p-3L,
T7 = 0x1.ba1ba1ba1ba1ba1ba1ba1b694cd6p-5L,
T9 = 0x1.664f4882c10f9f32d6bbe09d8bcdp-6L,
T11 = 0x1.226e355e6c23c8f5b4f5762322eep-7L,
T13 = 0x1.d6d3d0e157ddfb5fed8e84e27b37p-9L,
T15 = 0x1.7da36452b75e2b5fce9ee7c2c92ep-10L,
T17 = 0x1.355824803674477dfcf726649efep-11L,
T19 = 0x1.f57d7734d1656e0aceb716f614c2p-13L,
T21 = 0x1.967e18afcb180ed942dfdc518d6cp-14L,
T23 = 0x1.497d8eea21e95bc7e2aa79b9f2cdp-15L,
T25 = 0x1.0b132d39f055c81be49eff7afd50p-16L,
T27 = 0x1.b0f72d33eff7bfa2fbc1059d90b6p-18L,
T29 = 0x1.5ef2daf21d1113df38d0fbc00267p-19L,
T31 = 0x1.1c77d6eac0234988cdaa04c96626p-20L,
T33 = 0x1.cd2a5a292b180e0bdd701057dfe3p-22L,
T35 = 0x1.75c7357d0298c01a31d0a6f7d518p-23L,
T37 = 0x1.2f3190f4718a9a520f98f50081fcp-24L,
pio4 = 0x1.921fb54442d18469898cc51701b8p-1L,
pio4lo = 0x1.cd129024e088a67cc74020bbea60p-116L;
static const double
T39 = 0.000000028443389121318352, /* 0x1e8a7592977938.0p-78 */
T41 = 0.000000011981013102001973, /* 0x19baa1b1223219.0p-79 */
T43 = 0.0000000038303578044958070, /* 0x107385dfb24529.0p-80 */
T45 = 0.0000000034664378216909893, /* 0x1dc6c702a05262.0p-81 */
T47 = -0.0000000015090641701997785, /* -0x19ecef3569ebb6.0p-82 */
T49 = 0.0000000029449552300483952, /* 0x194c0668da786a.0p-81 */
T51 = -0.0000000022006995706097711, /* -0x12e763b8845268.0p-81 */
T53 = 0.0000000015468200913196612, /* 0x1a92fc98c29554.0p-82 */
T55 = -0.00000000061311613386849674, /* -0x151106cbc779a9.0p-83 */
T57 = 1.4912469681508012e-10; /* 0x147edbdba6f43a.0p-85 */
#define RPOLY(w) (T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 + \
w * (T25 + w * (T29 + w * (T33 + w * (T37 + w * (T41 + \
w * (T45 + w * (T49 + w * (T53 + w * T57)))))))))))))
#define VPOLY(w) (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 + \
w * (T27 + w * (T31 + w * (T35 + w * (T39 + w * (T43 + \
w * (T47 + w * (T51 + w * T55))))))))))))
#endif
long double __tanl(long double x, long double y, int odd) {
long double z, r, v, w, s, a, t;
int big, sign;
big = fabsl(x) >= 0.67434;
if (big) {
sign = 0;
if (x < 0) {
sign = 1;
x = -x;
y = -y;
}
x = (pio4 - x) + (pio4lo - y);
y = 0.0;
}
z = x * x;
w = z * z;
r = RPOLY(w);
v = z * VPOLY(w);
s = z * x;
r = y + z * (s * (r + v) + y) + T3 * s;
w = x + r;
if (big) {
s = 1 - 2*odd;
v = s - 2.0 * (x + (r - w * w / (w + s)));
return sign ? -v : v;
}
if (!odd)
return w;
/*
* if allow error up to 2 ulp, simply return
* -1.0 / (x+r) here
*/
/* compute -1.0 / (x+r) accurately */
z = w;
z = z + 0x1p32 - 0x1p32;
v = r - (z - x); /* z+v = r+x */
t = a = -1.0 / w; /* a = -1.0/w */
t = t + 0x1p32 - 0x1p32;
s = 1.0 + t * z;
return t + a * (s + t * v);
}
#endif

7
src/math/aarch64/ceil.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double ceil(double x)
{
__asm__ ("frintp %d0, %d1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/ceilf.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
float ceilf(float x)
{
__asm__ ("frintp %s0, %s1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/fabs.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double fabs(double x)
{
__asm__ ("fabs %d0, %d1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/fabsf.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
float fabsf(float x)
{
__asm__ ("fabs %s0, %s1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/floor.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double floor(double x)
{
__asm__ ("frintm %d0, %d1" : "=w"(x) : "w"(x));
return x;
}

View File

@ -0,0 +1,7 @@
#include <math.h>
float floorf(float x)
{
__asm__ ("frintm %s0, %s1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/fma.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double fma(double x, double y, double z)
{
__asm__ ("fmadd %d0, %d1, %d2, %d3" : "=w"(x) : "w"(x), "w"(y), "w"(z));
return x;
}

7
src/math/aarch64/fmaf.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
float fmaf(float x, float y, float z)
{
__asm__ ("fmadd %s0, %s1, %s2, %s3" : "=w"(x) : "w"(x), "w"(y), "w"(z));
return x;
}

7
src/math/aarch64/fmax.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double fmax(double x, double y)
{
__asm__ ("fmaxnm %d0, %d1, %d2" : "=w"(x) : "w"(x), "w"(y));
return x;
}

7
src/math/aarch64/fmaxf.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
float fmaxf(float x, float y)
{
__asm__ ("fmaxnm %s0, %s1, %s2" : "=w"(x) : "w"(x), "w"(y));
return x;
}

7
src/math/aarch64/fmin.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double fmin(double x, double y)
{
__asm__ ("fminnm %d0, %d1, %d2" : "=w"(x) : "w"(x), "w"(y));
return x;
}

7
src/math/aarch64/fminf.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
float fminf(float x, float y)
{
__asm__ ("fminnm %s0, %s1, %s2" : "=w"(x) : "w"(x), "w"(y));
return x;
}

10
src/math/aarch64/llrint.c Normal file
View File

@ -0,0 +1,10 @@
#include <math.h>
long long llrint(double x)
{
long long n;
__asm__ (
"frintx %d1, %d1\n"
"fcvtzs %x0, %d1\n" : "=r"(n), "+w"(x));
return n;
}

View File

@ -0,0 +1,10 @@
#include <math.h>
long long llrintf(float x)
{
long long n;
__asm__ (
"frintx %s1, %s1\n"
"fcvtzs %x0, %s1\n" : "=r"(n), "+w"(x));
return n;
}

View File

@ -0,0 +1,8 @@
#include <math.h>
long long llround(double x)
{
long long n;
__asm__ ("fcvtas %x0, %d1" : "=r"(n) : "w"(x));
return n;
}

View File

@ -0,0 +1,8 @@
#include <math.h>
long long llroundf(float x)
{
long long n;
__asm__ ("fcvtas %x0, %s1" : "=r"(n) : "w"(x));
return n;
}

10
src/math/aarch64/lrint.c Normal file
View File

@ -0,0 +1,10 @@
#include <math.h>
long lrint(double x)
{
long n;
__asm__ (
"frintx %d1, %d1\n"
"fcvtzs %x0, %d1\n" : "=r"(n), "+w"(x));
return n;
}

10
src/math/aarch64/lrintf.c Normal file
View File

@ -0,0 +1,10 @@
#include <math.h>
long lrintf(float x)
{
long n;
__asm__ (
"frintx %s1, %s1\n"
"fcvtzs %x0, %s1\n" : "=r"(n), "+w"(x));
return n;
}

View File

@ -0,0 +1,8 @@
#include <math.h>
long lround(double x)
{
long n;
__asm__ ("fcvtas %x0, %d1" : "=r"(n) : "w"(x));
return n;
}

View File

@ -0,0 +1,8 @@
#include <math.h>
long lroundf(float x)
{
long n;
__asm__ ("fcvtas %x0, %s1" : "=r"(n) : "w"(x));
return n;
}

View File

@ -0,0 +1,7 @@
#include <math.h>
double nearbyint(double x)
{
__asm__ ("frinti %d0, %d1" : "=w"(x) : "w"(x));
return x;
}

View File

@ -0,0 +1,7 @@
#include <math.h>
float nearbyintf(float x)
{
__asm__ ("frinti %s0, %s1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/rint.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double rint(double x)
{
__asm__ ("frintx %d0, %d1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/rintf.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
float rintf(float x)
{
__asm__ ("frintx %s0, %s1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/round.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double round(double x)
{
__asm__ ("frinta %d0, %d1" : "=w"(x) : "w"(x));
return x;
}

View File

@ -0,0 +1,7 @@
#include <math.h>
float roundf(float x)
{
__asm__ ("frinta %s0, %s1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/sqrt.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double sqrt(double x)
{
__asm__ ("fsqrt %d0, %d1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/sqrtf.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
float sqrtf(float x)
{
__asm__ ("fsqrt %s0, %s1" : "=w"(x) : "w"(x));
return x;
}

7
src/math/aarch64/trunc.c Normal file
View File

@ -0,0 +1,7 @@
#include <math.h>
double trunc(double x)
{
__asm__ ("frintz %d0, %d1" : "=w"(x) : "w"(x));
return x;
}

View File

@ -0,0 +1,7 @@
#include <math.h>
float truncf(float x)
{
__asm__ ("frintz %s0, %s1" : "=w"(x) : "w"(x));
return x;
}

101
src/math/acos.c Normal file
View File

@ -0,0 +1,101 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* acos(x)
* Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x|<=0.5
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
* For x>0.5
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
* = 2asin(sqrt((1-x)/2))
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
* = 2f + (2c + 2s*z*R(z))
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
* for f so that f+c ~ sqrt(z).
* For x<-0.5
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
* Function needed: sqrt
*/
#include "libm.h"
static const double
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
static double R(double z)
{
double_t p, q;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
return p/q;
}
double acos(double x)
{
double z,w,s,c,df;
uint32_t hx,ix;
GET_HIGH_WORD(hx, x);
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3ff00000) {
uint32_t lx;
GET_LOW_WORD(lx,x);
if ((ix-0x3ff00000 | lx) == 0) {
/* acos(1)=0, acos(-1)=pi */
if (hx >> 31)
return 2*pio2_hi + 0x1p-120f;
return 0;
}
return 0/(x-x);
}
/* |x| < 0.5 */
if (ix < 0x3fe00000) {
if (ix <= 0x3c600000) /* |x| < 2**-57 */
return pio2_hi + 0x1p-120f;
return pio2_hi - (x - (pio2_lo-x*R(x*x)));
}
/* x < -0.5 */
if (hx >> 31) {
z = (1.0+x)*0.5;
s = sqrt(z);
w = R(z)*s-pio2_lo;
return 2*(pio2_hi - (s+w));
}
/* x > 0.5 */
z = (1.0-x)*0.5;
s = sqrt(z);
df = s;
SET_LOW_WORD(df,0);
c = (z-df*df)/(s+df);
w = R(z)*s+c;
return 2*(df+w);
}

71
src/math/acosf.c Normal file
View File

@ -0,0 +1,71 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_acosf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
static const float
pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
pS0 = 1.6666586697e-01,
pS1 = -4.2743422091e-02,
pS2 = -8.6563630030e-03,
qS1 = -7.0662963390e-01;
static float R(float z)
{
float_t p, q;
p = z*(pS0+z*(pS1+z*pS2));
q = 1.0f+z*qS1;
return p/q;
}
float acosf(float x)
{
float z,w,s,c,df;
uint32_t hx,ix;
GET_FLOAT_WORD(hx, x);
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3f800000) {
if (ix == 0x3f800000) {
if (hx >> 31)
return 2*pio2_hi + 0x1p-120f;
return 0;
}
return 0/(x-x);
}
/* |x| < 0.5 */
if (ix < 0x3f000000) {
if (ix <= 0x32800000) /* |x| < 2**-26 */
return pio2_hi + 0x1p-120f;
return pio2_hi - (x - (pio2_lo-x*R(x*x)));
}
/* x < -0.5 */
if (hx >> 31) {
z = (1+x)*0.5f;
s = sqrtf(z);
w = R(z)*s-pio2_lo;
return 2*(pio2_hi - (s+w));
}
/* x > 0.5 */
z = (1-x)*0.5f;
s = sqrtf(z);
GET_FLOAT_WORD(hx,s);
SET_FLOAT_WORD(df,hx&0xfffff000);
c = (z-df*df)/(s+df);
w = R(z)*s+c;
return 2*(df+w);
}

24
src/math/acosh.c Normal file
View File

@ -0,0 +1,24 @@
#include "libm.h"
#if FLT_EVAL_METHOD==2
#undef sqrt
#define sqrt sqrtl
#endif
/* acosh(x) = log(x + sqrt(x*x-1)) */
double acosh(double x)
{
union {double f; uint64_t i;} u = {.f = x};
unsigned e = u.i >> 52 & 0x7ff;
/* x < 1 domain error is handled in the called functions */
if (e < 0x3ff + 1)
/* |x| < 2, up to 2ulp error in [1,1.125] */
return log1p(x-1 + sqrt((x-1)*(x-1)+2*(x-1)));
if (e < 0x3ff + 26)
/* |x| < 0x1p26 */
return log(2*x - 1/(x+sqrt(x*x-1)));
/* |x| >= 0x1p26 or nan */
return log(x) + 0.693147180559945309417232121458176568;
}

26
src/math/acoshf.c Normal file
View File

@ -0,0 +1,26 @@
#include "libm.h"
#if FLT_EVAL_METHOD==2
#undef sqrtf
#define sqrtf sqrtl
#elif FLT_EVAL_METHOD==1
#undef sqrtf
#define sqrtf sqrt
#endif
/* acosh(x) = log(x + sqrt(x*x-1)) */
float acoshf(float x)
{
union {float f; uint32_t i;} u = {x};
uint32_t a = u.i & 0x7fffffff;
if (a < 0x3f800000+(1<<23))
/* |x| < 2, invalid if x < 1 or nan */
/* up to 2ulp error in [1,1.125] */
return log1pf(x-1 + sqrtf((x-1)*(x-1)+2*(x-1)));
if (a < 0x3f800000+(12<<23))
/* |x| < 0x1p12 */
return logf(2*x - 1/(x+sqrtf(x*x-1)));
/* x >= 0x1p12 */
return logf(x) + 0.693147180559945309417232121458176568f;
}

29
src/math/acoshl.c Normal file
View File

@ -0,0 +1,29 @@
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double acoshl(long double x)
{
return acosh(x);
}
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
/* acosh(x) = log(x + sqrt(x*x-1)) */
long double acoshl(long double x)
{
union ldshape u = {x};
int e = u.i.se & 0x7fff;
if (e < 0x3fff + 1)
/* |x| < 2, invalid if x < 1 or nan */
return log1pl(x-1 + sqrtl((x-1)*(x-1)+2*(x-1)));
if (e < 0x3fff + 32)
/* |x| < 0x1p32 */
return logl(2*x - 1/(x+sqrtl(x*x-1)));
return logl(x) + 0.693147180559945309417232121458176568L;
}
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
// TODO: broken implementation to make things compile
long double acoshl(long double x)
{
return acosh(x);
}
#endif

67
src/math/acosl.c Normal file
View File

@ -0,0 +1,67 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_acosl.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* See comments in acos.c.
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
*/
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double acosl(long double x)
{
return acos(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#include "__invtrigl.h"
#if LDBL_MANT_DIG == 64
#define CLEARBOTTOM(u) (u.i.m &= -1ULL << 32)
#elif LDBL_MANT_DIG == 113
#define CLEARBOTTOM(u) (u.i.lo = 0)
#endif
long double acosl(long double x)
{
union ldshape u = {x};
long double z, s, c, f;
uint16_t e = u.i.se & 0x7fff;
/* |x| >= 1 or nan */
if (e >= 0x3fff) {
if (x == 1)
return 0;
if (x == -1)
return 2*pio2_hi + 0x1p-120f;
return 0/(x-x);
}
/* |x| < 0.5 */
if (e < 0x3fff - 1) {
if (e < 0x3fff - LDBL_MANT_DIG - 1)
return pio2_hi + 0x1p-120f;
return pio2_hi - (__invtrigl_R(x*x)*x - pio2_lo + x);
}
/* x < -0.5 */
if (u.i.se >> 15) {
z = (1 + x)*0.5;
s = sqrtl(z);
return 2*(pio2_hi - (__invtrigl_R(z)*s - pio2_lo + s));
}
/* x > 0.5 */
z = (1 - x)*0.5;
s = sqrtl(z);
u.f = s;
CLEARBOTTOM(u);
f = u.f;
c = (z - f*f)/(s + f);
return 2*(__invtrigl_R(z)*s + c + f);
}
#endif

15
src/math/arm/fabs.c Normal file
View File

@ -0,0 +1,15 @@
#include <math.h>
#if __ARM_PCS_VFP && __ARM_FP&8
double fabs(double x)
{
__asm__ ("vabs.f64 %P0, %P1" : "=w"(x) : "w"(x));
return x;
}
#else
#include "../fabs.c"
#endif

15
src/math/arm/fabsf.c Normal file
View File

@ -0,0 +1,15 @@
#include <math.h>
#if __ARM_PCS_VFP && !BROKEN_VFP_ASM
float fabsf(float x)
{
__asm__ ("vabs.f32 %0, %1" : "=t"(x) : "t"(x));
return x;
}
#else
#include "../fabsf.c"
#endif

15
src/math/arm/fma.c Normal file
View File

@ -0,0 +1,15 @@
#include <math.h>
#if __ARM_FEATURE_FMA && __ARM_FP&8 && !__SOFTFP__
double fma(double x, double y, double z)
{
__asm__ ("vfma.f64 %P0, %P1, %P2" : "+w"(z) : "w"(x), "w"(y));
return z;
}
#else
#include "../fma.c"
#endif

15
src/math/arm/fmaf.c Normal file
View File

@ -0,0 +1,15 @@
#include <math.h>
#if __ARM_FEATURE_FMA && __ARM_FP&4 && !__SOFTFP__ && !BROKEN_VFP_ASM
float fmaf(float x, float y, float z)
{
__asm__ ("vfma.f32 %0, %1, %2" : "+t"(z) : "t"(x), "t"(y));
return z;
}
#else
#include "../fmaf.c"
#endif

15
src/math/arm/sqrt.c Normal file
View File

@ -0,0 +1,15 @@
#include <math.h>
#if (__ARM_PCS_VFP || (__VFP_FP__ && !__SOFTFP__)) && (__ARM_FP&8)
double sqrt(double x)
{
__asm__ ("vsqrt.f64 %P0, %P1" : "=w"(x) : "w"(x));
return x;
}
#else
#include "../sqrt.c"
#endif

15
src/math/arm/sqrtf.c Normal file
View File

@ -0,0 +1,15 @@
#include <math.h>
#if (__ARM_PCS_VFP || (__VFP_FP__ && !__SOFTFP__)) && !BROKEN_VFP_ASM
float sqrtf(float x)
{
__asm__ ("vsqrt.f32 %0, %1" : "=t"(x) : "t"(x));
return x;
}
#else
#include "../sqrtf.c"
#endif

107
src/math/asin.c Normal file
View File

@ -0,0 +1,107 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* where
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
* and its remez error is bounded by
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
*
* For x in [0.5,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#include "libm.h"
static const double
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
/* coefficients for R(x^2) */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
static double R(double z)
{
double_t p, q;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
return p/q;
}
double asin(double x)
{
double z,r,s;
uint32_t hx,ix;
GET_HIGH_WORD(hx, x);
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3ff00000) {
uint32_t lx;
GET_LOW_WORD(lx, x);
if ((ix-0x3ff00000 | lx) == 0)
/* asin(1) = +-pi/2 with inexact */
return x*pio2_hi + 0x1p-120f;
return 0/(x-x);
}
/* |x| < 0.5 */
if (ix < 0x3fe00000) {
/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
if (ix < 0x3e500000 && ix >= 0x00100000)
return x;
return x + x*R(x*x);
}
/* 1 > |x| >= 0.5 */
z = (1 - fabs(x))*0.5;
s = sqrt(z);
r = R(z);
if (ix >= 0x3fef3333) { /* if |x| > 0.975 */
x = pio2_hi-(2*(s+s*r)-pio2_lo);
} else {
double f,c;
/* f+c = sqrt(z) */
f = s;
SET_LOW_WORD(f,0);
c = (z-f*f)/(s+f);
x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
}
if (hx >> 31)
return -x;
return x;
}

61
src/math/asinf.c Normal file
View File

@ -0,0 +1,61 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_asinf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
static const double
pio2 = 1.570796326794896558e+00;
static const float
/* coefficients for R(x^2) */
pS0 = 1.6666586697e-01,
pS1 = -4.2743422091e-02,
pS2 = -8.6563630030e-03,
qS1 = -7.0662963390e-01;
static float R(float z)
{
float_t p, q;
p = z*(pS0+z*(pS1+z*pS2));
q = 1.0f+z*qS1;
return p/q;
}
float asinf(float x)
{
double s;
float z;
uint32_t hx,ix;
GET_FLOAT_WORD(hx, x);
ix = hx & 0x7fffffff;
if (ix >= 0x3f800000) { /* |x| >= 1 */
if (ix == 0x3f800000) /* |x| == 1 */
return x*pio2 + 0x1p-120f; /* asin(+-1) = +-pi/2 with inexact */
return 0/(x-x); /* asin(|x|>1) is NaN */
}
if (ix < 0x3f000000) { /* |x| < 0.5 */
/* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
if (ix < 0x39800000 && ix >= 0x00800000)
return x;
return x + x*R(x*x);
}
/* 1 > |x| >= 0.5 */
z = (1 - fabsf(x))*0.5f;
s = sqrt(z);
x = pio2 - 2*(s+s*R(z));
if (hx >> 31)
return -x;
return x;
}

28
src/math/asinh.c Normal file
View File

@ -0,0 +1,28 @@
#include "libm.h"
/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
double asinh(double x)
{
union {double f; uint64_t i;} u = {.f = x};
unsigned e = u.i >> 52 & 0x7ff;
unsigned s = u.i >> 63;
/* |x| */
u.i &= (uint64_t)-1/2;
x = u.f;
if (e >= 0x3ff + 26) {
/* |x| >= 0x1p26 or inf or nan */
x = log(x) + 0.693147180559945309417232121458176568;
} else if (e >= 0x3ff + 1) {
/* |x| >= 2 */
x = log(2*x + 1/(sqrt(x*x+1)+x));
} else if (e >= 0x3ff - 26) {
/* |x| >= 0x1p-26, up to 1.6ulp error in [0.125,0.5] */
x = log1p(x + x*x/(sqrt(x*x+1)+1));
} else {
/* |x| < 0x1p-26, raise inexact if x != 0 */
FORCE_EVAL(x + 0x1p120f);
}
return s ? -x : x;
}

28
src/math/asinhf.c Normal file
View File

@ -0,0 +1,28 @@
#include "libm.h"
/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
float asinhf(float x)
{
union {float f; uint32_t i;} u = {.f = x};
uint32_t i = u.i & 0x7fffffff;
unsigned s = u.i >> 31;
/* |x| */
u.i = i;
x = u.f;
if (i >= 0x3f800000 + (12<<23)) {
/* |x| >= 0x1p12 or inf or nan */
x = logf(x) + 0.693147180559945309417232121458176568f;
} else if (i >= 0x3f800000 + (1<<23)) {
/* |x| >= 2 */
x = logf(2*x + 1/(sqrtf(x*x+1)+x));
} else if (i >= 0x3f800000 - (12<<23)) {
/* |x| >= 0x1p-12, up to 1.6ulp error in [0.125,0.5] */
x = log1pf(x + x*x/(sqrtf(x*x+1)+1));
} else {
/* |x| < 0x1p-12, raise inexact if x!=0 */
FORCE_EVAL(x + 0x1p120f);
}
return s ? -x : x;
}

41
src/math/asinhl.c Normal file
View File

@ -0,0 +1,41 @@
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double asinhl(long double x)
{
return asinh(x);
}
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
long double asinhl(long double x)
{
union ldshape u = {x};
unsigned e = u.i.se & 0x7fff;
unsigned s = u.i.se >> 15;
/* |x| */
u.i.se = e;
x = u.f;
if (e >= 0x3fff + 32) {
/* |x| >= 0x1p32 or inf or nan */
x = logl(x) + 0.693147180559945309417232121458176568L;
} else if (e >= 0x3fff + 1) {
/* |x| >= 2 */
x = logl(2*x + 1/(sqrtl(x*x+1)+x));
} else if (e >= 0x3fff - 32) {
/* |x| >= 0x1p-32 */
x = log1pl(x + x*x/(sqrtl(x*x+1)+1));
} else {
/* |x| < 0x1p-32, raise inexact if x!=0 */
FORCE_EVAL(x + 0x1p120f);
}
return s ? -x : x;
}
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
// TODO: broken implementation to make things compile
long double asinhl(long double x)
{
return asinh(x);
}
#endif

71
src/math/asinl.c Normal file
View File

@ -0,0 +1,71 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_asinl.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* See comments in asin.c.
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
*/
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double asinl(long double x)
{
return asin(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#include "__invtrigl.h"
#if LDBL_MANT_DIG == 64
#define CLOSETO1(u) (u.i.m>>56 >= 0xf7)
#define CLEARBOTTOM(u) (u.i.m &= -1ULL << 32)
#elif LDBL_MANT_DIG == 113
#define CLOSETO1(u) (u.i.top >= 0xee00)
#define CLEARBOTTOM(u) (u.i.lo = 0)
#endif
long double asinl(long double x)
{
union ldshape u = {x};
long double z, r, s;
uint16_t e = u.i.se & 0x7fff;
int sign = u.i.se >> 15;
if (e >= 0x3fff) { /* |x| >= 1 or nan */
/* asin(+-1)=+-pi/2 with inexact */
if (x == 1 || x == -1)
return x*pio2_hi + 0x1p-120f;
return 0/(x-x);
}
if (e < 0x3fff - 1) { /* |x| < 0.5 */
if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) {
/* return x with inexact if x!=0 */
FORCE_EVAL(x + 0x1p120f);
return x;
}
return x + x*__invtrigl_R(x*x);
}
/* 1 > |x| >= 0.5 */
z = (1.0 - fabsl(x))*0.5;
s = sqrtl(z);
r = __invtrigl_R(z);
if (CLOSETO1(u)) {
x = pio2_hi - (2*(s+s*r)-pio2_lo);
} else {
long double f, c;
u.f = s;
CLEARBOTTOM(u);
f = u.f;
c = (z - f*f)/(s + f);
x = 0.5*pio2_hi-(2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
}
return sign ? -x : x;
}
#endif

116
src/math/atan.c Normal file
View File

@ -0,0 +1,116 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* atan(x)
* Method
* 1. Reduce x to positive by atan(x) = -atan(-x).
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
* is further reduced to one of the following intervals and the
* arctangent of t is evaluated by the corresponding formula:
*
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "libm.h"
static const double atanhi[] = {
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
};
static const double atanlo[] = {
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
};
static const double aT[] = {
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
};
double atan(double x)
{
double_t w,s1,s2,z;
uint32_t ix,sign;
int id;
GET_HIGH_WORD(ix, x);
sign = ix >> 31;
ix &= 0x7fffffff;
if (ix >= 0x44100000) { /* if |x| >= 2^66 */
if (isnan(x))
return x;
z = atanhi[3] + 0x1p-120f;
return sign ? -z : z;
}
if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
if (ix < 0x3e400000) { /* |x| < 2^-27 */
if (ix < 0x00100000)
/* raise underflow for subnormal x */
FORCE_EVAL((float)x);
return x;
}
id = -1;
} else {
x = fabs(x);
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */
id = 0;
x = (2.0*x-1.0)/(2.0+x);
} else { /* 11/16 <= |x| < 19/16 */
id = 1;
x = (x-1.0)/(x+1.0);
}
} else {
if (ix < 0x40038000) { /* |x| < 2.4375 */
id = 2;
x = (x-1.5)/(1.0+1.5*x);
} else { /* 2.4375 <= |x| < 2^66 */
id = 3;
x = -1.0/x;
}
}
}
/* end of argument reduction */
z = x*x;
w = z*z;
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
if (id < 0)
return x - x*(s1+s2);
z = atanhi[id] - (x*(s1+s2) - atanlo[id] - x);
return sign ? -z : z;
}

107
src/math/atan2.c Normal file
View File

@ -0,0 +1,107 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* atan2(y,x)
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
*
* Special cases:
*
* ATAN2((anything), NaN ) is NaN;
* ATAN2(NAN , (anything) ) is NaN;
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
* ATAN2(+-INF,+INF ) is +-pi/4 ;
* ATAN2(+-INF,-INF ) is +-3pi/4;
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "libm.h"
static const double
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
double atan2(double y, double x)
{
double z;
uint32_t m,lx,ly,ix,iy;
if (isnan(x) || isnan(y))
return x+y;
EXTRACT_WORDS(ix, lx, x);
EXTRACT_WORDS(iy, ly, y);
if ((ix-0x3ff00000 | lx) == 0) /* x = 1.0 */
return atan(y);
m = ((iy>>31)&1) | ((ix>>30)&2); /* 2*sign(x)+sign(y) */
ix = ix & 0x7fffffff;
iy = iy & 0x7fffffff;
/* when y = 0 */
if ((iy|ly) == 0) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi; /* atan(+0,-anything) = pi */
case 3: return -pi; /* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if ((ix|lx) == 0)
return m&1 ? -pi/2 : pi/2;
/* when x is INF */
if (ix == 0x7ff00000) {
if (iy == 0x7ff00000) {
switch(m) {
case 0: return pi/4; /* atan(+INF,+INF) */
case 1: return -pi/4; /* atan(-INF,+INF) */
case 2: return 3*pi/4; /* atan(+INF,-INF) */
case 3: return -3*pi/4; /* atan(-INF,-INF) */
}
} else {
switch(m) {
case 0: return 0.0; /* atan(+...,+INF) */
case 1: return -0.0; /* atan(-...,+INF) */
case 2: return pi; /* atan(+...,-INF) */
case 3: return -pi; /* atan(-...,-INF) */
}
}
}
/* |y/x| > 0x1p64 */
if (ix+(64<<20) < iy || iy == 0x7ff00000)
return m&1 ? -pi/2 : pi/2;
/* z = atan(|y/x|) without spurious underflow */
if ((m&2) && iy+(64<<20) < ix) /* |y/x| < 0x1p-64, x<0 */
z = 0;
else
z = atan(fabs(y/x));
switch (m) {
case 0: return z; /* atan(+,+) */
case 1: return -z; /* atan(-,+) */
case 2: return pi - (z-pi_lo); /* atan(+,-) */
default: /* case 3 */
return (z-pi_lo) - pi; /* atan(-,-) */
}
}

83
src/math/atan2f.c Normal file
View File

@ -0,0 +1,83 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2f.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
static const float
pi = 3.1415927410e+00, /* 0x40490fdb */
pi_lo = -8.7422776573e-08; /* 0xb3bbbd2e */
float atan2f(float y, float x)
{
float z;
uint32_t m,ix,iy;
if (isnan(x) || isnan(y))
return x+y;
GET_FLOAT_WORD(ix, x);
GET_FLOAT_WORD(iy, y);
if (ix == 0x3f800000) /* x=1.0 */
return atanf(y);
m = ((iy>>31)&1) | ((ix>>30)&2); /* 2*sign(x)+sign(y) */
ix &= 0x7fffffff;
iy &= 0x7fffffff;
/* when y = 0 */
if (iy == 0) {
switch (m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi; /* atan(+0,-anything) = pi */
case 3: return -pi; /* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if (ix == 0)
return m&1 ? -pi/2 : pi/2;
/* when x is INF */
if (ix == 0x7f800000) {
if (iy == 0x7f800000) {
switch (m) {
case 0: return pi/4; /* atan(+INF,+INF) */
case 1: return -pi/4; /* atan(-INF,+INF) */
case 2: return 3*pi/4; /*atan(+INF,-INF)*/
case 3: return -3*pi/4; /*atan(-INF,-INF)*/
}
} else {
switch (m) {
case 0: return 0.0f; /* atan(+...,+INF) */
case 1: return -0.0f; /* atan(-...,+INF) */
case 2: return pi; /* atan(+...,-INF) */
case 3: return -pi; /* atan(-...,-INF) */
}
}
}
/* |y/x| > 0x1p26 */
if (ix+(26<<23) < iy || iy == 0x7f800000)
return m&1 ? -pi/2 : pi/2;
/* z = atan(|y/x|) with correct underflow */
if ((m&2) && iy+(26<<23) < ix) /*|y/x| < 0x1p-26, x < 0 */
z = 0.0;
else
z = atanf(fabsf(y/x));
switch (m) {
case 0: return z; /* atan(+,+) */
case 1: return -z; /* atan(-,+) */
case 2: return pi - (z-pi_lo); /* atan(+,-) */
default: /* case 3 */
return (z-pi_lo) - pi; /* atan(-,-) */
}
}

85
src/math/atan2l.c Normal file
View File

@ -0,0 +1,85 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2l.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/*
* See comments in atan2.c.
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
*/
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double atan2l(long double y, long double x)
{
return atan2(y, x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#include "__invtrigl.h"
long double atan2l(long double y, long double x)
{
union ldshape ux, uy;
long double z;
int m, ex, ey;
if (isnan(x) || isnan(y))
return x+y;
if (x == 1)
return atanl(y);
ux.f = x;
uy.f = y;
ex = ux.i.se & 0x7fff;
ey = uy.i.se & 0x7fff;
m = 2*(ux.i.se>>15) | uy.i.se>>15;
if (y == 0) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return 2*pio2_hi; /* atan(+0,-anything) = pi */
case 3: return -2*pio2_hi; /* atan(-0,-anything) =-pi */
}
}
if (x == 0)
return m&1 ? -pio2_hi : pio2_hi;
if (ex == 0x7fff) {
if (ey == 0x7fff) {
switch(m) {
case 0: return pio2_hi/2; /* atan(+INF,+INF) */
case 1: return -pio2_hi/2; /* atan(-INF,+INF) */
case 2: return 1.5*pio2_hi; /* atan(+INF,-INF) */
case 3: return -1.5*pio2_hi; /* atan(-INF,-INF) */
}
} else {
switch(m) {
case 0: return 0.0; /* atan(+...,+INF) */
case 1: return -0.0; /* atan(-...,+INF) */
case 2: return 2*pio2_hi; /* atan(+...,-INF) */
case 3: return -2*pio2_hi; /* atan(-...,-INF) */
}
}
}
if (ex+120 < ey || ey == 0x7fff)
return m&1 ? -pio2_hi : pio2_hi;
/* z = atan(|y/x|) without spurious underflow */
if ((m&2) && ey+120 < ex) /* |y/x| < 0x1p-120, x<0 */
z = 0.0;
else
z = atanl(fabsl(y/x));
switch (m) {
case 0: return z; /* atan(+,+) */
case 1: return -z; /* atan(-,+) */
case 2: return 2*pio2_hi-(z-2*pio2_lo); /* atan(+,-) */
default: /* case 3 */
return (z-2*pio2_lo)-2*pio2_hi; /* atan(-,-) */
}
}
#endif

94
src/math/atanf.c Normal file
View File

@ -0,0 +1,94 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_atanf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "libm.h"
static const float atanhi[] = {
4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
};
static const float atanlo[] = {
5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
};
static const float aT[] = {
3.3333328366e-01,
-1.9999158382e-01,
1.4253635705e-01,
-1.0648017377e-01,
6.1687607318e-02,
};
float atanf(float x)
{
float_t w,s1,s2,z;
uint32_t ix,sign;
int id;
GET_FLOAT_WORD(ix, x);
sign = ix>>31;
ix &= 0x7fffffff;
if (ix >= 0x4c800000) { /* if |x| >= 2**26 */
if (isnan(x))
return x;
z = atanhi[3] + 0x1p-120f;
return sign ? -z : z;
}
if (ix < 0x3ee00000) { /* |x| < 0.4375 */
if (ix < 0x39800000) { /* |x| < 2**-12 */
if (ix < 0x00800000)
/* raise underflow for subnormal x */
FORCE_EVAL(x*x);
return x;
}
id = -1;
} else {
x = fabsf(x);
if (ix < 0x3f980000) { /* |x| < 1.1875 */
if (ix < 0x3f300000) { /* 7/16 <= |x| < 11/16 */
id = 0;
x = (2.0f*x - 1.0f)/(2.0f + x);
} else { /* 11/16 <= |x| < 19/16 */
id = 1;
x = (x - 1.0f)/(x + 1.0f);
}
} else {
if (ix < 0x401c0000) { /* |x| < 2.4375 */
id = 2;
x = (x - 1.5f)/(1.0f + 1.5f*x);
} else { /* 2.4375 <= |x| < 2**26 */
id = 3;
x = -1.0f/x;
}
}
}
/* end of argument reduction */
z = x*x;
w = z*z;
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
s1 = z*(aT[0]+w*(aT[2]+w*aT[4]));
s2 = w*(aT[1]+w*aT[3]);
if (id < 0)
return x - x*(s1+s2);
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
return sign ? -z : z;
}

29
src/math/atanh.c Normal file
View File

@ -0,0 +1,29 @@
#include "libm.h"
/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
double atanh(double x)
{
union {double f; uint64_t i;} u = {.f = x};
unsigned e = u.i >> 52 & 0x7ff;
unsigned s = u.i >> 63;
double_t y;
/* |x| */
u.i &= (uint64_t)-1/2;
y = u.f;
if (e < 0x3ff - 1) {
if (e < 0x3ff - 32) {
/* handle underflow */
if (e == 0)
FORCE_EVAL((float)y);
} else {
/* |x| < 0.5, up to 1.7ulp error */
y = 0.5*log1p(2*y + 2*y*y/(1-y));
}
} else {
/* avoid overflow */
y = 0.5*log1p(2*(y/(1-y)));
}
return s ? -y : y;
}

28
src/math/atanhf.c Normal file
View File

@ -0,0 +1,28 @@
#include "libm.h"
/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
float atanhf(float x)
{
union {float f; uint32_t i;} u = {.f = x};
unsigned s = u.i >> 31;
float_t y;
/* |x| */
u.i &= 0x7fffffff;
y = u.f;
if (u.i < 0x3f800000 - (1<<23)) {
if (u.i < 0x3f800000 - (32<<23)) {
/* handle underflow */
if (u.i < (1<<23))
FORCE_EVAL((float)(y*y));
} else {
/* |x| < 0.5, up to 1.7ulp error */
y = 0.5f*log1pf(2*y + 2*y*y/(1-y));
}
} else {
/* avoid overflow */
y = 0.5f*log1pf(2*(y/(1-y)));
}
return s ? -y : y;
}

35
src/math/atanhl.c Normal file
View File

@ -0,0 +1,35 @@
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double atanhl(long double x)
{
return atanh(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
long double atanhl(long double x)
{
union ldshape u = {x};
unsigned e = u.i.se & 0x7fff;
unsigned s = u.i.se >> 15;
/* |x| */
u.i.se = e;
x = u.f;
if (e < 0x3ff - 1) {
if (e < 0x3ff - LDBL_MANT_DIG/2) {
/* handle underflow */
if (e == 0)
FORCE_EVAL((float)x);
} else {
/* |x| < 0.5, up to 1.7ulp error */
x = 0.5*log1pl(2*x + 2*x*x/(1-x));
}
} else {
/* avoid overflow */
x = 0.5*log1pl(2*(x/(1-x)));
}
return s ? -x : x;
}
#endif

184
src/math/atanl.c Normal file
View File

@ -0,0 +1,184 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_atanl.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* See comments in atan.c.
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
*/
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double atanl(long double x)
{
return atan(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#if LDBL_MANT_DIG == 64
#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | (u.i.m>>55 & 0xff))
static const long double atanhi[] = {
4.63647609000806116202e-01L,
7.85398163397448309628e-01L,
9.82793723247329067960e-01L,
1.57079632679489661926e+00L,
};
static const long double atanlo[] = {
1.18469937025062860669e-20L,
-1.25413940316708300586e-20L,
2.55232234165405176172e-20L,
-2.50827880633416601173e-20L,
};
static const long double aT[] = {
3.33333333333333333017e-01L,
-1.99999999999999632011e-01L,
1.42857142857046531280e-01L,
-1.11111111100562372733e-01L,
9.09090902935647302252e-02L,
-7.69230552476207730353e-02L,
6.66661718042406260546e-02L,
-5.88158892835030888692e-02L,
5.25499891539726639379e-02L,
-4.70119845393155721494e-02L,
4.03539201366454414072e-02L,
-2.91303858419364158725e-02L,
1.24822046299269234080e-02L,
};
static long double T_even(long double x)
{
return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] +
x * (aT[8] + x * (aT[10] + x * aT[12])))));
}
static long double T_odd(long double x)
{
return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] +
x * (aT[9] + x * aT[11]))));
}
#elif LDBL_MANT_DIG == 113
#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | u.i.top>>8)
static const long double atanhi[] = {
4.63647609000806116214256231461214397e-01L,
7.85398163397448309615660845819875699e-01L,
9.82793723247329067985710611014666038e-01L,
1.57079632679489661923132169163975140e+00L,
};
static const long double atanlo[] = {
4.89509642257333492668618435220297706e-36L,
2.16795253253094525619926100651083806e-35L,
-2.31288434538183565909319952098066272e-35L,
4.33590506506189051239852201302167613e-35L,
};
static const long double aT[] = {
3.33333333333333333333333333333333125e-01L,
-1.99999999999999999999999999999180430e-01L,
1.42857142857142857142857142125269827e-01L,
-1.11111111111111111111110834490810169e-01L,
9.09090909090909090908522355708623681e-02L,
-7.69230769230769230696553844935357021e-02L,
6.66666666666666660390096773046256096e-02L,
-5.88235294117646671706582985209643694e-02L,
5.26315789473666478515847092020327506e-02L,
-4.76190476189855517021024424991436144e-02L,
4.34782608678695085948531993458097026e-02L,
-3.99999999632663469330634215991142368e-02L,
3.70370363987423702891250829918659723e-02L,
-3.44827496515048090726669907612335954e-02L,
3.22579620681420149871973710852268528e-02L,
-3.03020767654269261041647570626778067e-02L,
2.85641979882534783223403715930946138e-02L,
-2.69824879726738568189929461383741323e-02L,
2.54194698498808542954187110873675769e-02L,
-2.35083879708189059926183138130183215e-02L,
2.04832358998165364349957325067131428e-02L,
-1.54489555488544397858507248612362957e-02L,
8.64492360989278761493037861575248038e-03L,
-2.58521121597609872727919154569765469e-03L,
};
static long double T_even(long double x)
{
return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * (aT[8] +
x * (aT[10] + x * (aT[12] + x * (aT[14] + x * (aT[16] +
x * (aT[18] + x * (aT[20] + x * aT[22])))))))))));
}
static long double T_odd(long double x)
{
return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * (aT[9] +
x * (aT[11] + x * (aT[13] + x * (aT[15] + x * (aT[17] +
x * (aT[19] + x * (aT[21] + x * aT[23])))))))))));
}
#endif
long double atanl(long double x)
{
union ldshape u = {x};
long double w, s1, s2, z;
int id;
unsigned e = u.i.se & 0x7fff;
unsigned sign = u.i.se >> 15;
unsigned expman;
if (e >= 0x3fff + LDBL_MANT_DIG + 1) { /* if |x| is large, atan(x)~=pi/2 */
if (isnan(x))
return x;
return sign ? -atanhi[3] : atanhi[3];
}
/* Extract the exponent and the first few bits of the mantissa. */
expman = EXPMAN(u);
if (expman < ((0x3fff - 2) << 8) + 0xc0) { /* |x| < 0.4375 */
if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) { /* if |x| is small, atanl(x)~=x */
/* raise underflow if subnormal */
if (e == 0)
FORCE_EVAL((float)x);
return x;
}
id = -1;
} else {
x = fabsl(x);
if (expman < (0x3fff << 8) + 0x30) { /* |x| < 1.1875 */
if (expman < ((0x3fff - 1) << 8) + 0x60) { /* 7/16 <= |x| < 11/16 */
id = 0;
x = (2.0*x-1.0)/(2.0+x);
} else { /* 11/16 <= |x| < 19/16 */
id = 1;
x = (x-1.0)/(x+1.0);
}
} else {
if (expman < ((0x3fff + 1) << 8) + 0x38) { /* |x| < 2.4375 */
id = 2;
x = (x-1.5)/(1.0+1.5*x);
} else { /* 2.4375 <= |x| */
id = 3;
x = -1.0/x;
}
}
}
/* end of argument reduction */
z = x*x;
w = z*z;
/* break sum aT[i]z**(i+1) into odd and even poly */
s1 = z*T_even(w);
s2 = w*T_odd(w);
if (id < 0)
return x - x*(s1+s2);
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
return sign ? -z : z;
}
#endif

103
src/math/cbrt.c Normal file
View File

@ -0,0 +1,103 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrt.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* Optimized by Bruce D. Evans.
*/
/* cbrt(x)
* Return cube root of x
*/
#include <math.h>
#include <stdint.h>
static const uint32_t
B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
/* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
static const double
P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
double cbrt(double x)
{
union {double f; uint64_t i;} u = {x};
double_t r,s,t,w;
uint32_t hx = u.i>>32 & 0x7fffffff;
if (hx >= 0x7ff00000) /* cbrt(NaN,INF) is itself */
return x+x;
/*
* Rough cbrt to 5 bits:
* cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
* where e is integral and >= 0, m is real and in [0, 1), and "/" and
* "%" are integer division and modulus with rounding towards minus
* infinity. The RHS is always >= the LHS and has a maximum relative
* error of about 1 in 16. Adding a bias of -0.03306235651 to the
* (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
* floating point representation, for finite positive normal values,
* ordinary integer divison of the value in bits magically gives
* almost exactly the RHS of the above provided we first subtract the
* exponent bias (1023 for doubles) and later add it back. We do the
* subtraction virtually to keep e >= 0 so that ordinary integer
* division rounds towards minus infinity; this is also efficient.
*/
if (hx < 0x00100000) { /* zero or subnormal? */
u.f = x*0x1p54;
hx = u.i>>32 & 0x7fffffff;
if (hx == 0)
return x; /* cbrt(0) is itself */
hx = hx/3 + B2;
} else
hx = hx/3 + B1;
u.i &= 1ULL<<63;
u.i |= (uint64_t)hx << 32;
t = u.f;
/*
* New cbrt to 23 bits:
* cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
* where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
* to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
* has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
* gives us bounds for r = t**3/x.
*
* Try to optimize for parallel evaluation as in __tanf.c.
*/
r = (t*t)*(t/x);
t = t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
/*
* Round t away from zero to 23 bits (sloppily except for ensuring that
* the result is larger in magnitude than cbrt(x) but not much more than
* 2 23-bit ulps larger). With rounding towards zero, the error bound
* would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
* in the rounded t, the infinite-precision error in the Newton
* approximation barely affects third digit in the final error
* 0.667; the error in the rounded t can be up to about 3 23-bit ulps
* before the final error is larger than 0.667 ulps.
*/
u.f = t;
u.i = (u.i + 0x80000000) & 0xffffffffc0000000ULL;
t = u.f;
/* one step Newton iteration to 53 bits with error < 0.667 ulps */
s = t*t; /* t*t is exact */
r = x/s; /* error <= 0.5 ulps; |r| < |t| */
w = t+t; /* t+t is exact */
r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
t = t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
return t;
}

66
src/math/cbrtf.c Normal file
View File

@ -0,0 +1,66 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
* Debugged and optimized by Bruce D. Evans.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* cbrtf(x)
* Return cube root of x
*/
#include <math.h>
#include <stdint.h>
static const unsigned
B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
float cbrtf(float x)
{
double_t r,T;
union {float f; uint32_t i;} u = {x};
uint32_t hx = u.i & 0x7fffffff;
if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */
return x + x;
/* rough cbrt to 5 bits */
if (hx < 0x00800000) { /* zero or subnormal? */
if (hx == 0)
return x; /* cbrt(+-0) is itself */
u.f = x*0x1p24f;
hx = u.i & 0x7fffffff;
hx = hx/3 + B2;
} else
hx = hx/3 + B1;
u.i &= 0x80000000;
u.i |= hx;
/*
* First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
* double precision so that its terms can be arranged for efficiency
* without causing overflow or underflow.
*/
T = u.f;
r = T*T*T;
T = T*((double_t)x+x+r)/(x+r+r);
/*
* Second step Newton iteration to 47 bits. In double precision for
* efficiency and accuracy.
*/
r = T*T*T;
T = T*((double_t)x+x+r)/(x+r+r);
/* rounding to 24 bits is perfect in round-to-nearest mode */
return T;
}

124
src/math/cbrtl.c Normal file
View File

@ -0,0 +1,124 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtl.c */
/*-
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* The argument reduction and testing for exceptional cases was
* written by Steven G. Kargl with input from Bruce D. Evans
* and David A. Schultz.
*/
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double cbrtl(long double x)
{
return cbrt(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
static const unsigned B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
long double cbrtl(long double x)
{
union ldshape u = {x}, v;
union {float f; uint32_t i;} uft;
long double r, s, t, w;
double_t dr, dt, dx;
float_t ft;
int e = u.i.se & 0x7fff;
int sign = u.i.se & 0x8000;
/*
* If x = +-Inf, then cbrt(x) = +-Inf.
* If x = NaN, then cbrt(x) = NaN.
*/
if (e == 0x7fff)
return x + x;
if (e == 0) {
/* Adjust subnormal numbers. */
u.f *= 0x1p120;
e = u.i.se & 0x7fff;
/* If x = +-0, then cbrt(x) = +-0. */
if (e == 0)
return x;
e -= 120;
}
e -= 0x3fff;
u.i.se = 0x3fff;
x = u.f;
switch (e % 3) {
case 1:
case -2:
x *= 2;
e--;
break;
case 2:
case -1:
x *= 4;
e -= 2;
break;
}
v.f = 1.0;
v.i.se = sign | (0x3fff + e/3);
/*
* The following is the guts of s_cbrtf, with the handling of
* special values removed and extra care for accuracy not taken,
* but with most of the extra accuracy not discarded.
*/
/* ~5-bit estimate: */
uft.f = x;
uft.i = (uft.i & 0x7fffffff)/3 + B1;
ft = uft.f;
/* ~16-bit estimate: */
dx = x;
dt = ft;
dr = dt * dt * dt;
dt = dt * (dx + dx + dr) / (dx + dr + dr);
/* ~47-bit estimate: */
dr = dt * dt * dt;
dt = dt * (dx + dx + dr) / (dx + dr + dr);
#if LDBL_MANT_DIG == 64
/*
* dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).
* Round it away from zero to 32 bits (32 so that t*t is exact, and
* away from zero for technical reasons).
*/
t = dt + (0x1.0p32L + 0x1.0p-31L) - 0x1.0p32;
#elif LDBL_MANT_DIG == 113
/*
* Round dt away from zero to 47 bits. Since we don't trust the 47,
* add 2 47-bit ulps instead of 1 to round up. Rounding is slow and
* might be avoidable in this case, since on most machines dt will
* have been evaluated in 53-bit precision and the technical reasons
* for rounding up might not apply to either case in cbrtl() since
* dt is much more accurate than needed.
*/
t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60;
#endif
/*
* Final step Newton iteration to 64 or 113 bits with
* error < 0.667 ulps
*/
s = t*t; /* t*t is exact */
r = x/s; /* error <= 0.5 ulps; |r| < |t| */
w = t+t; /* t+t is exact */
r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
t = t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
t *= v.f;
return t;
}
#endif

31
src/math/ceil.c Normal file
View File

@ -0,0 +1,31 @@
#include "libm.h"
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
#define EPS DBL_EPSILON
#elif FLT_EVAL_METHOD==2
#define EPS LDBL_EPSILON
#endif
static const double_t toint = 1/EPS;
double ceil(double x)
{
union {double f; uint64_t i;} u = {x};
int e = u.i >> 52 & 0x7ff;
double_t y;
if (e >= 0x3ff+52 || x == 0)
return x;
/* y = int(x) - x, where int(x) is an integer neighbor of x */
if (u.i >> 63)
y = x - toint + toint - x;
else
y = x + toint - toint - x;
/* special case because of non-nearest rounding modes */
if (e <= 0x3ff-1) {
FORCE_EVAL(y);
return u.i >> 63 ? -0.0 : 1;
}
if (y < 0)
return x + y + 1;
return x + y;
}

27
src/math/ceilf.c Normal file
View File

@ -0,0 +1,27 @@
#include "libm.h"
float ceilf(float x)
{
union {float f; uint32_t i;} u = {x};
int e = (int)(u.i >> 23 & 0xff) - 0x7f;
uint32_t m;
if (e >= 23)
return x;
if (e >= 0) {
m = 0x007fffff >> e;
if ((u.i & m) == 0)
return x;
FORCE_EVAL(x + 0x1p120f);
if (u.i >> 31 == 0)
u.i += m;
u.i &= ~m;
} else {
FORCE_EVAL(x + 0x1p120f);
if (u.i >> 31)
u.f = -0.0;
else if (u.i << 1)
u.f = 1.0;
}
return u.f;
}

34
src/math/ceill.c Normal file
View File

@ -0,0 +1,34 @@
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double ceill(long double x)
{
return ceil(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
static const long double toint = 1/LDBL_EPSILON;
long double ceill(long double x)
{
union ldshape u = {x};
int e = u.i.se & 0x7fff;
long double y;
if (e >= 0x3fff+LDBL_MANT_DIG-1 || x == 0)
return x;
/* y = int(x) - x, where int(x) is an integer neighbor of x */
if (u.i.se >> 15)
y = x - toint + toint - x;
else
y = x + toint - toint - x;
/* special case because of non-nearest rounding modes */
if (e <= 0x3fff-1) {
FORCE_EVAL(y);
return u.i.se >> 15 ? -0.0 : 1;
}
if (y < 0)
return x + y + 1;
return x + y;
}
#endif

8
src/math/copysign.c Normal file
View File

@ -0,0 +1,8 @@
#include "libm.h"
double copysign(double x, double y) {
union {double f; uint64_t i;} ux={x}, uy={y};
ux.i &= -1ULL/2;
ux.i |= uy.i & 1ULL<<63;
return ux.f;
}

10
src/math/copysignf.c Normal file
View File

@ -0,0 +1,10 @@
#include <math.h>
#include <stdint.h>
float copysignf(float x, float y)
{
union {float f; uint32_t i;} ux={x}, uy={y};
ux.i &= 0x7fffffff;
ux.i |= uy.i & 0x80000000;
return ux.f;
}

Some files were not shown because too many files have changed in this diff Show More