1
0
Fork 0
cuberite-2a/Tools/QtBiomeVisualiser/ChunkSource.cpp

422 lines
11 KiB
C++

#include "Globals.h"
#include "ChunkSource.h"
#include <QThread>
#include "src/Generating/BioGen.h"
#include "inifile/iniFile.h"
#include "src/StringCompression.h"
#include "src/WorldStorage/FastNBT.h"
/** Map for converting biome values to colors. Initialized from biomeColors[]. */
static uchar biomeToColor[256 * 4];
/** Map for converting biome values to colors. Used to initialize biomeToColor[].*/
static struct
{
EMCSBiome m_Biome;
uchar m_Color[3];
} biomeColors[] =
{
{ biOcean, { 0x00, 0x00, 0x70 }, },
{ biPlains, { 0x8d, 0xb3, 0x60 }, },
{ biDesert, { 0xfa, 0x94, 0x18 }, },
{ biExtremeHills, { 0x60, 0x60, 0x60 }, },
{ biForest, { 0x05, 0x66, 0x21 }, },
{ biTaiga, { 0x0b, 0x66, 0x59 }, },
{ biSwampland, { 0x2f, 0xff, 0xda }, },
{ biRiver, { 0x30, 0x30, 0xaf }, },
{ biHell, { 0x7f, 0x00, 0x00 }, },
{ biSky, { 0x00, 0x7f, 0xff }, },
{ biFrozenOcean, { 0xa0, 0xa0, 0xdf }, },
{ biFrozenRiver, { 0xa0, 0xa0, 0xff }, },
{ biIcePlains, { 0xff, 0xff, 0xff }, },
{ biIceMountains, { 0xa0, 0xa0, 0xa0 }, },
{ biMushroomIsland, { 0xff, 0x00, 0xff }, },
{ biMushroomShore, { 0xa0, 0x00, 0xff }, },
{ biBeach, { 0xfa, 0xde, 0x55 }, },
{ biDesertHills, { 0xd2, 0x5f, 0x12 }, },
{ biForestHills, { 0x22, 0x55, 0x1c }, },
{ biTaigaHills, { 0x16, 0x39, 0x33 }, },
{ biExtremeHillsEdge, { 0x7f, 0x8f, 0x7f }, },
{ biJungle, { 0x53, 0x7b, 0x09 }, },
{ biJungleHills, { 0x2c, 0x42, 0x05 }, },
{ biJungleEdge, { 0x62, 0x8b, 0x17 }, },
{ biDeepOcean, { 0x00, 0x00, 0x30 }, },
{ biStoneBeach, { 0xa2, 0xa2, 0x84 }, },
{ biColdBeach, { 0xfa, 0xf0, 0xc0 }, },
{ biBirchForest, { 0x30, 0x74, 0x44 }, },
{ biBirchForestHills, { 0x1f, 0x5f, 0x32 }, },
{ biRoofedForest, { 0x40, 0x51, 0x1a }, },
{ biColdTaiga, { 0x31, 0x55, 0x4a }, },
{ biColdTaigaHills, { 0x59, 0x7d, 0x72 }, },
{ biMegaTaiga, { 0x59, 0x66, 0x51 }, },
{ biMegaTaigaHills, { 0x59, 0x66, 0x59 }, },
{ biExtremeHillsPlus, { 0x50, 0x70, 0x50 }, },
{ biSavanna, { 0xbd, 0xb2, 0x5f }, },
{ biSavannaPlateau, { 0xa7, 0x9d, 0x64 }, },
{ biMesa, { 0xd9, 0x45, 0x15 }, },
{ biMesaPlateauF, { 0xb0, 0x97, 0x65 }, },
{ biMesaPlateau, { 0xca, 0x8c, 0x65 }, },
// M variants:
{ biSunflowerPlains, { 0xb5, 0xdb, 0x88 }, },
{ biDesertM, { 0xff, 0xbc, 0x40 }, },
{ biExtremeHillsM, { 0x88, 0x88, 0x88 }, },
{ biFlowerForest, { 0x2d, 0x8e, 0x49 }, },
{ biTaigaM, { 0x33, 0x8e, 0x81 }, },
{ biSwamplandM, { 0x07, 0xf9, 0xb2 }, },
{ biIcePlainsSpikes, { 0xb4, 0xdc, 0xdc }, },
{ biJungleM, { 0x7b, 0xa3, 0x31 }, },
{ biJungleEdgeM, { 0x62, 0x8b, 0x17 }, },
{ biBirchForestM, { 0x58, 0x9c, 0x6c }, },
{ biBirchForestHillsM, { 0x47, 0x87, 0x5a }, },
{ biRoofedForestM, { 0x68, 0x79, 0x42 }, },
{ biColdTaigaM, { 0x24, 0x3f, 0x36 }, },
{ biMegaSpruceTaiga, { 0x45, 0x4f, 0x3e }, },
{ biMegaSpruceTaigaHills, { 0x45, 0x4f, 0x4e }, },
{ biExtremeHillsPlusM, { 0x78, 0x98, 0x78 }, },
{ biSavannaM, { 0xe5, 0xda, 0x87 }, },
{ biSavannaPlateauM, { 0xa7, 0x9d, 0x74 }, },
{ biMesaBryce, { 0xff, 0x6d, 0x3d }, },
{ biMesaPlateauFM, { 0xd8, 0xbf, 0x8d }, },
{ biMesaPlateauM, { 0xf2, 0xb4, 0x8d }, },
} ;
static class BiomeColorsInitializer
{
public:
BiomeColorsInitializer(void)
{
// Reset all colors to gray:
for (size_t i = 0; i < ARRAYCOUNT(biomeToColor); i++)
{
biomeToColor[i] = 0x7f;
}
// Set known biomes to their colors:
for (size_t i = 0; i < ARRAYCOUNT(biomeColors); i++)
{
uchar * color = &biomeToColor[4 * biomeColors[i].m_Biome];
color[0] = biomeColors[i].m_Color[2];
color[1] = biomeColors[i].m_Color[1];
color[2] = biomeColors[i].m_Color[0];
color[3] = 0xff;
}
}
} biomeColorInitializer;
/** Converts biomes in an array into the chunk image data. */
static void biomesToImage(cChunkDef::BiomeMap & a_Biomes, Chunk::Image & a_Image)
{
// Make sure the two arrays are of the same size, compile-time.
// Note that a_Image is actually 4 items per pixel, so the array is 4 times bigger:
static const char Check1[4 * ARRAYCOUNT(a_Biomes) - ARRAYCOUNT(a_Image) + 1] = {};
static const char Check2[ARRAYCOUNT(a_Image) - 4 * ARRAYCOUNT(a_Biomes) + 1] = {};
// Convert the biomes into color:
for (size_t i = 0; i < ARRAYCOUNT(a_Biomes); i++)
{
a_Image[4 * i + 0] = biomeToColor[4 * a_Biomes[i] + 0];
a_Image[4 * i + 1] = biomeToColor[4 * a_Biomes[i] + 1];
a_Image[4 * i + 2] = biomeToColor[4 * a_Biomes[i] + 2];
a_Image[4 * i + 3] = biomeToColor[4 * a_Biomes[i] + 3];
}
}
////////////////////////////////////////////////////////////////////////////////
// BioGenSource:
BioGenSource::BioGenSource(cIniFilePtr a_IniFile) :
m_IniFile(a_IniFile),
m_Mtx(QMutex::Recursive)
{
reload();
}
void BioGenSource::getChunkBiomes(int a_ChunkX, int a_ChunkZ, ChunkPtr a_DestChunk)
{
cChunkDef::BiomeMap biomes;
{
QMutexLocker lock(&m_Mtx);
m_BiomeGen->GenBiomes(a_ChunkX, a_ChunkZ, biomes);
}
Chunk::Image img;
biomesToImage(biomes, img);
a_DestChunk->setImage(img);
}
void BioGenSource::reload()
{
int seed = m_IniFile->GetValueSetI("Generator", "Seed", 0);
bool unused = false;
QMutexLocker lock(&m_Mtx);
m_BiomeGen.reset(cBiomeGen::CreateBiomeGen(*m_IniFile, seed, unused));
}
////////////////////////////////////////////////////////////////////////////////
// AnvilSource::AnvilFile
class AnvilSource::AnvilFile
{
public:
/** Coordinates of the region file. */
int m_RegionX, m_RegionZ;
/** True iff the file contains proper data. */
bool m_IsValid;
/** Creates a new instance with the specified region coords. Reads the file header. */
AnvilFile(int a_RegionX, int a_RegionZ, const AString & a_WorldPath) :
m_RegionX(a_RegionX),
m_RegionZ(a_RegionZ),
m_IsValid(false)
{
readFile(Printf("%s/r.%d.%d.mca", a_WorldPath.c_str(), a_RegionX, a_RegionZ));
}
/** Returns the compressed data of the specified chunk.
Returns an empty string when chunk not present. */
AString getChunkData(int a_ChunkX, int a_ChunkZ)
{
if (!m_IsValid)
{
return "";
}
// Translate to local coords:
int RelChunkX = a_ChunkX - m_RegionX * 32;
int RelChunkZ = a_ChunkZ - m_RegionZ * 32;
ASSERT((RelChunkX >= 0) && (RelChunkX < 32));
ASSERT((RelChunkZ >= 0) && (RelChunkZ < 32));
// Get the chunk data location:
UInt32 chunkOffset = m_Header[RelChunkX + 32 * RelChunkZ] >> 8;
UInt32 numChunkSectors = m_Header[RelChunkX + 32 * RelChunkZ] & 0xff;
if ((chunkOffset < 2) || (numChunkSectors == 0))
{
return "";
}
// Get the real data size:
const char * chunkData = m_FileData.data() + chunkOffset * 4096;
UInt32 chunkSize = GetBEInt(chunkData);
if ((chunkSize < 2) || (chunkSize / 4096 > numChunkSectors))
{
// Bad data, bail out
return "";
}
// Check the compression method:
if (chunkData[4] != 2)
{
// Chunk is in an unknown compression
return "";
}
chunkSize--;
// Read the chunk data:
return m_FileData.substr(chunkOffset * 4096 + 5, chunkSize);
}
protected:
AString m_FileData;
UInt32 m_Header[2048];
/** Reads the whole specified file contents and parses the header. */
void readFile(const AString & a_FileName)
{
// Read the entire file:
m_FileData = cFile::ReadWholeFile(a_FileName);
if (m_FileData.size() < sizeof(m_Header))
{
return;
}
// Parse the header - change endianness:
const char * hdr = m_FileData.data();
for (size_t i = 0; i < ARRAYCOUNT(m_Header); i++)
{
m_Header[i] = GetBEInt(hdr + 4 * i);
}
m_IsValid = true;
}
};
////////////////////////////////////////////////////////////////////////////////
// AnvilSource:
AnvilSource::AnvilSource(QString a_WorldRegionFolder) :
m_WorldRegionFolder(a_WorldRegionFolder)
{
}
void AnvilSource::getChunkBiomes(int a_ChunkX, int a_ChunkZ, ChunkPtr a_DestChunk)
{
// Load the compressed data:
AString compressedChunkData = getCompressedChunkData(a_ChunkX, a_ChunkZ);
if (compressedChunkData.empty())
{
return;
}
// Uncompress the chunk data:
AString uncompressed;
int res = InflateString(compressedChunkData.data(), compressedChunkData.size(), uncompressed);
if (res != Z_OK)
{
return;
}
// Parse the NBT data:
cParsedNBT nbt(uncompressed.data(), uncompressed.size());
if (!nbt.IsValid())
{
return;
}
// Get the biomes out of the NBT:
int Level = nbt.FindChildByName(0, "Level");
if (Level < 0)
{
return;
}
cChunkDef::BiomeMap biomeMap;
int mcsBiomes = nbt.FindChildByName(Level, "MCSBiomes");
if ((mcsBiomes >= 0) && (nbt.GetDataLength(mcsBiomes) == sizeof(biomeMap)))
{
// Convert the biomes from BigEndian to platform native numbers:
const char * beBiomes = nbt.GetData(mcsBiomes);
for (size_t i = 0; i < ARRAYCOUNT(biomeMap); i++)
{
biomeMap[i] = (EMCSBiome)GetBEInt(beBiomes + 4 * i);
}
// Render the biomes:
Chunk::Image img;
biomesToImage(biomeMap, img);
a_DestChunk->setImage(img);
return;
}
// MCS biomes not found, load Vanilla biomes instead:
int biomes = nbt.FindChildByName(Level, "Biomes");
if ((biomes < 0) || (nbt.GetDataLength(biomes) != ARRAYCOUNT(biomeMap)))
{
return;
}
// Convert the biomes from Vanilla to EMCSBiome:
const char * vanillaBiomes = nbt.GetData(biomes);
for (size_t i = 0; i < ARRAYCOUNT(biomeMap); i++)
{
biomeMap[i] = EMCSBiome(vanillaBiomes[i]);
}
// Render the biomes:
Chunk::Image img;
biomesToImage(biomeMap, img);
a_DestChunk->setImage(img);
}
void AnvilSource::reload()
{
// Remove all files from the cache:
QMutexLocker lock(&m_Mtx);
m_Files.clear();
}
void AnvilSource::chunkToRegion(int a_ChunkX, int a_ChunkZ, int & a_RegionX, int & a_RegionZ)
{
a_RegionX = a_ChunkX >> 5;
a_RegionZ = a_ChunkZ >> 5;
}
AString AnvilSource::getCompressedChunkData(int a_ChunkX, int a_ChunkZ)
{
return getAnvilFile(a_ChunkX, a_ChunkZ)->getChunkData(a_ChunkX, a_ChunkZ);
}
AnvilSource::AnvilFilePtr AnvilSource::getAnvilFile(int a_ChunkX, int a_ChunkZ)
{
int RegionX, RegionZ;
chunkToRegion(a_ChunkX, a_ChunkZ, RegionX, RegionZ);
// Search the cache for the file:
QMutexLocker lock(&m_Mtx);
for (auto itr = m_Files.cbegin(), end = m_Files.cend(); itr != end; ++itr)
{
if (((*itr)->m_RegionX == RegionX) && ((*itr)->m_RegionZ == RegionZ))
{
// Found the file in the cache, move it to front and return it:
AnvilFilePtr file(*itr);
m_Files.erase(itr);
m_Files.push_front(file);
return file;
}
}
// File not in cache, create it:
AnvilFilePtr file(new AnvilFile(RegionX, RegionZ, m_WorldRegionFolder.toStdString()));
m_Files.push_front(file);
return file;
}