1
0
Fork 0
cuberite-2a/src/Generating/EndGen.cpp

209 lines
5.3 KiB
C++

// EndGen.cpp
// Implements the cEndGen class representing the generator for the End, both as a HeightGen and CompositionGen
#include "Globals.h"
#include "EndGen.h"
#include "../IniFile.h"
#include "../LinearUpscale.h"
enum
{
// Interpolation cell size:
INTERPOL_X = 4,
INTERPOL_Y = 4,
INTERPOL_Z = 4,
// Size of chunk data, downscaled before interpolation:
DIM_X = 16 / INTERPOL_X + 1,
DIM_Y = 256 / INTERPOL_Y + 1,
DIM_Z = 16 / INTERPOL_Z + 1,
} ;
////////////////////////////////////////////////////////////////////////////////
// cEndGen:
cEndGen::cEndGen(int a_Seed) :
m_Seed(a_Seed),
m_IslandSizeX(256),
m_IslandSizeY(96),
m_IslandSizeZ(256),
m_FrequencyX(80),
m_FrequencyY(80),
m_FrequencyZ(80),
m_MinChunkX(0),
m_MaxChunkX(0),
m_MinChunkZ(0),
m_MaxChunkZ(0),
m_LastChunkX(0x7fffffff), // Use dummy coords that won't ever be used by real chunks
m_LastChunkZ(0x7fffffff)
{
m_Perlin.AddOctave(1, 1);
m_Perlin.AddOctave(2, 0.5);
m_Perlin.AddOctave(4, 0.25);
}
void cEndGen::InitializeCompoGen(cIniFile & a_IniFile)
{
m_IslandSizeX = a_IniFile.GetValueSetI("Generator", "EndGenIslandSizeX", m_IslandSizeX);
m_IslandSizeY = a_IniFile.GetValueSetI("Generator", "EndGenIslandSizeY", m_IslandSizeY);
m_IslandSizeZ = a_IniFile.GetValueSetI("Generator", "EndGenIslandSizeZ", m_IslandSizeZ);
m_FrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "EndGenFrequencyX", m_FrequencyX);
m_FrequencyY = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "EndGenFrequencyY", m_FrequencyY);
m_FrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "EndGenFrequencyZ", m_FrequencyZ);
// Recalculate the min and max chunk coords of the island
m_MaxChunkX = (m_IslandSizeX + cChunkDef::Width - 1) / cChunkDef::Width;
m_MinChunkX = -m_MaxChunkX;
m_MaxChunkZ = (m_IslandSizeZ + cChunkDef::Width - 1) / cChunkDef::Width;
m_MinChunkZ = -m_MaxChunkZ;
}
void cEndGen::PrepareState(int a_ChunkX, int a_ChunkZ)
{
ASSERT(!IsChunkOutsideRange(a_ChunkX, a_ChunkZ)); // Should be filtered before calling this function
if ((m_LastChunkX == a_ChunkX) && (m_LastChunkZ == a_ChunkZ))
{
return;
}
m_LastChunkX = a_ChunkX;
m_LastChunkZ = a_ChunkZ;
GenerateNoiseArray();
}
void cEndGen::GenerateNoiseArray(void)
{
NOISE_DATATYPE NoiseData[DIM_X * DIM_Y * DIM_Z]; // [x + DIM_X * z + DIM_X * DIM_Z * y]
NOISE_DATATYPE Workspace[DIM_X * DIM_Y * DIM_Z]; // [x + DIM_X * z + DIM_X * DIM_Z * y]
// Generate the downscaled noise:
NOISE_DATATYPE StartX = ((NOISE_DATATYPE)(m_LastChunkX * cChunkDef::Width)) / m_FrequencyX;
NOISE_DATATYPE EndX = ((NOISE_DATATYPE)((m_LastChunkX + 1) * cChunkDef::Width)) / m_FrequencyX;
NOISE_DATATYPE StartZ = ((NOISE_DATATYPE)(m_LastChunkZ * cChunkDef::Width)) / m_FrequencyZ;
NOISE_DATATYPE EndZ = ((NOISE_DATATYPE)((m_LastChunkZ + 1) * cChunkDef::Width)) / m_FrequencyZ;
NOISE_DATATYPE StartY = 0;
NOISE_DATATYPE EndY = ((NOISE_DATATYPE)257) / m_FrequencyY;
m_Perlin.Generate3D(NoiseData, DIM_X, DIM_Z, DIM_Y, StartX, EndX, StartZ, EndZ, StartY, EndY, Workspace);
// Add distance:
int idx = 0;
for (int y = 0; y < DIM_Y; y++)
{
NOISE_DATATYPE ValY = (NOISE_DATATYPE)(2 * INTERPOL_Y * y - m_IslandSizeY) / m_IslandSizeY;
ValY = ValY * ValY;
for (int z = 0; z < DIM_Z; z++)
{
NOISE_DATATYPE ValZ = (NOISE_DATATYPE)(m_LastChunkZ * cChunkDef::Width + (z * cChunkDef::Width / (DIM_Z - 1))) / m_IslandSizeZ;
ValZ = ValZ * ValZ;
for (int x = 0; x < DIM_X; x++)
{
// NOISE_DATATYPE ValX = StartX + (EndX - StartX) * x / (DIM_X - 1);
NOISE_DATATYPE ValX = (NOISE_DATATYPE)(m_LastChunkX * cChunkDef::Width + (x * cChunkDef::Width / (DIM_X - 1))) / m_IslandSizeX;
ValX = ValX * ValX;
NoiseData[idx++] += ValX + ValZ + ValY;
} // for x
} // for z
} // for y
// Upscale into real chunk size:
LinearUpscale3DArray(NoiseData, DIM_X, DIM_Z, DIM_Y, m_NoiseArray, INTERPOL_X, INTERPOL_Z, INTERPOL_Y);
}
bool cEndGen::IsChunkOutsideRange(int a_ChunkX, int a_ChunkZ)
{
return (
(a_ChunkX < m_MinChunkX) || (a_ChunkX > m_MaxChunkX) ||
(a_ChunkZ < m_MinChunkZ) || (a_ChunkZ > m_MaxChunkZ)
);
}
void cEndGen::GenShape(int a_ChunkX, int a_ChunkZ, cChunkDesc::Shape & a_Shape)
{
// If the chunk is outside out range, fill the shape with zeroes:
if (IsChunkOutsideRange(a_ChunkX, a_ChunkZ))
{
for (size_t i = 0; i < ARRAYCOUNT(a_Shape); i++)
{
a_Shape[i] = 0;
}
return;
}
PrepareState(a_ChunkX, a_ChunkZ);
int MaxY = std::min((int)(1.75 * m_IslandSizeY + 1), cChunkDef::Height - 1);
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
for (int y = 0; y < MaxY; y++)
{
a_Shape[(x + 16 * z) * 256 + y] = (m_NoiseArray[y * 17 * 17 + z * 17 + z] > 0) ? 1 : 0;
}
for (int y = MaxY; y < cChunkDef::Height; y++)
{
a_Shape[(x + 16 * z) * 256 + y] = 0;
}
} // for x
} // for z
}
void cEndGen::ComposeTerrain(cChunkDesc & a_ChunkDesc, const cChunkDesc::Shape & a_Shape)
{
a_ChunkDesc.FillBlocks(E_BLOCK_AIR, 0);
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
for (int y = 0; y < cChunkDef::Height; y++)
{
if (a_Shape[(x + 16 * z) * 256 + y] != 0)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_END_STONE);
}
} // for y
} // for x
} // for z
}