1
0
Fork 0
cuberite-2a/src/Simulator/IncrementalRedstoneSimulator/RedstoneComparatorHandler.h

140 lines
5.6 KiB
C++

#pragma once
#include "RedstoneHandler.h"
#include "Blocks/BlockComparator.h"
class cRedstoneComparatorHandler : public cRedstoneHandler
{
typedef cRedstoneHandler super;
public:
cRedstoneComparatorHandler(cWorld & a_World) :
super(a_World)
{
}
unsigned char GetFrontPowerLevel(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta, unsigned char a_HighestSidePowerLevel, unsigned char a_HighestRearPowerLevel)
{
if (cBlockComparatorHandler::IsInSubtractionMode(a_Meta))
{
// Subtraction mode
return static_cast<unsigned char>(std::max(static_cast<char>(a_HighestRearPowerLevel) - a_HighestSidePowerLevel, 0));
}
else
{
// Comparison mode
return (std::max(a_HighestSidePowerLevel, a_HighestRearPowerLevel) == a_HighestSidePowerLevel) ? 0 : a_HighestRearPowerLevel;
}
}
virtual unsigned char GetPowerDeliveredToPosition(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta, const Vector3i & a_QueryPosition, BLOCKTYPE a_QueryBlockType) override
{
UNUSED(a_QueryPosition);
UNUSED(a_QueryBlockType);
return (cBlockComparatorHandler::GetFrontCoordinate(a_Position, a_Meta & 0x3) == a_QueryPosition) ? static_cast<cIncrementalRedstoneSimulator *>(m_World.GetRedstoneSimulator())->GetChunkData()->GetCachedPowerData(a_Position).PowerLevel : 0;
}
virtual unsigned char GetPowerLevel(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta) override
{
UNUSED(a_Position);
UNUSED(a_BlockType);
class cContainerCallback : public cBlockEntityCallback
{
public:
cContainerCallback() : m_SignalStrength(0)
{
}
virtual bool Item(cBlockEntity * a_BlockEntity) override
{
auto & Contents = static_cast<cBlockEntityWithItems *>(a_BlockEntity)->GetContents();
float Fullness = 0; // Is a floating-point type to allow later calculation to produce a non-truncated value
for (int Slot = 0; Slot != Contents.GetNumSlots(); ++Slot)
{
Fullness += static_cast<float>(Contents.GetSlot(Slot).m_ItemCount) / Contents.GetSlot(Slot).GetMaxStackSize();
}
m_SignalStrength = (Fullness < 0.001 /* container empty? */) ? 0 : static_cast<unsigned char>(1 + (Fullness / Contents.GetNumSlots()) * 14);
return false;
}
unsigned char m_SignalStrength;
} CCB;
auto RearCoordinate = cBlockComparatorHandler::GetRearCoordinate(a_Position, a_Meta & 0x3);
m_World.DoWithBlockEntityAt(RearCoordinate.x, RearCoordinate.y, RearCoordinate.z, CCB);
auto RearPower = CCB.m_SignalStrength;
auto PotentialSourceHandler = cIncrementalRedstoneSimulator::CreateComponent(m_World, m_World.GetBlock(RearCoordinate), static_cast<cIncrementalRedstoneSimulator *>(m_World.GetRedstoneSimulator())->GetChunkData());
if (PotentialSourceHandler != nullptr)
{
BLOCKTYPE Type;
NIBBLETYPE Meta;
if (m_World.GetBlockTypeMeta(RearCoordinate.x, RearCoordinate.y, RearCoordinate.z, Type, Meta))
{
RearPower = std::max(CCB.m_SignalStrength, PotentialSourceHandler->GetPowerDeliveredToPosition(RearCoordinate, Type, Meta, a_Position, a_BlockType));
}
}
return RearPower;
}
virtual cVector3iArray Update(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta, PoweringData a_PoweringData) override
{
// Note that a_PoweringData here contains the maximum * side * power level, as specified by GetValidSourcePositions
// LOGD("Evaluating ALU the comparator (%d %d %d)", a_Position.x, a_Position.y, a_Position.z);
auto Data = static_cast<cIncrementalRedstoneSimulator *>(m_World.GetRedstoneSimulator())->GetChunkData();
auto DelayInfo = Data->GetMechanismDelayInfo(a_Position);
// Delay is used here to prevent an infinite loop (#3168)
if (DelayInfo == nullptr)
{
auto RearPower = GetPowerLevel(a_Position, a_BlockType, a_Meta);
auto FrontPower = GetFrontPowerLevel(a_Position, a_BlockType, a_Meta, a_PoweringData.PowerLevel, RearPower);
auto PreviousFrontPower = static_cast<cIncrementalRedstoneSimulator *>(m_World.GetRedstoneSimulator())->GetChunkData()->ExchangeUpdateOncePowerData(a_Position, PoweringData(a_PoweringData.PoweringBlock, FrontPower));
bool ShouldBeOn = (RearPower > 0); // Provide visual indication by examining * rear * power level
bool ShouldUpdate = (FrontPower != PreviousFrontPower.PowerLevel); // "Business logic" (:P) - determine by examining *side* power levels
if (ShouldUpdate || (ShouldBeOn != cBlockComparatorHandler::IsOn(a_Meta)))
{
Data->m_MechanismDelays[a_Position] = std::make_pair(1, ShouldBeOn);
}
}
else
{
int DelayTicks;
bool ShouldPowerOn;
std::tie(DelayTicks, ShouldPowerOn) = *DelayInfo;
if (DelayTicks == 0)
{
m_World.SetBlockMeta(a_Position, ShouldPowerOn ? (a_Meta | 0x8) : (a_Meta & 0x7));
Data->m_MechanismDelays.erase(a_Position);
// Assume that an update (to front power) is needed.
// Note: potential inconsistencies will arise as power data is updated before-delay due to limitations of the power data caching functionality (only stores one bool)
// This means that other mechanisms like wires may get our new power data before our delay has finished
// This also means that we have to manually update ourselves to be aware of any changes that happened in the previous redstone tick
return StaticAppend(GetAdjustedRelatives(a_Position, GetRelativeLaterals()), { a_Position });
}
}
return {};
}
virtual cVector3iArray GetValidSourcePositions(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta) override
{
UNUSED(a_BlockType);
return cVector3iArray {cBlockComparatorHandler::GetSideCoordinate(a_Position, a_Meta & 0x3, false), cBlockComparatorHandler::GetSideCoordinate(a_Position, a_Meta & 0x3, true)};
}
};