1
1
mirror of https://github.com/OpenDiablo2/OpenDiablo2 synced 2024-06-20 22:25:24 +00:00
OpenDiablo2/d2common/d2astar/README.md

154 lines
3.8 KiB
Markdown
Raw Normal View History

D2 A*
========
**A\* pathfinding implementation for OpenDiablo2**
***Forked from [go-astar](https://github.com/beefsack/go-astar)***
Changes
-------
* Used [sync.Pool](https://golang.org/pkg/sync/#Pool) to reuse objects created during pathfinding. This improves performance by roughly 30% by reducing allocations.
* Added a check on the target for neighbors to identify if the user clicked an inaccessible area.
* Added a max cost to prevent searching the entire region for a path.
TODO
------
* Evaluate bi-directional A*, specifically if it would more quickly identify if the user clicked an in inaccessible area (such as an island).
The [A\* pathfinding algorithm](http://en.wikipedia.org/wiki/A*_search_algorithm) is a pathfinding algorithm noted for its performance and accuracy and is commonly used in game development. It can be used to find short paths for any weighted graph.
A fantastic overview of A\* can be found at [Amit Patel's Stanford website](http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html).
Examples
--------
The following crude examples were taken directly from the automated tests. Please see `path_test.go` for more examples.
### Key
* `.` - Plain (movement cost 1)
* `~` - River (movement cost 2)
* `M` - Mountain (movement cost 3)
* `X` - Blocker, unable to move through
* `F` - From / start position
* `T` - To / goal position
* `●` - Calculated path
### Straight line
```
.....~...... .....~......
.....MM..... .....MM.....
.F........T. -> .●●●●●●●●●●.
....MMM..... ....MMM.....
............ ............
```
### Around a mountain
```
.....~...... .....~......
.....MM..... .....MM.....
.F..MMMM..T. -> .●●●MMMM●●●.
....MMM..... ...●MMM●●...
............ ...●●●●●....
```
### Blocked path
```
............
.........XXX
.F.......XTX -> No path
.........XXX
............
```
### Maze
```
FX.X........ ●X.X●●●●●●..
.X...XXXX.X. ●X●●●XXXX●X.
.X.X.X....X. -> ●X●X.X●●●●X.
...X.X.XXXXX ●●●X.X●XXXXX
.XX..X.....T .XX..X●●●●●●
```
### Mountain climber
```
..F..M...... ..●●●●●●●●●.
.....MM..... .....MM...●.
....MMMM..T. -> ....MMMM..●.
....MMM..... ....MMM.....
............ ............
```
### River swimmer
```
.....~...... .....~......
.....~...... ....●●●.....
.F...X...T.. -> .●●●●X●●●●..
.....M...... .....M......
.....M...... .....M......
```
Usage
-----
### Import the package
```go
import "github.com/beefsack/go-astar"
```
### Implement Pather interface
An example implementation is done for the tests in `path_test.go` for the Tile type.
The `PathNeighbors` method should return a slice of the direct neighbors.
The `PathNeighborCost` method should calculate an exact movement cost for direct neighbors.
The `PathEstimatedCost` is a heuristic method for estimating the distance between arbitrary tiles. The examples in the test files use [Manhattan distance](http://en.wikipedia.org/wiki/Taxicab_geometry) to estimate orthogonal distance between tiles.
```go
type Tile struct{}
func (t *Tile) PathNeighbors() []astar.Pather {
return []astar.Pather{
t.Up(),
t.Right(),
t.Down(),
t.Left(),
}
}
func (t *Tile) PathNeighborCost(to astar.Pather) float64 {
return to.MovementCost
}
func (t *Tile) PathEstimatedCost(to astar.Pather) float64 {
return t.ManhattanDistance(to)
}
```
### Call Path function
```go
// t1 and t2 are *Tile objects from inside the world.
path, distance, found := astar.Path(t1, t2)
if !found {
log.Println("Could not find path")
}
// path is a slice of Pather objects which you can cast back to *Tile.
```
Authors
-------
Michael Alexander <beefsack@gmail.com>
Robin Ranjit Chauhan <robin@pathwayi.com>