525 lines
16 KiB
C++
525 lines
16 KiB
C++
|
|
// InterpolNoise.h
|
|
|
|
// Implements the cInterpolNoise class template representing a noise that interpolates the values between integer coords from a single set of neighbors
|
|
|
|
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
#include "Noise.h"
|
|
|
|
#define FAST_FLOOR(x) (((x) < 0) ? ((static_cast<int>(x)) - 1) : (static_cast<int>(x)))
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// cInterpolCell2D:
|
|
|
|
template <typename T>
|
|
class cInterpolCell2D
|
|
{
|
|
public:
|
|
cInterpolCell2D(
|
|
const cNoise & a_Noise, ///< Noise to use for generating the random values
|
|
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
|
|
int a_SizeX, int a_SizeY, ///< Count of the array, in each direction
|
|
const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values
|
|
const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values
|
|
):
|
|
m_Noise(a_Noise),
|
|
m_WorkRnds(&m_Workspace1),
|
|
m_CurFloorX(0),
|
|
m_CurFloorY(0),
|
|
m_Array(a_Array),
|
|
m_SizeX(a_SizeX),
|
|
m_SizeY(a_SizeY),
|
|
m_FracX(a_FracX),
|
|
m_FracY(a_FracY)
|
|
{
|
|
}
|
|
|
|
|
|
/** Generates part of the output noise array using the current m_WorkRnds[] values */
|
|
void Generate(
|
|
int a_FromX, int a_ToX,
|
|
int a_FromY, int a_ToY
|
|
)
|
|
{
|
|
for (int y = a_FromY; y < a_ToY; y++)
|
|
{
|
|
NOISE_DATATYPE Interp[2];
|
|
NOISE_DATATYPE FracY = T::coeff(m_FracY[y]);
|
|
Interp[0] = Lerp((*m_WorkRnds)[0][0], (*m_WorkRnds)[0][1], FracY);
|
|
Interp[1] = Lerp((*m_WorkRnds)[1][0], (*m_WorkRnds)[1][1], FracY);
|
|
int idx = y * m_SizeX + a_FromX;
|
|
for (int x = a_FromX; x < a_ToX; x++)
|
|
{
|
|
m_Array[idx++] = Lerp(Interp[0], Interp[1], T::coeff(m_FracX[x]));
|
|
} // for x
|
|
} // for y
|
|
}
|
|
|
|
|
|
/** Initializes m_WorkRnds[] with the specified values of the noise at the specified integral coords. */
|
|
void InitWorkRnds(int a_FloorX, int a_FloorY)
|
|
{
|
|
m_CurFloorX = a_FloorX;
|
|
m_CurFloorY = a_FloorY;
|
|
(*m_WorkRnds)[0][0] = m_Noise.IntNoise2D(m_CurFloorX, m_CurFloorY);
|
|
(*m_WorkRnds)[0][1] = m_Noise.IntNoise2D(m_CurFloorX, m_CurFloorY + 1);
|
|
(*m_WorkRnds)[1][0] = m_Noise.IntNoise2D(m_CurFloorX + 1, m_CurFloorY);
|
|
(*m_WorkRnds)[1][1] = m_Noise.IntNoise2D(m_CurFloorX + 1, m_CurFloorY + 1);
|
|
}
|
|
|
|
|
|
/** Updates m_WorkRnds[] for the new integral coords */
|
|
void Move(int a_NewFloorX, int a_NewFloorY)
|
|
{
|
|
// Swap the doublebuffer:
|
|
int OldFloorX = m_CurFloorX;
|
|
int OldFloorY = m_CurFloorY;
|
|
Workspace * OldWorkRnds = m_WorkRnds;
|
|
m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1;
|
|
|
|
// Reuse as much of the old workspace as possible:
|
|
// TODO: Try out if simply calculating all 4 elements each time is faster than this monster loop
|
|
int DiffX = OldFloorX - a_NewFloorX;
|
|
int DiffY = OldFloorY - a_NewFloorY;
|
|
for (int x = 0; x < 2; x++)
|
|
{
|
|
int cx = a_NewFloorX + x;
|
|
int OldX = x - DiffX; // Where would this X be in the old grid?
|
|
for (int y = 0; y < 2; y++)
|
|
{
|
|
int cy = a_NewFloorY + y;
|
|
int OldY = y - DiffY; // Where would this Y be in the old grid?
|
|
if ((OldX >= 0) && (OldX < 2) && (OldY >= 0) && (OldY < 2))
|
|
{
|
|
(*m_WorkRnds)[x][y] = (*OldWorkRnds)[OldX][OldY];
|
|
}
|
|
else
|
|
{
|
|
(*m_WorkRnds)[x][y] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise2D(cx, cy));
|
|
}
|
|
}
|
|
}
|
|
m_CurFloorX = a_NewFloorX;
|
|
m_CurFloorY = a_NewFloorY;
|
|
}
|
|
|
|
protected:
|
|
typedef NOISE_DATATYPE Workspace[2][2];
|
|
|
|
/** The noise used for generating the values at integral coords. */
|
|
const cNoise & m_Noise;
|
|
|
|
/** The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering) */
|
|
Workspace * m_WorkRnds;
|
|
|
|
/** Buffer 1 for workspace doublebuffering, used in Move() */
|
|
Workspace m_Workspace1;
|
|
|
|
/** Buffer 2 for workspace doublebuffering, used in Move() */
|
|
Workspace m_Workspace2;
|
|
|
|
/** Coords of the currently calculated m_WorkRnds[]. */
|
|
int m_CurFloorX, m_CurFloorY;
|
|
|
|
/** The output array to generate into. */
|
|
NOISE_DATATYPE * m_Array;
|
|
|
|
/** Dimensions of the output array. */
|
|
int m_SizeX, m_SizeY;
|
|
|
|
/** Arrays holding the fractional values of the coords in each direction. */
|
|
const NOISE_DATATYPE * m_FracX;
|
|
const NOISE_DATATYPE * m_FracY;
|
|
} ;
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// cInterpolCell3D:
|
|
|
|
/** Holds a cache of the last calculated integral noise values and interpolates between them en masse.
|
|
Provides a massive optimization for cInterpolNoise.
|
|
Works by calculating multiple noise values (that have the same integral noise coords) at once. The underlying noise values
|
|
needn't be recalculated for these values, only the interpolation is done within the unit cube. */
|
|
template <typename T>
|
|
class cInterpolCell3D
|
|
{
|
|
public:
|
|
cInterpolCell3D(
|
|
const cNoise & a_Noise, ///< Noise to use for generating the random values
|
|
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
|
|
int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction
|
|
const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values
|
|
const NOISE_DATATYPE * a_FracY, ///< Pointer to the attay that stores the Y fractional values
|
|
const NOISE_DATATYPE * a_FracZ ///< Pointer to the array that stores the Z fractional values
|
|
):
|
|
m_Noise(a_Noise),
|
|
m_WorkRnds(&m_Workspace1),
|
|
m_CurFloorX(0),
|
|
m_CurFloorY(0),
|
|
m_CurFloorZ(0),
|
|
m_Array(a_Array),
|
|
m_SizeX(a_SizeX),
|
|
m_SizeY(a_SizeY),
|
|
m_SizeZ(a_SizeZ),
|
|
m_FracX(a_FracX),
|
|
m_FracY(a_FracY),
|
|
m_FracZ(a_FracZ)
|
|
{
|
|
}
|
|
|
|
|
|
/** Generates part of the output array using current m_WorkRnds[]. */
|
|
void Generate(
|
|
int a_FromX, int a_ToX,
|
|
int a_FromY, int a_ToY,
|
|
int a_FromZ, int a_ToZ
|
|
)
|
|
{
|
|
for (int z = a_FromZ; z < a_ToZ; z++)
|
|
{
|
|
int idxZ = z * m_SizeX * m_SizeY;
|
|
NOISE_DATATYPE Interp2[2][2];
|
|
NOISE_DATATYPE FracZ = T::coeff(m_FracZ[z]);
|
|
for (int x = 0; x < 2; x++)
|
|
{
|
|
for (int y = 0; y < 2; y++)
|
|
{
|
|
Interp2[x][y] = Lerp((*m_WorkRnds)[x][y][0], (*m_WorkRnds)[x][y][1], FracZ);
|
|
}
|
|
}
|
|
for (int y = a_FromY; y < a_ToY; y++)
|
|
{
|
|
NOISE_DATATYPE Interp[2];
|
|
NOISE_DATATYPE FracY = T::coeff(m_FracY[y]);
|
|
Interp[0] = Lerp(Interp2[0][0], Interp2[0][1], FracY);
|
|
Interp[1] = Lerp(Interp2[1][0], Interp2[1][1], FracY);
|
|
int idx = idxZ + y * m_SizeX + a_FromX;
|
|
for (int x = a_FromX; x < a_ToX; x++)
|
|
{
|
|
m_Array[idx++] = Lerp(Interp[0], Interp[1], T::coeff(m_FracX[x]));
|
|
} // for x
|
|
} // for y
|
|
} // for z
|
|
}
|
|
|
|
|
|
/** Initializes m_WorkRnds[] with the specified Floor values. */
|
|
void InitWorkRnds(int a_FloorX, int a_FloorY, int a_FloorZ)
|
|
{
|
|
m_CurFloorX = a_FloorX;
|
|
m_CurFloorY = a_FloorY;
|
|
m_CurFloorZ = a_FloorZ;
|
|
(*m_WorkRnds)[0][0][0] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(m_CurFloorX, m_CurFloorY, m_CurFloorZ));
|
|
(*m_WorkRnds)[0][0][1] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(m_CurFloorX, m_CurFloorY, m_CurFloorZ + 1));
|
|
(*m_WorkRnds)[0][1][0] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(m_CurFloorX, m_CurFloorY + 1, m_CurFloorZ));
|
|
(*m_WorkRnds)[0][1][1] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(m_CurFloorX, m_CurFloorY + 1, m_CurFloorZ + 1));
|
|
(*m_WorkRnds)[1][0][0] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(m_CurFloorX + 1, m_CurFloorY, m_CurFloorZ));
|
|
(*m_WorkRnds)[1][0][1] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(m_CurFloorX + 1, m_CurFloorY, m_CurFloorZ + 1));
|
|
(*m_WorkRnds)[1][1][0] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(m_CurFloorX + 1, m_CurFloorY + 1, m_CurFloorZ));
|
|
(*m_WorkRnds)[1][1][1] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(m_CurFloorX + 1, m_CurFloorY + 1, m_CurFloorZ + 1));
|
|
}
|
|
|
|
|
|
/** Updates m_WorkRnds[] for the new Floor values. */
|
|
void Move(int a_NewFloorX, int a_NewFloorY, int a_NewFloorZ)
|
|
{
|
|
// Swap the doublebuffer:
|
|
int OldFloorX = m_CurFloorX;
|
|
int OldFloorY = m_CurFloorY;
|
|
int OldFloorZ = m_CurFloorZ;
|
|
Workspace * OldWorkRnds = m_WorkRnds;
|
|
m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1;
|
|
|
|
// Reuse as much of the old workspace as possible:
|
|
// TODO: Try out if simply calculating all 8 elements each time is faster than this monster loop
|
|
int DiffX = OldFloorX - a_NewFloorX;
|
|
int DiffY = OldFloorY - a_NewFloorY;
|
|
int DiffZ = OldFloorZ - a_NewFloorZ;
|
|
for (int x = 0; x < 2; x++)
|
|
{
|
|
int cx = a_NewFloorX + x;
|
|
int OldX = x - DiffX; // Where would this X be in the old grid?
|
|
for (int y = 0; y < 2; y++)
|
|
{
|
|
int cy = a_NewFloorY + y;
|
|
int OldY = y - DiffY; // Where would this Y be in the old grid?
|
|
for (int z = 0; z < 2; z++)
|
|
{
|
|
int cz = a_NewFloorZ + z;
|
|
int OldZ = z - DiffZ;
|
|
if ((OldX >= 0) && (OldX < 2) && (OldY >= 0) && (OldY < 2) && (OldZ >= 0) && (OldZ < 2))
|
|
{
|
|
(*m_WorkRnds)[x][y][z] = (*OldWorkRnds)[OldX][OldY][OldZ];
|
|
}
|
|
else
|
|
{
|
|
(*m_WorkRnds)[x][y][z] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(cx, cy, cz));
|
|
}
|
|
} // for z
|
|
} // for y
|
|
} // for x
|
|
m_CurFloorX = a_NewFloorX;
|
|
m_CurFloorY = a_NewFloorY;
|
|
m_CurFloorZ = a_NewFloorZ;
|
|
}
|
|
|
|
protected:
|
|
typedef NOISE_DATATYPE Workspace[2][2][2];
|
|
|
|
/** The noise used for generating the values at integral coords. */
|
|
const cNoise & m_Noise;
|
|
|
|
/** The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering) */
|
|
Workspace * m_WorkRnds;
|
|
|
|
/** Buffer 1 for workspace doublebuffering, used in Move() */
|
|
Workspace m_Workspace1;
|
|
|
|
/** Buffer 2 for workspace doublebuffering, used in Move() */
|
|
Workspace m_Workspace2;
|
|
|
|
/** The integral coords of the currently calculated WorkRnds[] */
|
|
int m_CurFloorX, m_CurFloorY, m_CurFloorZ;
|
|
|
|
/** The output array where the noise is calculated. */
|
|
NOISE_DATATYPE * m_Array;
|
|
|
|
/** Dimensions of the output array. */
|
|
int m_SizeX, m_SizeY, m_SizeZ;
|
|
|
|
/** Arrays holding the fractional values of the coords in each direction. */
|
|
const NOISE_DATATYPE * m_FracX;
|
|
const NOISE_DATATYPE * m_FracY;
|
|
const NOISE_DATATYPE * m_FracZ;
|
|
} ;
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// cInterpolNoise:
|
|
|
|
template <typename T>
|
|
class cInterpolNoise
|
|
{
|
|
/** Maximum size, for each direction, of the generated array. */
|
|
static const int MAX_SIZE = 256;
|
|
|
|
public:
|
|
cInterpolNoise(int a_Seed):
|
|
m_Noise(a_Seed)
|
|
{
|
|
}
|
|
|
|
|
|
/** Sets a new seed for the generators. Relays the seed to the underlying noise. */
|
|
void SetSeed(int a_Seed)
|
|
{
|
|
m_Noise.SetSeed(a_Seed);
|
|
}
|
|
|
|
|
|
/** Fills a 2D array with the values of the noise. */
|
|
void Generate2D(
|
|
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
|
|
int a_SizeX, int a_SizeY, ///< Count of the array, in each direction
|
|
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
|
|
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY ///< Noise-space coords of the array in the Y direction
|
|
) const
|
|
{
|
|
ASSERT(a_SizeX > 0);
|
|
ASSERT(a_SizeY > 0);
|
|
ASSERT(a_SizeX < MAX_SIZE);
|
|
ASSERT(a_SizeY < MAX_SIZE);
|
|
ASSERT(a_StartX < a_EndX);
|
|
ASSERT(a_StartY < a_EndY);
|
|
|
|
// Calculate the integral and fractional parts of each coord:
|
|
int FloorX[MAX_SIZE];
|
|
int FloorY[MAX_SIZE];
|
|
NOISE_DATATYPE FracX[MAX_SIZE];
|
|
NOISE_DATATYPE FracY[MAX_SIZE];
|
|
int SameX[MAX_SIZE];
|
|
int SameY[MAX_SIZE];
|
|
int NumSameX, NumSameY;
|
|
CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX);
|
|
CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY);
|
|
|
|
cInterpolCell2D<T> Cell(m_Noise, a_Array, a_SizeX, a_SizeY, FracX, FracY);
|
|
|
|
Cell.InitWorkRnds(FloorX[0], FloorY[0]);
|
|
|
|
// Calculate query values using Cell:
|
|
int FromY = 0;
|
|
for (int y = 0; y < NumSameY; y++)
|
|
{
|
|
int ToY = FromY + SameY[y];
|
|
int FromX = 0;
|
|
int CurFloorY = FloorY[FromY];
|
|
for (int x = 0; x < NumSameX; x++)
|
|
{
|
|
int ToX = FromX + SameX[x];
|
|
Cell.Generate(FromX, ToX, FromY, ToY);
|
|
Cell.Move(FloorX[ToX], CurFloorY);
|
|
FromX = ToX;
|
|
} // for x
|
|
Cell.Move(FloorX[0], FloorY[ToY]);
|
|
FromY = ToY;
|
|
} // for y
|
|
}
|
|
|
|
|
|
/** Fills a 3D array with the values of the noise. */
|
|
void Generate3D(
|
|
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z]
|
|
int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction
|
|
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
|
|
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction
|
|
NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ ///< Noise-space coords of the array in the Z direction
|
|
) const
|
|
{
|
|
// Check params:
|
|
ASSERT(a_SizeX > 1);
|
|
ASSERT(a_SizeY > 1);
|
|
|
|
ASSERT(a_SizeX < MAX_SIZE);
|
|
ASSERT(a_SizeY < MAX_SIZE);
|
|
ASSERT(a_SizeZ < MAX_SIZE);
|
|
ASSERT(a_StartX < a_EndX);
|
|
ASSERT(a_StartY < a_EndY);
|
|
ASSERT(a_StartZ < a_EndZ);
|
|
|
|
// Calculate the integral and fractional parts of each coord:
|
|
int FloorX[MAX_SIZE];
|
|
int FloorY[MAX_SIZE];
|
|
int FloorZ[MAX_SIZE];
|
|
NOISE_DATATYPE FracX[MAX_SIZE];
|
|
NOISE_DATATYPE FracY[MAX_SIZE];
|
|
NOISE_DATATYPE FracZ[MAX_SIZE];
|
|
int SameX[MAX_SIZE];
|
|
int SameY[MAX_SIZE];
|
|
int SameZ[MAX_SIZE];
|
|
int NumSameX, NumSameY, NumSameZ;
|
|
CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX);
|
|
CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY);
|
|
CalcFloorFrac(a_SizeZ, a_StartZ, a_EndZ, FloorZ, FracZ, SameZ, NumSameZ);
|
|
|
|
cInterpolCell3D<T> Cell(
|
|
m_Noise, a_Array,
|
|
a_SizeX, a_SizeY, a_SizeZ,
|
|
FracX, FracY, FracZ
|
|
);
|
|
|
|
Cell.InitWorkRnds(FloorX[0], FloorY[0], FloorZ[0]);
|
|
|
|
// Calculate query values using Cell:
|
|
int FromZ = 0;
|
|
for (int z = 0; z < NumSameZ; z++)
|
|
{
|
|
int ToZ = FromZ + SameZ[z];
|
|
int CurFloorZ = FloorZ[FromZ];
|
|
int FromY = 0;
|
|
for (int y = 0; y < NumSameY; y++)
|
|
{
|
|
int ToY = FromY + SameY[y];
|
|
int CurFloorY = FloorY[FromY];
|
|
int FromX = 0;
|
|
for (int x = 0; x < NumSameX; x++)
|
|
{
|
|
int ToX = FromX + SameX[x];
|
|
Cell.Generate(FromX, ToX, FromY, ToY, FromZ, ToZ);
|
|
Cell.Move(FloorX[ToX], CurFloorY, CurFloorZ);
|
|
FromX = ToX;
|
|
}
|
|
Cell.Move(FloorX[0], FloorY[ToY], CurFloorZ);
|
|
FromY = ToY;
|
|
} // for y
|
|
Cell.Move(FloorX[0], FloorY[0], FloorZ[ToZ]);
|
|
FromZ = ToZ;
|
|
} // for z
|
|
}
|
|
|
|
protected:
|
|
|
|
/** The noise used for the underlying value generation. */
|
|
cNoise m_Noise;
|
|
|
|
|
|
/** Calculates the integral and fractional parts along one axis.
|
|
a_Floor will receive the integral parts (array of a_Size ints).
|
|
a_Frac will receive the fractional parts (array of a_Size floats).
|
|
a_Same will receive the counts of items that have the same integral parts (array of up to a_Size ints).
|
|
a_NumSame will receive the count of a_Same elements (total count of different integral parts). */
|
|
void CalcFloorFrac(
|
|
int a_Size,
|
|
NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End,
|
|
int * a_Floor, NOISE_DATATYPE * a_Frac,
|
|
int * a_Same, int & a_NumSame
|
|
) const
|
|
{
|
|
ASSERT(a_Size > 0);
|
|
|
|
// Calculate the floor and frac values:
|
|
NOISE_DATATYPE val = a_Start;
|
|
NOISE_DATATYPE dif = (a_End - a_Start) / (a_Size - 1);
|
|
for (int i = 0; i < a_Size; i++)
|
|
{
|
|
a_Floor[i] = FAST_FLOOR(val);
|
|
a_Frac[i] = val - a_Floor[i];
|
|
val += dif;
|
|
}
|
|
|
|
// Mark up the same floor values into a_Same / a_NumSame:
|
|
int CurFloor = a_Floor[0];
|
|
int LastSame = 0;
|
|
a_NumSame = 0;
|
|
for (int i = 1; i < a_Size; i++)
|
|
{
|
|
if (a_Floor[i] != CurFloor)
|
|
{
|
|
a_Same[a_NumSame] = i - LastSame;
|
|
LastSame = i;
|
|
a_NumSame += 1;
|
|
CurFloor = a_Floor[i];
|
|
}
|
|
} // for i - a_Floor[]
|
|
if (LastSame < a_Size)
|
|
{
|
|
a_Same[a_NumSame] = a_Size - LastSame;
|
|
a_NumSame += 1;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/** A fifth-degree curve for interpolating.
|
|
Implemented as a functor for better chance of inlining. */
|
|
struct Interp5Deg
|
|
{
|
|
static NOISE_DATATYPE coeff(NOISE_DATATYPE a_Val)
|
|
{
|
|
return a_Val * a_Val * a_Val * (a_Val * (a_Val * 6 - 15) + 10);
|
|
}
|
|
};
|
|
|
|
typedef cInterpolNoise<Interp5Deg> cInterp5DegNoise;
|
|
|
|
|
|
|