1
0
cuberite-2a/src/Generating/StructGen.cpp
Mattes D 01b8ed5295
Pulled the BlockID and BlockInfo headers from Globals.h. (#4591)
The BlockID.h file was removed from Globals.h and renamed to BlockType.h (main change)
The BlockInfo.h file was removed from Globals.h (main change)
The ENUM_BLOCK_ID and ENUM_ITEM_ID enum names were replaced with ENUM_BLOCK_TYPE and ENUM_ITEM_TYPE (cosmetics)
The various enums, such as eDimension, eDamageType and eExplosionSource were moved from BlockType.h to Defines.h, together with the helper functions for converting between them and strings (StringToDimension et al.) (minor)
Many inline functions were moved from headers to their respective cpp files, so that BlockType.h could be included only into the cpp file, rather than the header.
That broke our tests a bit, since they pick bits and pieces out of the main code and provide stubs for the rest; they had to be re-stubbed and re-verified.
eMonsterType values are no longer tied to E_ITEM_SPAWN_EGG_META_* values
2020-04-03 08:57:01 +02:00

565 lines
16 KiB
C++

// StructGen.h
#include "Globals.h"
#include "StructGen.h"
#include "Trees.h"
#include "../BlockArea.h"
#include "../LinearUpscale.h"
#include "../BlockInfo.h"
////////////////////////////////////////////////////////////////////////////////
// cStructGenTrees:
void cStructGenTrees::GenFinish(cChunkDesc & a_ChunkDesc)
{
int ChunkX = a_ChunkDesc.GetChunkX();
int ChunkZ = a_ChunkDesc.GetChunkZ();
cChunkDesc WorkerDesc({ChunkX, ChunkZ});
// Generate trees:
for (int x = 0; x <= 2; x++)
{
int BaseX = ChunkX + x - 1;
for (int z = 0; z <= 2; z++)
{
int BaseZ = ChunkZ + z - 1;
cChunkDesc * Dest;
if ((x != 1) || (z != 1))
{
Dest = &WorkerDesc;
WorkerDesc.SetChunkCoords({BaseX, BaseZ});
// TODO: This may cause a lot of wasted calculations, instead of pulling data out of a single (cChunkDesc) cache
cChunkDesc::Shape workerShape;
m_BiomeGen->GenBiomes ({BaseX, BaseZ}, WorkerDesc.GetBiomeMap());
m_ShapeGen->GenShape ({BaseX, BaseZ}, workerShape);
WorkerDesc.SetHeightFromShape (workerShape);
m_CompositionGen->ComposeTerrain(WorkerDesc, workerShape);
}
else
{
Dest = &a_ChunkDesc;
}
int NumTrees = GetNumTrees(BaseX, BaseZ, Dest->GetBiomeMap());
sSetBlockVector OutsideLogs, OutsideOther;
for (int i = 0; i < NumTrees; i++)
{
GenerateSingleTree(BaseX, BaseZ, i, *Dest, OutsideLogs, OutsideOther);
}
sSetBlockVector IgnoredOverflow;
IgnoredOverflow.reserve(OutsideOther.size());
ApplyTreeImage(ChunkX, ChunkZ, a_ChunkDesc, OutsideOther, IgnoredOverflow);
IgnoredOverflow.clear();
IgnoredOverflow.reserve(OutsideLogs.size());
ApplyTreeImage(ChunkX, ChunkZ, a_ChunkDesc, OutsideLogs, IgnoredOverflow);
} // for z
} // for x
a_ChunkDesc.UpdateHeightmap();
}
void cStructGenTrees::GenerateSingleTree(
int a_ChunkX, int a_ChunkZ, int a_Seq,
cChunkDesc & a_ChunkDesc,
sSetBlockVector & a_OutsideLogs,
sSetBlockVector & a_OutsideOther
)
{
int x = (m_Noise.IntNoise3DInt(a_ChunkX + a_ChunkZ, a_ChunkZ, a_Seq) / 19) % cChunkDef::Width;
int z = (m_Noise.IntNoise3DInt(a_ChunkX - a_ChunkZ, a_Seq, a_ChunkZ) / 19) % cChunkDef::Width;
int Height = a_ChunkDesc.GetHeight(x, z);
if ((Height <= 0) || (Height >= 230))
{
return;
}
// Check the block underneath the tree:
BLOCKTYPE TopBlock = a_ChunkDesc.GetBlockType(x, Height, z);
if ((TopBlock != E_BLOCK_DIRT) && (TopBlock != E_BLOCK_GRASS) && (TopBlock != E_BLOCK_FARMLAND))
{
return;
}
sSetBlockVector TreeLogs, TreeOther;
GetTreeImageByBiome(
{ a_ChunkX * cChunkDef::Width + x, Height + 1, a_ChunkZ * cChunkDef::Width + z },
m_Noise, a_Seq,
a_ChunkDesc.GetBiome(x, z),
TreeLogs, TreeOther
);
// Check if the generated image fits the terrain. Only the logs are checked:
for (sSetBlockVector::const_iterator itr = TreeLogs.begin(); itr != TreeLogs.end(); ++itr)
{
if ((itr->m_ChunkX != a_ChunkX) || (itr->m_ChunkZ != a_ChunkZ))
{
// Outside the chunk
continue;
}
if (itr->m_RelY >= cChunkDef::Height)
{
// Above the chunk, cut off (this shouldn't happen too often, we're limiting trees to y < 230)
continue;
}
BLOCKTYPE Block = a_ChunkDesc.GetBlockType(itr->m_RelX, itr->m_RelY, itr->m_RelZ);
switch (Block)
{
CASE_TREE_ALLOWED_BLOCKS:
{
break;
}
default:
{
// There's something in the way, abort this tree altogether
return;
}
}
}
ApplyTreeImage(a_ChunkX, a_ChunkZ, a_ChunkDesc, TreeOther, a_OutsideOther);
ApplyTreeImage(a_ChunkX, a_ChunkZ, a_ChunkDesc, TreeLogs, a_OutsideLogs);
}
void cStructGenTrees::ApplyTreeImage(
int a_ChunkX, int a_ChunkZ,
cChunkDesc & a_ChunkDesc,
const sSetBlockVector & a_Image,
sSetBlockVector & a_Overflow
)
{
// Put the generated image into a_BlockTypes, push things outside this chunk into a_Blocks
for (sSetBlockVector::const_iterator itr = a_Image.begin(), end = a_Image.end(); itr != end; ++itr)
{
if ((itr->m_ChunkX == a_ChunkX) && (itr->m_ChunkZ == a_ChunkZ) && (itr->m_RelY < cChunkDef::Height))
{
// Inside this chunk, integrate into a_ChunkDesc:
switch (a_ChunkDesc.GetBlockType(itr->m_RelX, itr->m_RelY, itr->m_RelZ))
{
case E_BLOCK_NEW_LEAVES:
case E_BLOCK_LEAVES:
{
if ((itr->m_BlockType != E_BLOCK_LOG) && (itr->m_BlockType != E_BLOCK_NEW_LOG))
{
break;
}
// fallthrough:
}
CASE_TREE_OVERWRITTEN_BLOCKS:
{
a_ChunkDesc.SetBlockTypeMeta(itr->m_RelX, itr->m_RelY, itr->m_RelZ, itr->m_BlockType, itr->m_BlockMeta);
// If grass is below our tree, turn it to dirt
if (
(cBlockInfo::IsSolid(itr->m_BlockType)) &&
(a_ChunkDesc.GetBlockType(itr->m_RelX, itr->m_RelY - 1, itr->m_RelZ) == E_BLOCK_GRASS)
)
{
a_ChunkDesc.SetBlockType(itr->m_RelX, itr->m_RelY - 1, itr->m_RelZ, E_BLOCK_DIRT);
}
break;
}
} // switch (GetBlock())
continue;
}
// Outside the chunk, push into a_Overflow.
// Don't check if already present there, by separating logs and others we don't need the checks anymore:
a_Overflow.push_back(*itr);
}
}
int cStructGenTrees::GetNumTrees(
int a_ChunkX, int a_ChunkZ,
const cChunkDef::BiomeMap & a_Biomes
)
{
auto BiomeTrees = [](EMCSBiome a_Biome)
{
switch (a_Biome)
{
case biOcean: return 2;
case biPlains: return 1;
case biDesert: return 0;
case biExtremeHills: return 3;
case biForest: return 30;
case biTaiga: return 30;
case biSwampland: return 8;
case biRiver: return 0;
case biNether: return 0;
case biEnd: return 0;
case biFrozenOcean: return 0;
case biFrozenRiver: return 0;
case biIcePlains: return 1;
case biIceMountains: return 1;
case biMushroomIsland: return 3;
case biMushroomShore: return 3;
case biBeach: return 0;
case biDesertHills: return 0;
case biForestHills: return 20;
case biTaigaHills: return 20;
case biExtremeHillsEdge: return 5;
case biJungle: return 120;
case biJungleHills: return 90;
case biJungleEdge: return 90;
case biDeepOcean: return 0;
case biStoneBeach: return 0;
case biColdBeach: return 0;
case biBirchForest: return 30;
case biBirchForestHills: return 20;
case biRoofedForest: return 50;
case biColdTaiga: return 20;
case biColdTaigaHills: return 15;
case biMegaTaiga: return 30;
case biMegaTaigaHills: return 25;
case biExtremeHillsPlus: return 3;
case biSavanna: return 8;
case biSavannaPlateau: return 12;
case biMesa: return 2;
case biMesaPlateauF: return 8;
case biMesaPlateau: return 8;
// Biome variants
case biSunflowerPlains: return 1;
case biDesertM: return 0;
case biExtremeHillsM: return 4;
case biFlowerForest: return 30;
case biTaigaM: return 30;
case biSwamplandM: return 8;
case biIcePlainsSpikes: return 1;
case biJungleM: return 120;
case biJungleEdgeM: return 90;
case biBirchForestM: return 30;
case biBirchForestHillsM: return 20;
case biRoofedForestM: return 40;
case biColdTaigaM: return 30;
case biMegaSpruceTaiga: return 30;
case biMegaSpruceTaigaHills: return 30;
case biExtremeHillsPlusM: return 4;
case biSavannaM: return 8;
case biSavannaPlateauM: return 12;
case biMesaBryce: return 4;
case biMesaPlateauFM: return 12;
case biMesaPlateauM: return 12;
// Non-biomes
case biInvalidBiome:
case biNumBiomes:
case biVariant:
case biNumVariantBiomes:
{
ASSERT(!"Invalid biome in cStructGenTrees::GetNumTrees");
return 0;
}
}
UNREACHABLE("Unsupported biome");
};
int NumTrees = 0;
for (auto Biome : a_Biomes)
{
NumTrees += BiomeTrees(Biome);
}
return NumTrees / 1024;
}
////////////////////////////////////////////////////////////////////////////////
// cStructGenLakes:
void cStructGenLakes::GenFinish(cChunkDesc & a_ChunkDesc)
{
int ChunkX = a_ChunkDesc.GetChunkX();
int ChunkZ = a_ChunkDesc.GetChunkZ();
for (int z = -1; z < 2; z++) for (int x = -1; x < 2; x++)
{
if (((m_Noise.IntNoise2DInt(ChunkX + x, ChunkZ + z) / 17) % 100) > m_Probability)
{
continue;
}
cBlockArea Lake;
CreateLakeImage(ChunkX + x, ChunkZ + z, a_ChunkDesc.GetMinHeight(), Lake);
int OfsX = Lake.GetOriginX() + x * cChunkDef::Width;
int OfsZ = Lake.GetOriginZ() + z * cChunkDef::Width;
// Merge the lake into the current data
a_ChunkDesc.WriteBlockArea(Lake, OfsX, Lake.GetOriginY(), OfsZ, cBlockArea::msLake);
} // for x, z - neighbor chunks
}
void cStructGenLakes::CreateLakeImage(int a_ChunkX, int a_ChunkZ, int a_MaxLakeHeight, cBlockArea & a_Lake)
{
a_Lake.Create(16, 8, 16);
a_Lake.Fill(cBlockArea::baTypes, E_BLOCK_SPONGE); // Sponge is the NOP blocktype for lake merging strategy
// Make a random position in the chunk by using a random 16 block XZ offset and random height up to chunk's max height minus 6
int MinHeight = std::max(a_MaxLakeHeight - 6, 2);
int Rnd = m_Noise.IntNoise3DInt(a_ChunkX, 128, a_ChunkZ) / 11;
// Random offset [-8 .. 8], with higher probability around 0; add up four three-bit-wide randoms [0 .. 28], divide and subtract to get range
int OffsetX = 4 * ((Rnd & 0x07) + ((Rnd & 0x38) >> 3) + ((Rnd & 0x1c0) >> 6) + ((Rnd & 0xe00) >> 9)) / 7 - 8;
Rnd >>= 12;
// Random offset [-8 .. 8], with higher probability around 0; add up four three-bit-wide randoms [0 .. 28], divide and subtract to get range
int OffsetZ = 4 * ((Rnd & 0x07) + ((Rnd & 0x38) >> 3) + ((Rnd & 0x1c0) >> 6) + ((Rnd & 0xe00) >> 9)) / 7 - 8;
Rnd = m_Noise.IntNoise3DInt(a_ChunkX, 512, a_ChunkZ) / 13;
// Random height [1 .. MinHeight] with preference to center heights
int HeightY = 1 + (((Rnd & 0x1ff) % MinHeight) + (((Rnd >> 9) & 0x1ff) % MinHeight)) / 2;
a_Lake.SetOrigin(OffsetX, HeightY, OffsetZ);
// Hollow out a few bubbles inside the blockarea:
int NumBubbles = 4 + ((Rnd >> 18) & 0x03); // 4 .. 7 bubbles
BLOCKTYPE * BlockTypes = a_Lake.GetBlockTypes();
for (int i = 0; i < NumBubbles; i++)
{
int BubbleRnd = m_Noise.IntNoise3DInt(a_ChunkX, i, a_ChunkZ) / 13;
const int BubbleR = 2 + (BubbleRnd & 0x03); // 2 .. 5
const int Range = 16 - 2 * BubbleR;
const int BubbleX = BubbleR + (BubbleRnd % Range);
BubbleRnd >>= 4;
const int BubbleY = 4 + (BubbleRnd & 0x01); // 4 .. 5
BubbleRnd >>= 1;
const int BubbleZ = BubbleR + (BubbleRnd % Range);
const int HalfR = BubbleR / 2; // 1 .. 2
const int RSquared = BubbleR * BubbleR;
for (int y = -HalfR; y <= HalfR; y++)
{
// BubbleY + y is in the [0, 7] bounds
int DistY = 4 * y * y / 3;
int IdxY = (BubbleY + y) * 16 * 16;
for (int z = -BubbleR; z <= BubbleR; z++)
{
int DistYZ = DistY + z * z;
if (DistYZ >= RSquared)
{
continue;
}
int IdxYZ = BubbleX + IdxY + (BubbleZ + z) * 16;
for (int x = -BubbleR; x <= BubbleR; x++)
{
if (x * x + DistYZ < RSquared)
{
BlockTypes[x + IdxYZ] = E_BLOCK_AIR;
}
} // for x
} // for z
} // for y
} // for i - bubbles
// Turn air in the bottom half into liquid:
for (int y = 0; y < 4; y++)
{
for (int z = 0; z < 16; z++) for (int x = 0; x < 16; x++)
{
if (BlockTypes[x + z * 16 + y * 16 * 16] == E_BLOCK_AIR)
{
BlockTypes[x + z * 16 + y * 16 * 16] = m_Fluid;
}
} // for z, x
} // for y
// TODO: Turn sponge next to lava into stone
// a_Lake.SaveToSchematicFile(Printf("Lake_%d_%d.schematic", a_ChunkX, a_ChunkZ));
}
////////////////////////////////////////////////////////////////////////////////
// cStructGenDirectOverhangs:
cStructGenDirectOverhangs::cStructGenDirectOverhangs(int a_Seed) :
m_Noise1(a_Seed),
m_Noise2(a_Seed + 1000)
{
}
void cStructGenDirectOverhangs::GenFinish(cChunkDesc & a_ChunkDesc)
{
// If there is no column of the wanted biome, bail out:
if (!HasWantedBiome(a_ChunkDesc))
{
return;
}
HEIGHTTYPE MaxHeight = a_ChunkDesc.GetMaxHeight();
const int SEGMENT_HEIGHT = 8;
const int INTERPOL_X = 16; // Must be a divisor of 16
const int INTERPOL_Z = 16; // Must be a divisor of 16
// Interpolate the chunk in 16 * SEGMENT_HEIGHT * 16 "segments", each SEGMENT_HEIGHT blocks high and each linearly interpolated separately.
// Have two buffers, one for the lowest floor and one for the highest floor, so that Y-interpolation can be done between them
// Then swap the buffers and use the previously-top one as the current-bottom, without recalculating it.
int FloorBuf1[17 * 17];
int FloorBuf2[17 * 17];
int * FloorHi = FloorBuf1;
int * FloorLo = FloorBuf2;
int BaseX = a_ChunkDesc.GetChunkX() * cChunkDef::Width;
int BaseZ = a_ChunkDesc.GetChunkZ() * cChunkDef::Width;
int BaseY = 63;
// Interpolate the lowest floor:
for (int z = 0; z <= 16 / INTERPOL_Z; z++) for (int x = 0; x <= 16 / INTERPOL_X; x++)
{
FloorLo[INTERPOL_X * x + 17 * INTERPOL_Z * z] =
m_Noise1.IntNoise3DInt(BaseX + INTERPOL_X * x, BaseY, BaseZ + INTERPOL_Z * z) *
m_Noise2.IntNoise3DInt(BaseX + INTERPOL_X * x, BaseY, BaseZ + INTERPOL_Z * z) /
256;
} // for x, z - FloorLo[]
LinearUpscale2DArrayInPlace<17, 17, INTERPOL_X, INTERPOL_Z>(FloorLo);
// Interpolate segments:
for (int Segment = BaseY; Segment < MaxHeight; Segment += SEGMENT_HEIGHT)
{
// First update the high floor:
for (int z = 0; z <= 16 / INTERPOL_Z; z++) for (int x = 0; x <= 16 / INTERPOL_X; x++)
{
FloorHi[INTERPOL_X * x + 17 * INTERPOL_Z * z] = (
m_Noise1.IntNoise3DInt(BaseX + INTERPOL_X * x, Segment + SEGMENT_HEIGHT, BaseZ + INTERPOL_Z * z) *
m_Noise2.IntNoise3DInt(BaseX + INTERPOL_Z * x, Segment + SEGMENT_HEIGHT, BaseZ + INTERPOL_Z * z) / 256
);
} // for x, z - FloorLo[]
LinearUpscale2DArrayInPlace<17, 17, INTERPOL_X, INTERPOL_Z>(FloorHi);
// Interpolate between FloorLo and FloorHi:
for (int z = 0; z < 16; z++) for (int x = 0; x < 16; x++)
{
EMCSBiome biome = a_ChunkDesc.GetBiome(x, z);
if ((biome == biExtremeHills) || (biome == biExtremeHillsEdge))
{
int Lo = FloorLo[x + 17 * z] / 256;
int Hi = FloorHi[x + 17 * z] / 256;
for (int y = 0; y < SEGMENT_HEIGHT; y++)
{
int Val = Lo + (Hi - Lo) * y / SEGMENT_HEIGHT;
if (Val < 0)
{
a_ChunkDesc.SetBlockType(x, y + Segment, z, E_BLOCK_AIR);
}
} // for y
break;
} // if (biome)
} // for z, x
// Swap the floors:
std::swap(FloorLo, FloorHi);
}
}
bool cStructGenDirectOverhangs::HasWantedBiome(cChunkDesc & a_ChunkDesc) const
{
cChunkDef::BiomeMap & Biomes = a_ChunkDesc.GetBiomeMap();
for (size_t i = 0; i < ARRAYCOUNT(Biomes); i++)
{
switch (Biomes[i])
{
case biExtremeHills:
case biExtremeHillsEdge:
{
return true;
}
default:
{
break;
}
}
} // for i
return false;
}
////////////////////////////////////////////////////////////////////////////////
// cStructGenDistortedMembraneOverhangs:
cStructGenDistortedMembraneOverhangs::cStructGenDistortedMembraneOverhangs(int a_Seed) :
m_NoiseX(a_Seed + 1000),
m_NoiseY(a_Seed + 2000),
m_NoiseZ(a_Seed + 3000),
m_NoiseH(a_Seed + 4000)
{
}
void cStructGenDistortedMembraneOverhangs::GenFinish(cChunkDesc & a_ChunkDesc)
{
const NOISE_DATATYPE Frequency = static_cast<NOISE_DATATYPE>(16);
const NOISE_DATATYPE Amount = static_cast<NOISE_DATATYPE>(1);
for (int y = 50; y < 128; y++)
{
NOISE_DATATYPE NoiseY = static_cast<NOISE_DATATYPE>(y) / 32;
// TODO: proper water level - where to get?
BLOCKTYPE ReplacementBlock = (y > 62) ? E_BLOCK_AIR : E_BLOCK_STATIONARY_WATER;
for (int z = 0; z < cChunkDef::Width; z++)
{
NOISE_DATATYPE NoiseZ = static_cast<NOISE_DATATYPE>(a_ChunkDesc.GetChunkZ() * cChunkDef::Width + z) / Frequency;
for (int x = 0; x < cChunkDef::Width; x++)
{
NOISE_DATATYPE NoiseX = static_cast<NOISE_DATATYPE>(a_ChunkDesc.GetChunkX() * cChunkDef::Width + x) / Frequency;
NOISE_DATATYPE DistortX = m_NoiseX.CubicNoise3D(NoiseX, NoiseY, NoiseZ) * Amount;
NOISE_DATATYPE DistortY = m_NoiseY.CubicNoise3D(NoiseX, NoiseY, NoiseZ) * Amount;
NOISE_DATATYPE DistortZ = m_NoiseZ.CubicNoise3D(NoiseX, NoiseY, NoiseZ) * Amount;
int MembraneHeight = 96 - static_cast<int>((DistortY + m_NoiseH.CubicNoise2D(NoiseX + DistortX, NoiseZ + DistortZ)) * 30);
if (MembraneHeight < y)
{
a_ChunkDesc.SetBlockType(x, y, z, ReplacementBlock);
}
} // for y
} // for x
} // for z
}