1
0
Fork 0
cuberite-2a/src/Mobs/Path.cpp

686 lines
14 KiB
C++

#include "Globals.h"
#include "Path.h"
#include "../Chunk.h"
#define JUMP_G_COST 20
#define NORMAL_G_COST 10
#define DIAGONAL_G_COST 14
#define DISTANCE_MANHATTAN 0 // 1: More speed, a bit less accuracy 0: Max accuracy, less speed.
#define HEURISTICS_ONLY 0 // 1: Much more speed, much less accurate.
#define CALCULATIONS_PER_STEP 10 // Higher means more CPU load but faster path calculations.
// The only version which guarantees the shortest path is 0, 0.
bool compareHeuristics::operator()(cPathCell * & a_Cell1, cPathCell * & a_Cell2)
{
return a_Cell1->m_F > a_Cell2->m_F;
}
/* cPath implementation */
cPath::cPath(
cChunk & a_Chunk,
const Vector3d & a_StartingPoint, const Vector3d & a_EndingPoint, int a_MaxSteps,
double a_BoundingBoxWidth, double a_BoundingBoxHeight
) :
m_StepsLeft(a_MaxSteps),
m_IsValid(true),
m_CurrentPoint(0), // GetNextPoint increments this to 1, but that's fine, since the first cell is always a_StartingPoint
m_Chunk(&a_Chunk),
m_BadChunkFound(false)
{
a_BoundingBoxWidth = 1; // Treat all mobs width as 1 until physics is improved.
m_BoundingBoxWidth = CeilC(a_BoundingBoxWidth);
m_BoundingBoxHeight = CeilC(a_BoundingBoxHeight);
m_HalfWidth = a_BoundingBoxWidth / 2;
int HalfWidthInt = FloorC(a_BoundingBoxWidth / 2);
m_Source.x = FloorC(a_StartingPoint.x - HalfWidthInt);
m_Source.y = FloorC(a_StartingPoint.y);
m_Source.z = FloorC(a_StartingPoint.z - HalfWidthInt);
m_Destination.x = FloorC(a_EndingPoint.x - HalfWidthInt);
m_Destination.y = FloorC(a_EndingPoint.y);
m_Destination.z = FloorC(a_EndingPoint.z - HalfWidthInt);
if (!IsWalkable(m_Source, m_Source))
{
m_Status = ePathFinderStatus::PATH_NOT_FOUND;
return;
}
m_NearestPointToTarget = GetCell(m_Source);
m_Status = ePathFinderStatus::CALCULATING;
ProcessCell(GetCell(m_Source), nullptr, 0);
}
cPath::cPath() : m_IsValid(false)
{
}
ePathFinderStatus cPath::CalculationStep(cChunk & a_Chunk)
{
m_Chunk = &a_Chunk;
if (m_Status != ePathFinderStatus::CALCULATING)
{
return m_Status;
}
if (m_BadChunkFound)
{
FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND);
return m_Status;
}
if (m_StepsLeft == 0)
{
AttemptToFindAlternative();
}
else
{
--m_StepsLeft;
int i;
for (i = 0; i < CALCULATIONS_PER_STEP; ++i)
{
if (StepOnce()) // StepOnce returns true when no more calculation is needed.
{
break; // if we're here, m_Status must have changed either to PATH_FOUND or PATH_NOT_FOUND.
}
}
m_Chunk = nullptr;
}
return m_Status;
}
Vector3i cPath::AcceptNearbyPath()
{
ASSERT(m_Status == ePathFinderStatus::NEARBY_FOUND);
m_Status = ePathFinderStatus::PATH_FOUND;
return m_Destination;
}
bool cPath::StepOnce()
{
cPathCell * CurrentCell = OpenListPop();
// Path not reachable.
if (CurrentCell == nullptr)
{
AttemptToFindAlternative();
return true;
}
// Path found.
if (CurrentCell->m_Location == m_Destination)
{
BuildPath();
FinishCalculation(ePathFinderStatus::PATH_FOUND);
return true;
}
// Calculation not finished yet
// Check if we have a new NearestPoint.
if ((m_Destination - CurrentCell->m_Location).Length() < 5)
{
if (GetRandomProvider().RandBool(0.25))
{
m_NearestPointToTarget = CurrentCell;
}
}
else if (CurrentCell->m_H < m_NearestPointToTarget->m_H)
{
m_NearestPointToTarget = CurrentCell;
}
// process a currentCell by inspecting all neighbors.
// Now we start checking adjacent cells.
// If true, no need to do more checks in that direction
bool DoneEast = false,
DoneWest = false,
DoneNorth = false,
DoneSouth = false;
// If true, we can walk in that direction without changing height
// This is used for deciding if to calculate diagonals
bool WalkableEast = false,
WalkableWest = false,
WalkableNorth = false,
WalkableSouth = false;
// If we can jump without hitting the ceiling
if (BodyFitsIn(CurrentCell->m_Location + Vector3i(0, 1, 0), CurrentCell->m_Location))
{
// For ladder climbing
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, 1, 0), CurrentCell, JUMP_G_COST);
// Check east-up
if (ProcessIfWalkable(CurrentCell->m_Location + Vector3i(1, 1, 0), CurrentCell, JUMP_G_COST))
{
DoneEast = true;
}
// Check west-up
if (ProcessIfWalkable(CurrentCell->m_Location + Vector3i(-1, 1, 0), CurrentCell, JUMP_G_COST))
{
DoneWest = true;
}
// Check north-up
if (ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, 1, -1), CurrentCell, JUMP_G_COST))
{
DoneNorth = true;
}
// Check south-up
if (ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, 1, 1), CurrentCell, JUMP_G_COST))
{
DoneSouth = true;
}
}
// Check North, South, East, West at our own height or below. We are willing to jump up to 3 blocks down.
if (!DoneEast)
{
for (int y = 0; y >= -3; --y)
{
if (ProcessIfWalkable(CurrentCell->m_Location + Vector3i(1, y, 0), CurrentCell, NORMAL_G_COST))
{
DoneEast = true;
if (y == 0)
{
WalkableEast = true;
}
break;
}
}
}
if (!DoneWest)
{
for (int y = 0; y >= -3; --y)
{
if (ProcessIfWalkable(CurrentCell->m_Location + Vector3i(-1, y, 0), CurrentCell, NORMAL_G_COST))
{
DoneWest = true;
if (y == 0)
{
WalkableWest = true;
}
break;
}
}
}
if (!DoneSouth)
{
for (int y = 0; y >= -3; --y)
{
if (ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, y, 1), CurrentCell, NORMAL_G_COST))
{
DoneSouth = true;
if (y == 0)
{
WalkableSouth = true;
}
break;
}
}
}
if (!DoneNorth)
{
for (int y = 0; y >= -3; --y)
{
if (ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, y, -1), CurrentCell, NORMAL_G_COST))
{
DoneNorth = true;
if (y == 0)
{
WalkableNorth = true;
}
break;
}
}
}
// Check diagonals
if (WalkableNorth && WalkableEast)
{
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(1, 0, -1), CurrentCell, DIAGONAL_G_COST);
}
if (WalkableNorth && WalkableWest)
{
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(-1, 0, -1), CurrentCell, DIAGONAL_G_COST);
}
if (WalkableSouth && WalkableEast)
{
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(1, 0, 1), CurrentCell, DIAGONAL_G_COST);
}
if (WalkableSouth && WalkableWest)
{
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(-1, 0, 1), CurrentCell, DIAGONAL_G_COST);
}
return false;
}
void cPath::AttemptToFindAlternative()
{
if (m_NearestPointToTarget == GetCell(m_Source))
{
FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND);
}
else
{
m_Destination = m_NearestPointToTarget->m_Location;
BuildPath();
FinishCalculation(ePathFinderStatus::NEARBY_FOUND);
}
}
void cPath::BuildPath()
{
cPathCell * CurrentCell = GetCell(m_Destination);
while (CurrentCell->m_Parent != nullptr)
{
// Waypoints are cylinders that start at some particular x, y, z and have infinite height.
// Submerging water waypoints allows swimming mobs to be able to touch them.
if (IsBlockWater(GetCell(CurrentCell->m_Location + Vector3i(0, -1, 0))->m_BlockType))
{
CurrentCell->m_Location.y -= 30;
}
m_PathPoints.push_back(CurrentCell->m_Location); // Populate the cPath with points. All midpoints are added. Destination is added. Source is excluded.
CurrentCell = CurrentCell->m_Parent;
}
}
void cPath::FinishCalculation()
{
m_Map.clear();
m_OpenList = std::priority_queue<cPathCell *, std::vector<cPathCell *>, compareHeuristics>{};
}
void cPath::FinishCalculation(ePathFinderStatus a_NewStatus)
{
if (m_BadChunkFound)
{
a_NewStatus = ePathFinderStatus::PATH_NOT_FOUND;
}
m_Status = a_NewStatus;
FinishCalculation();
}
void cPath::OpenListAdd(cPathCell * a_Cell)
{
a_Cell->m_Status = eCellStatus::OPENLIST;
m_OpenList.push(a_Cell);
#ifdef COMPILING_PATHFIND_DEBUGGER
si::setBlock(a_Cell->m_Location.x, a_Cell->m_Location.y, a_Cell->m_Location.z, debug_open, SetMini(a_Cell));
#endif
}
cPathCell * cPath::OpenListPop() // Popping from the open list also means adding to the closed list.
{
if (m_OpenList.size() == 0)
{
return nullptr; // We've exhausted the search space and nothing was found, this will trigger a PATH_NOT_FOUND or NEARBY_FOUND status.
}
cPathCell * Ret = m_OpenList.top();
m_OpenList.pop();
Ret->m_Status = eCellStatus::CLOSEDLIST;
#ifdef COMPILING_PATHFIND_DEBUGGER
si::setBlock((Ret)->m_Location.x, (Ret)->m_Location.y, (Ret)->m_Location.z, debug_closed, SetMini(Ret));
#endif
return Ret;
}
bool cPath::ProcessIfWalkable(const Vector3i & a_Location, cPathCell * a_Parent, int a_Cost)
{
if (IsWalkable(a_Location, a_Parent->m_Location))
{
ProcessCell(GetCell(a_Location), a_Parent, a_Cost);
return true;
}
return false;
}
void cPath::ProcessCell(cPathCell * a_Cell, cPathCell * a_Caller, int a_GDelta)
{
// Case 1: Cell is in the closed list, ignore it.
if (a_Cell->m_Status == eCellStatus::CLOSEDLIST)
{
return;
}
if (a_Cell->m_Status == eCellStatus::NOLIST) // Case 2: The cell is not in any list.
{
// Cell is walkable, add it to the open list.
// Note that non-walkable cells are filtered out in Step_internal();
// Special case: Start cell goes here, gDelta is 0, caller is NULL.
a_Cell->m_Parent = a_Caller;
if (a_Caller != nullptr)
{
a_Cell->m_G = a_Caller->m_G + a_GDelta;
}
else
{
a_Cell->m_G = 0;
}
// Calculate H. This is A*'s Heuristics value.
#if DISTANCE_MANHATTAN == 1
// Manhattan distance. DeltaX + DeltaY + DeltaZ.
a_Cell->m_H = 10 * (abs(a_Cell->m_Location.x-m_Destination.x) + abs(a_Cell->m_Location.y-m_Destination.y) + abs(a_Cell->m_Location.z-m_Destination.z));
#else
// Euclidian distance. sqrt(DeltaX^2 + DeltaY^2 + DeltaZ^2), more precise.
a_Cell->m_H = static_cast<decltype(a_Cell->m_H)>((a_Cell->m_Location - m_Destination).Length() * 10);
#endif
#if HEURISTICS_ONLY == 1
a_Cell->m_F = a_Cell->m_H; // Greedy search. https://en.wikipedia.org/wiki/Greedy_search
#else
a_Cell->m_F = a_Cell->m_H + a_Cell->m_G; // Regular A*.
#endif
OpenListAdd(a_Cell);
return;
}
// Case 3: Cell is in the open list, check if G and H need an update.
int NewG = a_Caller->m_G + a_GDelta;
if (NewG < a_Cell->m_G)
{
a_Cell->m_G = NewG;
a_Cell->m_H = a_Cell->m_F + a_Cell->m_G;
a_Cell->m_Parent = a_Caller;
}
}
void cPath::FillCellAttributes(cPathCell & a_Cell)
{
const Vector3i & Location = a_Cell.m_Location;
ASSERT(m_Chunk != nullptr);
if (!cChunkDef::IsValidHeight(Location.y))
{
// Players can't build outside the game height, so it must be air
a_Cell.m_IsSolid = false;
a_Cell.m_IsSpecial = false;
a_Cell.m_BlockType = E_BLOCK_AIR;
return;
}
auto Chunk = m_Chunk->GetNeighborChunk(Location.x, Location.z);
if ((Chunk == nullptr) || !Chunk->IsValid())
{
m_BadChunkFound = true;
a_Cell.m_IsSolid = true;
a_Cell.m_IsSpecial = false;
a_Cell.m_BlockType = E_BLOCK_AIR; // m_BlockType is never used when m_IsSpecial is false, but it may be used if we implement dijkstra
return;
}
m_Chunk = Chunk;
BLOCKTYPE BlockType;
NIBBLETYPE BlockMeta;
int RelX = Location.x - m_Chunk->GetPosX() * cChunkDef::Width;
int RelZ = Location.z - m_Chunk->GetPosZ() * cChunkDef::Width;
m_Chunk->GetBlockTypeMeta(RelX, Location.y, RelZ, BlockType, BlockMeta);
a_Cell.m_BlockType = BlockType;
a_Cell.m_BlockMeta = BlockMeta;
if (BlockTypeIsSpecial(BlockType))
{
a_Cell.m_IsSpecial = true;
a_Cell.m_IsSolid = true; // Specials are solids only from a certain direction. But their m_IsSolid is always true
}
else if ((!cBlockInfo::IsSolid(a_Cell.m_BlockType)) && IsBlockFence(GetCell(Location + Vector3i(0, -1, 0))->m_BlockType))
{
// Nonsolid blocks with fences below them are consider Special Solids. That is, they sometimes behave as solids.
a_Cell.m_IsSpecial = true;
a_Cell.m_IsSolid = true;
}
else
{
a_Cell.m_IsSpecial = false;
a_Cell.m_IsSolid = cBlockInfo::IsSolid(BlockType);
}
}
cPathCell * cPath::GetCell(const Vector3i & a_Location)
{
// Create the cell in the hash table if it's not already there.
if (m_Map.count(a_Location) == 0) // Case 1: Cell is not on any list. We've never checked this cell before.
{
m_Map[a_Location].m_Location = a_Location;
FillCellAttributes(m_Map[a_Location]);
m_Map[a_Location].m_Status = eCellStatus::NOLIST;
#ifdef COMPILING_PATHFIND_DEBUGGER
#ifdef COMPILING_PATHFIND_DEBUGGER_MARK_UNCHECKED
si::setBlock(a_Location.x, a_Location.y, a_Location.z, debug_unchecked, Cell->m_IsSolid ? NORMAL : MINI);
#endif
#endif
return &m_Map[a_Location];
}
else
{
return &m_Map[a_Location];
}
}
bool cPath::IsWalkable(const Vector3i & a_Location, const Vector3i & a_Source)
{
return (HasSolidBelow(a_Location) && BodyFitsIn(a_Location, a_Source));
}
// We need the source because some special blocks are solid only from a certain direction e.g. doors
bool cPath::BodyFitsIn(const Vector3i & a_Location, const Vector3i & a_Source)
{
int x, y, z;
for (y = 0; y < m_BoundingBoxHeight; ++y)
{
for (x = 0; x < m_BoundingBoxWidth; ++x)
{
for (z = 0; z < m_BoundingBoxWidth; ++z)
{
cPathCell * CurrentCell = GetCell(a_Location + Vector3i(x, y, z));
if (CurrentCell->m_IsSolid)
{
if (CurrentCell->m_IsSpecial)
{
if (SpecialIsSolidFromThisDirection(CurrentCell->m_BlockType, CurrentCell->m_BlockMeta, a_Location - a_Source))
{
return false;
}
}
else
{
return false;
}
}
}
}
}
return true;
}
bool cPath::BlockTypeIsSpecial(BLOCKTYPE a_Type)
{
if (IsBlockFence(a_Type))
{
return true;
}
switch (a_Type)
{
case E_BLOCK_OAK_DOOR:
case E_BLOCK_DARK_OAK_DOOR:
case E_BLOCK_TRAPDOOR:
case E_BLOCK_WATER:
case E_BLOCK_STATIONARY_WATER:
{
return true;
}
default:
{
return false;
}
}
}
bool cPath::SpecialIsSolidFromThisDirection(BLOCKTYPE a_Type, NIBBLETYPE a_Meta, const Vector3i & a_Direction)
{
if (a_Direction == Vector3i(0, 0, 0))
{
return false;
}
// If there is a nonsolid above a fence
if (!cBlockInfo::IsSolid(a_Type))
{
// If we're coming from below
if (a_Direction.y > 0)
{
return true; // treat the nonsolid as solid
}
else
{
return false; // Treat it as a nonsolid because we are not coming from below
}
}
/* switch (a_Type)
{
case E_BLOCK_ETC:
{
Decide if solid from this direction and return either true or false.
}
// TODO Fill this with the other specials after physics is fixed
} */
return true;
}
bool cPath::HasSolidBelow(const Vector3i & a_Location)
{
int x, z;
for (x = 0; x < m_BoundingBoxWidth; ++x)
{
for (z = 0; z < m_BoundingBoxWidth; ++z)
{
if (GetCell(a_Location + Vector3i(x, -1, z))->m_IsSolid)
{
return true;
}
}
}
return false;
}