OpenDiablo2/d2data/DCC.go

541 lines
17 KiB
Go

package d2data
import (
"log"
"github.com/OpenDiablo2/OpenDiablo2/d2helper"
"github.com/OpenDiablo2/OpenDiablo2/d2common/d2interface"
"github.com/OpenDiablo2/OpenDiablo2/d2common"
)
type DCCPixelBufferEntry struct {
Value []byte
Frame int
FrameCellIndex int
}
type DCCCell struct {
Width int
Height int
XOffset int
YOffset int
LastWidth int
LastHeight int
LastXOffset int
LastYOffset int
}
type DCCDirectionFrame struct {
Width int
Height int
XOffset int
YOffset int
NumberOfOptionalBytes int
NumberOfCodedBytes int
FrameIsBottomUp bool
Box d2common.Rectangle
Cells []DCCCell
PixelData []byte
HorizontalCellCount int
VerticalCellCount int
}
type DCCDirection struct {
OutSizeCoded int
CompressionFlags int
Variable0Bits int
WidthBits int
HeightBits int
XOffsetBits int
YOffsetBits int
OptionalDataBits int
CodedBytesBits int
EqualCellsBitstreamSize int
PixelMaskBitstreamSize int
EncodingTypeBitsreamSize int
RawPixelCodesBitstreamSize int
Frames []*DCCDirectionFrame
PaletteEntries [256]byte
Box d2common.Rectangle
Cells []*DCCCell
PixelData []byte
HorizontalCellCount int
VerticalCellCount int
PixelBuffer []*DCCPixelBufferEntry
}
type DCC struct {
Signature int
Version int
NumberOfDirections int
FramesPerDirection int
Directions []*DCCDirection
}
var crazyBitTable = []byte{0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 26, 28, 30, 32}
var pixelMaskLookup = []int{0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}
var dccDir4 = []byte{0, 1, 2, 3}
var dccDir8 = []byte{4, 0, 5, 1, 6, 2, 7, 3}
var dccDir16 = []byte{4, 8, 0, 9, 5, 10, 1, 11, 6, 12, 2, 13, 7, 14, 3, 15}
var dccDir32 = []byte{4, 16, 8, 17, 0, 18, 9, 19, 5, 20, 10, 21, 1, 22, 11, 23,
6, 24, 12, 25, 2, 26, 13, 27, 7, 28, 14, 29, 3, 30, 15, 31}
func CreateDCCDirectionFrame(bits *d2common.BitMuncher, direction *DCCDirection) *DCCDirectionFrame {
result := &DCCDirectionFrame{}
bits.GetBits(direction.Variable0Bits) // Variable0
result.Width = int(bits.GetBits(direction.WidthBits))
result.Height = int(bits.GetBits(direction.HeightBits))
result.XOffset = bits.GetSignedBits(direction.XOffsetBits)
result.YOffset = bits.GetSignedBits(direction.YOffsetBits)
result.NumberOfOptionalBytes = int(bits.GetBits(direction.OptionalDataBits))
result.NumberOfCodedBytes = int(bits.GetBits(direction.CodedBytesBits))
result.FrameIsBottomUp = bits.GetBit() == 1
if result.FrameIsBottomUp {
log.Panic("Bottom up frames are not implemented.")
} else {
result.Box = d2common.Rectangle{
result.XOffset,
result.YOffset - result.Height + 1,
result.Width,
result.Height,
}
}
return result
}
func (v *DCCDirectionFrame) CalculateCells(direction *DCCDirection) {
var w = 4 - ((v.Box.Left - direction.Box.Left) % 4) // Width of the first column (in pixels)
if (v.Width - w) <= 1 {
v.HorizontalCellCount = 1
} else {
tmp := v.Width - w - 1
v.HorizontalCellCount = 2 + (tmp / 4)
if (tmp % 4) == 0 {
v.HorizontalCellCount--
}
}
h := 4 - ((v.Box.Top - direction.Box.Top) % 4) // Height of the first column (in pixels)
if (v.Height - h) <= 1 {
v.VerticalCellCount = 1
} else {
tmp := v.Height - h - 1
v.VerticalCellCount = 2 + (tmp / 4)
if (tmp % 4) == 0 {
v.VerticalCellCount--
}
}
// Calculate the cell widths and heights
cellWidths := make([]int, v.HorizontalCellCount)
if v.HorizontalCellCount == 1 {
cellWidths[0] = v.Width
} else {
cellWidths[0] = w
for i := 1; i < (v.HorizontalCellCount - 1); i++ {
cellWidths[i] = 4
}
cellWidths[v.HorizontalCellCount-1] = v.Width - w - (4 * (v.HorizontalCellCount - 2))
}
cellHeights := make([]int, v.VerticalCellCount)
if v.VerticalCellCount == 1 {
cellHeights[0] = v.Height
} else {
cellHeights[0] = h
for i := 1; i < (v.VerticalCellCount - 1); i++ {
cellHeights[i] = 4
}
cellHeights[v.VerticalCellCount-1] = v.Height - h - (4 * (v.VerticalCellCount - 2))
}
v.Cells = make([]DCCCell, v.HorizontalCellCount*v.VerticalCellCount)
offsetY := v.Box.Top - direction.Box.Top
for y := 0; y < v.VerticalCellCount; y++ {
offsetX := v.Box.Left - direction.Box.Left
for x := 0; x < v.HorizontalCellCount; x++ {
v.Cells[x+(y*v.HorizontalCellCount)] = DCCCell{
XOffset: offsetX,
YOffset: offsetY,
Width: cellWidths[x],
Height: cellHeights[y],
}
offsetX += cellWidths[x]
}
offsetY += cellHeights[y]
}
}
func CreateDCCDirection(bm *d2common.BitMuncher, file *DCC) *DCCDirection {
result := &DCCDirection{}
result.OutSizeCoded = int(bm.GetUInt32())
result.CompressionFlags = int(bm.GetBits(2))
result.Variable0Bits = int(crazyBitTable[bm.GetBits(4)])
result.WidthBits = int(crazyBitTable[bm.GetBits(4)])
result.HeightBits = int(crazyBitTable[bm.GetBits(4)])
result.XOffsetBits = int(crazyBitTable[bm.GetBits(4)])
result.YOffsetBits = int(crazyBitTable[bm.GetBits(4)])
result.OptionalDataBits = int(crazyBitTable[bm.GetBits(4)])
result.CodedBytesBits = int(crazyBitTable[bm.GetBits(4)])
result.Frames = make([]*DCCDirectionFrame, file.FramesPerDirection)
minx := 100000
miny := 100000
maxx := -100000
maxy := -100000
// Load the frame headers
for frameIdx := 0; frameIdx < file.FramesPerDirection; frameIdx++ {
result.Frames[frameIdx] = CreateDCCDirectionFrame(bm, result)
minx = int(d2helper.MinInt32(int32(result.Frames[frameIdx].Box.Left), int32(minx)))
miny = int(d2helper.MinInt32(int32(result.Frames[frameIdx].Box.Top), int32(miny)))
maxx = int(d2helper.MaxInt32(int32(result.Frames[frameIdx].Box.Right()), int32(maxx)))
maxy = int(d2helper.MaxInt32(int32(result.Frames[frameIdx].Box.Bottom()), int32(maxy)))
}
result.Box = d2common.Rectangle{minx, miny, (maxx - minx), (maxy - miny)}
if result.OptionalDataBits > 0 {
log.Panic("Optional bits in DCC data is not currently supported.")
}
if (result.CompressionFlags & 0x2) > 0 {
result.EqualCellsBitstreamSize = int(bm.GetBits(20))
}
result.PixelMaskBitstreamSize = int(bm.GetBits(20))
if (result.CompressionFlags & 0x1) > 0 {
result.EncodingTypeBitsreamSize = int(bm.GetBits(20))
result.RawPixelCodesBitstreamSize = int(bm.GetBits(20))
}
// PixelValuesKey
paletteEntryCount := 0
for i := 0; i < 256; i++ {
valid := bm.GetBit() != 0
if valid {
result.PaletteEntries[paletteEntryCount] = byte(i)
paletteEntryCount++
}
}
// HERE BE GIANTS:
// Because of the way this thing mashes bits together, BIT offset matters
// here. For example, if you are on byte offset 3, bit offset 6, and
// the EqualCellsBitstreamSize is 20 bytes, then the next bit stream
// will be located at byte 23, bit offset 6!
equalCellsBitstream := d2common.CopyBitMuncher(bm)
bm.SkipBits(result.EqualCellsBitstreamSize)
pixelMaskBitstream := d2common.CopyBitMuncher(bm)
bm.SkipBits(result.PixelMaskBitstreamSize)
encodingTypeBitsream := d2common.CopyBitMuncher(bm)
bm.SkipBits(result.EncodingTypeBitsreamSize)
rawPixelCodesBitstream := d2common.CopyBitMuncher(bm)
bm.SkipBits(result.RawPixelCodesBitstreamSize)
pixelCodeandDisplacement := d2common.CopyBitMuncher(bm)
// Calculate the cells for the direction
result.CalculateCells()
// Calculate the cells for each of the frames
for _, frame := range result.Frames {
frame.CalculateCells(result)
}
// Fill in the pixel buffer
result.FillPixelBuffer(pixelCodeandDisplacement, equalCellsBitstream, pixelMaskBitstream, encodingTypeBitsream, rawPixelCodesBitstream)
// Generate the actual frame pixel data
result.GenerateFrames(pixelCodeandDisplacement)
result.PixelBuffer = nil
// Verify that everything we expected to read was actually read (sanity check)...
if equalCellsBitstream.BitsRead != result.EqualCellsBitstreamSize {
log.Panic("Did not read the correct number of bits!")
}
if pixelMaskBitstream.BitsRead != result.PixelMaskBitstreamSize {
log.Panic("Did not read the correct number of bits!")
}
if encodingTypeBitsream.BitsRead != result.EncodingTypeBitsreamSize {
log.Panic("Did not read the correct number of bits!")
}
if rawPixelCodesBitstream.BitsRead != result.RawPixelCodesBitstreamSize {
log.Panic("Did not read the correct number of bits!")
}
bm.SkipBits(pixelCodeandDisplacement.BitsRead)
return result
}
func (v *DCCDirection) GenerateFrames(pcd *d2common.BitMuncher) {
pbIdx := 0
for _, cell := range v.Cells {
cell.LastWidth = -1
cell.LastHeight = -1
}
v.PixelData = make([]byte, v.Box.Width*v.Box.Height)
frameIndex := -1
for _, frame := range v.Frames {
frameIndex++
frame.PixelData = make([]byte, v.Box.Width*v.Box.Height)
c := -1
for _, cell := range frame.Cells {
c++
cellX := cell.XOffset / 4
cellY := cell.YOffset / 4
cellIndex := cellX + (cellY * v.HorizontalCellCount)
bufferCell := v.Cells[cellIndex]
pbe := v.PixelBuffer[pbIdx]
if (pbe.Frame != frameIndex) || (pbe.FrameCellIndex != c) {
// This buffer cell has an EqualCell bit set to 1, so copy the frame cell or clear it
if (cell.Width != bufferCell.LastWidth) || (cell.Height != bufferCell.LastHeight) {
// Different sizes
/// TODO: Clear the pixels of the frame cell
for y := 0; y < cell.Height; y++ {
for x := 0; x < cell.Width; x++ {
v.PixelData[x+cell.XOffset+((y+cell.YOffset)*frame.Width)] = 0
}
}
} else {
// Same sizes
// Copy the old frame cell into the new position
for fy := 0; fy < cell.Height; fy++ {
for fx := 0; fx < cell.Width; fx++ {
// Frame (buff.lastx, buff.lasty) -> Frame (cell.offx, cell.offy)
// Cell (0, 0,) ->
// blit(dir->bmp, dir->bmp, buff_cell->last_x0, buff_cell->last_y0, cell->x0, cell->y0, cell->w, cell->h );
v.PixelData[fx+cell.XOffset+((fy+cell.YOffset)*v.Box.Width)] = v.PixelData[fx+bufferCell.LastXOffset+((fy+bufferCell.LastYOffset)*v.Box.Width)]
}
}
// Copy it again into the final frame image
for fy := 0; fy < cell.Height; fy++ {
for fx := 0; fx < cell.Width; fx++ {
// blit(cell->bmp, frm_bmp, 0, 0, cell->x0, cell->y0, cell->w, cell->h );
frame.PixelData[fx+cell.XOffset+((fy+cell.YOffset)*v.Box.Width)] = v.PixelData[cell.XOffset+fx+((cell.YOffset+fy)*v.Box.Width)]
}
}
}
} else {
if pbe.Value[0] == pbe.Value[1] {
// Clear the frame
//cell.PixelData = new byte[cell.Width * cell.Height];
for y := 0; y < cell.Height; y++ {
for x := 0; x < cell.Width; x++ {
v.PixelData[x+cell.XOffset+((y+cell.YOffset)*v.Box.Width)] = pbe.Value[0]
}
}
} else {
// Fill the frame cell with the pixels
bitsToRead := 1
if pbe.Value[1] != pbe.Value[2] {
bitsToRead = 2
}
for y := 0; y < cell.Height; y++ {
for x := 0; x < cell.Width; x++ {
paletteIndex := pcd.GetBits(bitsToRead)
v.PixelData[x+cell.XOffset+((y+cell.YOffset)*v.Box.Width)] = pbe.Value[paletteIndex]
}
}
}
// Copy the frame cell into the frame
for fy := 0; fy < cell.Height; fy++ {
for fx := 0; fx < cell.Width; fx++ {
//blit(cell->bmp, frm_bmp, 0, 0, cell->x0, cell->y0, cell->w, cell->h );
frame.PixelData[fx+cell.XOffset+((fy+cell.YOffset)*v.Box.Width)] = v.PixelData[fx+cell.XOffset+((fy+cell.YOffset)*v.Box.Width)]
}
}
pbIdx++
}
bufferCell.LastWidth = cell.Width
bufferCell.LastHeight = cell.Height
bufferCell.LastXOffset = cell.XOffset
bufferCell.LastYOffset = cell.YOffset
}
// Free up the stuff we no longer need
frame.Cells = nil
}
v.Cells = nil
v.PixelData = nil
v.PixelBuffer = nil
}
func (v *DCCDirection) FillPixelBuffer(pcd, ec, pm, et, rp *d2common.BitMuncher) {
lastPixel := uint32(0)
maxCellX := 0
maxCellY := 0
for _, frame := range v.Frames {
if frame == nil {
continue
}
maxCellX += frame.HorizontalCellCount
maxCellY += frame.VerticalCellCount
}
v.PixelBuffer = make([]*DCCPixelBufferEntry, maxCellX*maxCellY)
for i := 0; i < maxCellX*maxCellY; i++ {
v.PixelBuffer[i] = &DCCPixelBufferEntry{
Value: make([]byte, 4),
Frame: -1,
FrameCellIndex: -1,
}
}
cellBuffer := make([]*DCCPixelBufferEntry, v.HorizontalCellCount*v.VerticalCellCount)
frameIndex := -1
pbIndex := -1
pixelMask := uint32(0x00)
for _, frame := range v.Frames {
frameIndex++
originCellX := (frame.Box.Left - v.Box.Left) / 4
originCellY := (frame.Box.Top - v.Box.Top) / 4
for cellY := 0; cellY < frame.VerticalCellCount; cellY++ {
currentCellY := cellY + originCellY
for cellX := 0; cellX < frame.HorizontalCellCount; cellX++ {
currentCell := originCellX + cellX + (currentCellY * v.HorizontalCellCount)
nextCell := false
tmp := 0
if cellBuffer[currentCell] != nil {
if v.EqualCellsBitstreamSize > 0 {
tmp = int(ec.GetBit())
} else {
tmp = 0
}
if tmp == 0 {
pixelMask = pm.GetBits(4)
} else {
nextCell = true
}
} else {
pixelMask = 0x0F
}
if nextCell {
continue
}
// Decode the pixels
var pixelStack [4]uint32
lastPixel = 0
numberOfPixelBits := pixelMaskLookup[pixelMask]
encodingType := 0
if (numberOfPixelBits != 0) && (v.EncodingTypeBitsreamSize > 0) {
encodingType = int(et.GetBit())
} else {
encodingType = 0
}
decodedPixel := 0
for i := 0; i < numberOfPixelBits; i++ {
if encodingType != 0 {
pixelStack[i] = rp.GetBits(8)
} else {
pixelStack[i] = lastPixel
pixelDisplacement := pcd.GetBits(4)
pixelStack[i] += pixelDisplacement
for pixelDisplacement == 15 {
pixelDisplacement = pcd.GetBits(4)
pixelStack[i] += pixelDisplacement
}
}
if pixelStack[i] == lastPixel {
pixelStack[i] = 0
break
} else {
lastPixel = pixelStack[i]
decodedPixel++
}
}
oldEntry := cellBuffer[currentCell]
pbIndex++
newEntry := v.PixelBuffer[pbIndex]
curIdx := decodedPixel - 1
for i := 0; i < 4; i++ {
if (pixelMask & (1 << uint(i))) != 0 {
if curIdx >= 0 {
newEntry.Value[i] = byte(pixelStack[curIdx])
curIdx--
} else {
newEntry.Value[i] = 0
}
} else {
newEntry.Value[i] = oldEntry.Value[i]
}
}
cellBuffer[currentCell] = newEntry
newEntry.Frame = frameIndex
newEntry.FrameCellIndex = cellX + (cellY * frame.HorizontalCellCount)
}
}
}
cellBuffer = nil
// Convert the palette entry index into actual palette entries
for i := 0; i <= pbIndex; i++ {
for x := 0; x < 4; x++ {
v.PixelBuffer[i].Value[x] = v.PaletteEntries[v.PixelBuffer[i].Value[x]]
}
}
}
func (v *DCCDirection) CalculateCells() {
// Calculate the number of vertical and horizontal cells we need
v.HorizontalCellCount = 1 + (v.Box.Width-1)/4
v.VerticalCellCount = 1 + (v.Box.Height-1)/4
// Calculate the cell widths
cellWidths := make([]int, v.HorizontalCellCount)
if v.HorizontalCellCount == 1 {
cellWidths[0] = v.Box.Width
} else {
for i := 0; i < v.HorizontalCellCount-1; i++ {
cellWidths[i] = 4
}
cellWidths[v.HorizontalCellCount-1] = v.Box.Width - (4 * (v.HorizontalCellCount - 1))
}
// Calculate the cell heights
cellHeights := make([]int, v.VerticalCellCount)
if v.VerticalCellCount == 1 {
cellHeights[0] = v.Box.Height
} else {
for i := 0; i < v.VerticalCellCount-1; i++ {
cellHeights[i] = 4
}
cellHeights[v.VerticalCellCount-1] = v.Box.Height - (4 * (v.VerticalCellCount - 1))
}
// Set the cell widths and heights in the cell buffer
v.Cells = make([]*DCCCell, v.VerticalCellCount*v.HorizontalCellCount)
yOffset := 0
for y := 0; y < v.VerticalCellCount; y++ {
xOffset := 0
for x := 0; x < v.HorizontalCellCount; x++ {
v.Cells[x+(y*v.HorizontalCellCount)] = &DCCCell{
Width: cellWidths[x],
Height: cellHeights[y],
XOffset: xOffset,
YOffset: yOffset,
}
xOffset += 4
}
yOffset += 4
}
}
func LoadDCC(path string, fileProvider d2interface.FileProvider) *DCC {
result := &DCC{}
fileData := fileProvider.LoadFile(path)
var bm = d2common.CreateBitMuncher(fileData, 0)
result.Signature = int(bm.GetByte())
if result.Signature != 0x74 {
log.Fatal("Signature expected to be 0x74 but it is not.")
}
result.Version = int(bm.GetByte())
result.NumberOfDirections = int(bm.GetByte())
result.FramesPerDirection = int(bm.GetInt32())
if bm.GetInt32() != 1 {
log.Fatal("This value isn't 1. It has to be 1.")
}
bm.GetInt32() // TotalSizeCoded
directionOffsets := make([]int, result.NumberOfDirections)
for i := 0; i < result.NumberOfDirections; i++ {
directionOffsets[i] = int(bm.GetInt32())
}
result.Directions = make([]*DCCDirection, result.NumberOfDirections)
for i := 0; i < result.NumberOfDirections; i++ {
dir := byte(0)
switch result.NumberOfDirections {
case 1:
dir = 0
case 4:
dir = dccDir4[i]
case 8:
dir = dccDir8[i]
case 16:
dir = dccDir16[i]
case 32:
dir = dccDir32[i]
}
result.Directions[dir] = CreateDCCDirection(d2common.CreateBitMuncher(fileData, directionOffsets[i]*8), result)
}
return result
}