mirror of
https://github.com/OpenDiablo2/OpenDiablo2
synced 2024-11-17 09:56:07 -05:00
259c6e7e76
* All Vector methods which operate on the vector return pointers to it. * All Vector methods which take vectors take Vector pointers.
346 lines
8.4 KiB
Go
346 lines
8.4 KiB
Go
package d2vector
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
|
|
"github.com/OpenDiablo2/OpenDiablo2/d2common/d2math"
|
|
)
|
|
|
|
// Vector is an implementation of a Euclidean vector using float64 with common vector convenience methods.
|
|
type Vector struct {
|
|
x, y float64
|
|
}
|
|
|
|
const two float64 = 2
|
|
|
|
// NewVector creates a new Vector with the given x and y values.
|
|
func NewVector(x, y float64) *Vector {
|
|
return &Vector{x, y}
|
|
}
|
|
|
|
// X returns the x value of this vector.
|
|
func (v *Vector) X() float64 {
|
|
return v.x
|
|
}
|
|
|
|
// Y returns the y value of this vector.
|
|
func (v *Vector) Y() float64 {
|
|
return v.y
|
|
}
|
|
|
|
// Equals returns true if the float64 values of this vector are exactly equal to the given Vector.
|
|
func (v *Vector) Equals(o *Vector) bool {
|
|
return v.x == o.x && v.y == o.y
|
|
}
|
|
|
|
// EqualsApprox returns true if the values of this Vector are approximately equal to those of the given Vector. If the
|
|
// difference between either of the value pairs is smaller than d2math.Epsilon, they will be considered equal.
|
|
func (v *Vector) EqualsApprox(o *Vector) bool {
|
|
return d2math.EqualsApprox(v.x, o.x) && d2math.EqualsApprox(v.y, o.y)
|
|
}
|
|
|
|
// CompareApprox returns 2 ints describing the difference between the vectors. If the difference between either of the
|
|
// value pairs is smaller than d2math.Epsilon, they will be considered equal.
|
|
func (v *Vector) CompareApprox(o *Vector) (x, y int) {
|
|
return d2math.CompareApprox(v.x, o.x),
|
|
d2math.CompareApprox(v.y, o.y)
|
|
}
|
|
|
|
// IsZero returns true if this vector's values are both exactly zero.
|
|
func (v *Vector) IsZero() bool {
|
|
return v.x == 0 && v.y == 0
|
|
}
|
|
|
|
// Set the vector values to the given float64 values.
|
|
func (v *Vector) Set(x, y float64) *Vector {
|
|
v.x = x
|
|
v.y = y
|
|
|
|
return v
|
|
}
|
|
|
|
// Clone returns a new a copy of this Vector.
|
|
func (v *Vector) Clone() *Vector {
|
|
return NewVector(v.x, v.y)
|
|
}
|
|
|
|
// Copy sets this vector's values to those of the given vector.
|
|
func (v *Vector) Copy(o *Vector) *Vector {
|
|
v.x = o.x
|
|
v.y = o.y
|
|
|
|
return v
|
|
}
|
|
|
|
// Floor rounds the vector down to the nearest whole numbers.
|
|
func (v *Vector) Floor() *Vector {
|
|
v.x = math.Floor(v.x)
|
|
v.y = math.Floor(v.y)
|
|
|
|
return v
|
|
}
|
|
|
|
// Clamp limits the values of v to those of a and b. If the values of v are between those of a and b they will be
|
|
// unchanged.
|
|
func (v *Vector) Clamp(a, b *Vector) *Vector {
|
|
v.x = d2math.Clamp(v.x, a.x, b.x)
|
|
v.y = d2math.Clamp(v.y, a.y, b.y)
|
|
|
|
return v
|
|
}
|
|
|
|
// Add the given vector to this vector.
|
|
func (v *Vector) Add(o *Vector) *Vector {
|
|
v.x += o.x
|
|
v.y += o.y
|
|
|
|
return v
|
|
}
|
|
|
|
// AddScalar the given value to both values of this vector.
|
|
func (v *Vector) AddScalar(s float64) *Vector {
|
|
v.x += s
|
|
v.y += s
|
|
|
|
return v
|
|
}
|
|
|
|
// Subtract the given vector from this vector.
|
|
func (v *Vector) Subtract(o *Vector) *Vector {
|
|
v.x -= o.x
|
|
v.y -= o.y
|
|
|
|
return v
|
|
}
|
|
|
|
// Multiply this Vector by the given Vector.
|
|
func (v *Vector) Multiply(o *Vector) *Vector {
|
|
v.x *= o.x
|
|
v.y *= o.y
|
|
|
|
return v
|
|
}
|
|
|
|
// Scale multiplies both values of this vector by a single given value.
|
|
func (v *Vector) Scale(s float64) *Vector {
|
|
v.x *= s
|
|
v.y *= s
|
|
|
|
return v
|
|
}
|
|
|
|
// Divide this vector by the given vector.
|
|
func (v *Vector) Divide(o *Vector) *Vector {
|
|
v.x /= o.x
|
|
v.y /= o.y
|
|
|
|
return v
|
|
}
|
|
|
|
// DivideScalar divides both values of this vector by the given value.
|
|
func (v *Vector) DivideScalar(s float64) *Vector {
|
|
v.x /= s
|
|
v.y /= s
|
|
|
|
return v
|
|
}
|
|
|
|
// Abs sets the vector to it's absolute (positive) equivalent.
|
|
func (v *Vector) Abs() *Vector {
|
|
if v.x < 0 {
|
|
v.x = -v.x
|
|
}
|
|
|
|
if v.y < 0 {
|
|
v.y = -v.y
|
|
}
|
|
|
|
return v
|
|
}
|
|
|
|
// Negate multiplies this vector by -1.
|
|
func (v *Vector) Negate() *Vector {
|
|
return v.Scale(-1)
|
|
}
|
|
|
|
// Distance between this Vector's position and that of the given Vector.
|
|
func (v *Vector) Distance(o *Vector) float64 {
|
|
delta := o.Clone()
|
|
delta.Subtract(v)
|
|
|
|
return delta.Length()
|
|
}
|
|
|
|
// Length (magnitude/quantity) of this Vector.
|
|
func (v *Vector) Length() float64 {
|
|
return math.Sqrt(v.Dot(v))
|
|
}
|
|
|
|
// SetLength sets the length of this Vector without changing the direction. The length will be exact within
|
|
// d2math.Epsilon.
|
|
func (v *Vector) SetLength(length float64) *Vector {
|
|
v.Normalize()
|
|
v.Scale(length)
|
|
|
|
return v
|
|
}
|
|
|
|
// Lerp sets this vector to the linear interpolation between this and the given vector. The interp argument determines
|
|
// the distance between the two vectors. An interp of 0 will return this vector and 1 will return the given vector.
|
|
func (v *Vector) Lerp(o *Vector, interp float64) *Vector {
|
|
v.x = d2math.Lerp(v.x, o.x, interp)
|
|
v.y = d2math.Lerp(v.y, o.y, interp)
|
|
|
|
return v
|
|
}
|
|
|
|
// Dot returns the dot product of this Vector and the given Vector.
|
|
func (v *Vector) Dot(o *Vector) float64 {
|
|
return v.x*o.x + v.y*o.y
|
|
}
|
|
|
|
// Cross returns the cross product of this Vector and the given Vector. Note: Cross product is specific to 3D space.
|
|
// This a not cross product. It is the Z component of a 3D vector cross product calculation. The X and Y components use
|
|
// the value of z which doesn't exist in 2D. See:
|
|
// https://stackoverflow.com/questions/243945/calculating-a-2d-vectors-cross-product
|
|
//
|
|
// The sign of Cross indicates whether the direction between the points described by vectors v and o around the origin
|
|
// (0,0) moves clockwise or anti-clockwise. The perspective is from the would-be position of positive Z and the
|
|
// direction is from v to o.
|
|
//
|
|
// Negative = clockwise
|
|
// Positive = anti-clockwise
|
|
// 0 = vectors are identical.
|
|
func (v *Vector) Cross(o *Vector) float64 {
|
|
return v.x*o.y - v.y*o.x
|
|
}
|
|
|
|
// Normalize sets the vector length to 1 without changing the direction. The normalized vector may be scaled by the
|
|
// float64 return value to restore it's original length.
|
|
func (v *Vector) Normalize() *Vector {
|
|
if v.IsZero() {
|
|
return v
|
|
}
|
|
|
|
v.Scale(1 / v.Length())
|
|
|
|
return v
|
|
}
|
|
|
|
// Angle computes the unsigned angle in radians from this vector to the given vector. This angle will never exceed half
|
|
// a full circle. For angles describing a full circumference use SignedAngle.
|
|
func (v *Vector) Angle(o *Vector) float64 {
|
|
if v.IsZero() || o.IsZero() {
|
|
return 0
|
|
}
|
|
|
|
from := v.Clone()
|
|
from.Normalize()
|
|
|
|
to := o.Clone()
|
|
to.Normalize()
|
|
|
|
denominator := math.Sqrt(from.Length() * to.Length())
|
|
dotClamped := d2math.Clamp(from.Dot(to)/denominator, -1, 1)
|
|
|
|
return math.Acos(dotClamped)
|
|
}
|
|
|
|
// SignedAngle computes the signed (clockwise) angle in radians from this vector to the given vector.
|
|
func (v *Vector) SignedAngle(o *Vector) float64 {
|
|
unsigned := v.Angle(o)
|
|
sign := d2math.Sign(v.x*o.y - v.y*o.x)
|
|
|
|
if sign > 0 {
|
|
return d2math.RadFull - unsigned
|
|
}
|
|
|
|
return unsigned
|
|
}
|
|
|
|
// Reflect sets this Vector to it's reflection off a line defined by the given normal. The result will be exact within
|
|
// d2math.Epsilon.
|
|
func (v *Vector) Reflect(normal *Vector) *Vector {
|
|
normal.Normalize()
|
|
v.Normalize()
|
|
|
|
// 1*Dot is the directional (ignoring length) difference between the vector and the normal. Therefore 2*Dot takes
|
|
// us beyond the normal to the angle with the equivalent distance in the other direction i.e. the reflection.
|
|
normal.Scale(two * v.Dot(normal))
|
|
v.Subtract(normal)
|
|
|
|
return v
|
|
}
|
|
|
|
// ReflectSurface does the same thing as Reflect, except the given vector describes the surface line, not it's normal.
|
|
func (v *Vector) ReflectSurface(surface *Vector) *Vector {
|
|
v.Reflect(surface).Negate()
|
|
|
|
return v
|
|
}
|
|
|
|
// Rotate moves the vector around it's origin clockwise, by the given angle in radians. The result will be exact within
|
|
// d2math.Epsilon. See d2math.EqualsApprox.
|
|
func (v *Vector) Rotate(angle float64) *Vector {
|
|
a := -angle
|
|
x := v.x*math.Cos(a) - v.y*math.Sin(a)
|
|
y := v.x*math.Sin(a) + v.y*math.Cos(a)
|
|
v.x = x
|
|
v.y = y
|
|
|
|
return v
|
|
}
|
|
|
|
// NinetyAnti rotates this vector by 90 degrees anti-clockwise.
|
|
func (v *Vector) NinetyAnti() *Vector {
|
|
x := v.x
|
|
v.x = v.y * -1
|
|
v.y = x
|
|
|
|
return v
|
|
}
|
|
|
|
// NinetyClock rotates this vector by 90 degrees clockwise.
|
|
func (v *Vector) NinetyClock() *Vector {
|
|
y := v.y
|
|
v.y = v.x * -1
|
|
v.x = y
|
|
|
|
return v
|
|
}
|
|
|
|
func (v Vector) String() string {
|
|
return fmt.Sprintf("Vector{%.3f, %.3f}", v.x, v.y)
|
|
}
|
|
|
|
// VectorUp returns a new vector (0, 1)
|
|
func VectorUp() *Vector {
|
|
return NewVector(0, 1)
|
|
}
|
|
|
|
// VectorDown returns a new vector (0, -1)
|
|
func VectorDown() *Vector {
|
|
return NewVector(0, -1)
|
|
}
|
|
|
|
// VectorRight returns a new vector (1, 0)
|
|
func VectorRight() *Vector {
|
|
return NewVector(1, 0)
|
|
}
|
|
|
|
// VectorLeft returns a new vector (-1, 0)
|
|
func VectorLeft() *Vector {
|
|
return NewVector(-1, 0)
|
|
}
|
|
|
|
// VectorOne returns a new vector (1, 1)
|
|
func VectorOne() *Vector {
|
|
return NewVector(1, 1)
|
|
}
|
|
|
|
// VectorZero returns a new vector (0, 0)
|
|
func VectorZero() *Vector {
|
|
return NewVector(0, 0)
|
|
}
|