1
0
Fork 0
cuberite-2a/src/OSSupport/UDPEndpointImpl.cpp

620 lines
17 KiB
C++

// UDPEndpointImpl.cpp
// Implements the cUDPEndpointImpl class representing an implementation of an endpoint in UDP communication
#include "Globals.h"
#include "UDPEndpointImpl.h"
#include "NetworkSingleton.h"
////////////////////////////////////////////////////////////////////////////////
// Globals:
namespace UDPEndpointImplHelper
{
static bool IsValidSocket(evutil_socket_t a_Socket)
{
#ifdef _WIN32
return (a_Socket != INVALID_SOCKET);
#else // _WIN32
return (a_Socket >= 0);
#endif // else _WIN32
}
}
/** Converts a_SrcAddr in IPv4 format to a_DstAddr in IPv6 format (using IPv4-mapped IPv6). */
static void ConvertIPv4ToMappedIPv6(sockaddr_in & a_SrcAddr, sockaddr_in6 & a_DstAddr)
{
memset(&a_DstAddr, 0, sizeof(a_DstAddr));
a_DstAddr.sin6_family = AF_INET6;
a_DstAddr.sin6_addr.s6_addr[10] = 0xff;
a_DstAddr.sin6_addr.s6_addr[11] = 0xff;
a_DstAddr.sin6_addr.s6_addr[12] = static_cast<Byte>((a_SrcAddr.sin_addr.s_addr >> 0) & 0xff);
a_DstAddr.sin6_addr.s6_addr[13] = static_cast<Byte>((a_SrcAddr.sin_addr.s_addr >> 8) & 0xff);
a_DstAddr.sin6_addr.s6_addr[14] = static_cast<Byte>((a_SrcAddr.sin_addr.s_addr >> 16) & 0xff);
a_DstAddr.sin6_addr.s6_addr[15] = static_cast<Byte>((a_SrcAddr.sin_addr.s_addr >> 24) & 0xff);
a_DstAddr.sin6_port = a_SrcAddr.sin_port;
}
////////////////////////////////////////////////////////////////////////////////
// cUDPSendAfterLookup:
/** A hostname-to-IP resolver callback that sends the data stored within to the resolved IP address.
This is used for sending UDP datagrams to hostnames, so that the cUDPEndpoint::Send() doesn't block.
Instead an instance of this callback is queued for resolving and the data is sent once the IP is resolved. */
class cUDPSendAfterLookup:
public cNetwork::cResolveNameCallbacks
{
public:
cUDPSendAfterLookup(const AString & a_Data, UInt16 a_Port, evutil_socket_t a_MainSock, evutil_socket_t a_SecondSock, bool a_IsMainSockIPv6):
m_Data(a_Data),
m_Port(a_Port),
m_MainSock(a_MainSock),
m_SecondSock(a_SecondSock),
m_IsMainSockIPv6(a_IsMainSockIPv6),
m_HasIPv4(false),
m_HasIPv6(false)
{
}
protected:
/** The data to send after the hostname is resolved. */
AString m_Data;
/** The port to which to send the data. */
UInt16 m_Port;
/** The primary socket to use for sending. */
evutil_socket_t m_MainSock;
/** The secondary socket to use for sending, if needed by the OS. */
evutil_socket_t m_SecondSock;
/** True if m_MainSock is an IPv6 socket. */
bool m_IsMainSockIPv6;
/** The IPv4 address resolved, if any. */
sockaddr_in m_AddrIPv4;
/** Set to true if the name resolved to an IPv4 address. */
bool m_HasIPv4;
/** The IPv6 address resolved, if any. */
sockaddr_in6 m_AddrIPv6;
/** Set to true if the name resolved to an IPv6 address. */
bool m_HasIPv6;
// cNetwork::cResolveNameCallbacks overrides:
virtual void OnNameResolved(const AString & a_Name, const AString & a_PI) override
{
// Not needed
}
virtual bool OnNameResolvedV4(const AString & a_Name, const sockaddr_in * a_IP) override
{
if (!m_HasIPv4)
{
m_AddrIPv4 = *a_IP;
m_AddrIPv4.sin_port = htons(m_Port);
m_HasIPv4 = true;
}
// Don't want OnNameResolved() callback
return false;
}
virtual bool OnNameResolvedV6(const AString & a_Name, const sockaddr_in6 * a_IP) override
{
if (!m_HasIPv6)
{
m_AddrIPv6 = *a_IP;
m_AddrIPv6.sin6_port = htons(m_Port);
m_HasIPv6 = true;
}
// Don't want OnNameResolved() callback
return false;
}
virtual void OnFinished(void) override
{
// Send the actual data, through the correct socket and using the correct resolved address:
if (m_IsMainSockIPv6)
{
if (m_HasIPv6)
{
sendto(m_MainSock, m_Data.data(), m_Data.size(), 0, reinterpret_cast<const sockaddr *>(&m_AddrIPv6), static_cast<socklen_t>(sizeof(m_AddrIPv6)));
}
else if (m_HasIPv4)
{
// If the secondary socket is valid, it is an IPv4 socket, so use that:
if (m_SecondSock != -1)
{
sendto(m_SecondSock, m_Data.data(), m_Data.size(), 0, reinterpret_cast<const sockaddr *>(&m_AddrIPv4), static_cast<socklen_t>(sizeof(m_AddrIPv4)));
}
else
{
// Need an address conversion from IPv4 to IPv6-mapped-IPv4:
ConvertIPv4ToMappedIPv6(m_AddrIPv4, m_AddrIPv6);
sendto(m_MainSock, m_Data.data(), m_Data.size(), 0, reinterpret_cast<const sockaddr *>(&m_AddrIPv6), static_cast<socklen_t>(sizeof(m_AddrIPv6)));
}
}
else
{
LOGD("UDP endpoint queued sendto: Name not resolved");
return;
}
}
else // m_IsMainSockIPv6
{
// Main socket is IPv4 only, only allow IPv4 dst address:
if (!m_HasIPv4)
{
LOGD("UDP endpoint queued sendto: Name not resolved to IPv4 for an IPv4-only socket");
return;
}
sendto(m_MainSock, m_Data.data(), m_Data.size(), 0, reinterpret_cast<const sockaddr *>(&m_AddrIPv4), static_cast<socklen_t>(sizeof(m_AddrIPv4)));
}
}
virtual void OnError(int a_ErrorCode, const AString & a_ErrorMsg) override
{
// Nothing needed
}
};
////////////////////////////////////////////////////////////////////////////////
// cUDPEndpointImpl:
cUDPEndpointImpl::cUDPEndpointImpl(UInt16 a_Port, cUDPEndpoint::cCallbacks & a_Callbacks):
Super(a_Callbacks),
m_Port(0),
m_MainSock(-1),
m_IsMainSockIPv6(true),
m_SecondarySock(-1),
m_MainEvent(nullptr),
m_SecondaryEvent(nullptr)
{
Open(a_Port);
}
cUDPEndpointImpl::~cUDPEndpointImpl()
{
Close();
}
void cUDPEndpointImpl::Close(void)
{
if (m_Port == 0)
{
// Already closed
return;
}
// Close the LibEvent handles:
if (m_MainEvent != nullptr)
{
event_free(m_MainEvent);
m_MainEvent = nullptr;
}
if (m_SecondaryEvent != nullptr)
{
event_free(m_SecondaryEvent);
m_SecondaryEvent = nullptr;
}
// Close the OS sockets:
evutil_closesocket(m_MainSock);
m_MainSock = -1;
evutil_closesocket(m_SecondarySock);
m_SecondarySock = -1;
// Mark as closed:
m_Port = 0;
}
bool cUDPEndpointImpl::IsOpen(void) const
{
return (m_Port != 0);
}
UInt16 cUDPEndpointImpl::GetPort(void) const
{
return m_Port;
}
bool cUDPEndpointImpl::Send(const AString & a_Payload, const AString & a_Host, UInt16 a_Port)
{
// If a_Host is an IP address, send the data directly:
sockaddr_storage sa;
int salen = static_cast<int>(sizeof(sa));
memset(&sa, 0, sizeof(sa));
if (evutil_parse_sockaddr_port(a_Host.c_str(), reinterpret_cast<sockaddr *>(&sa), &salen) != 0)
{
// a_Host is a hostname, we need to do a lookup first:
auto queue = std::make_shared<cUDPSendAfterLookup>(a_Payload, a_Port, m_MainSock, m_SecondarySock, m_IsMainSockIPv6);
return cNetwork::HostnameToIP(a_Host, queue);
}
// a_Host is an IP address and has been parsed into "sa"
// Insert the correct port and send data:
int NumSent;
switch (sa.ss_family)
{
case AF_INET:
{
reinterpret_cast<sockaddr_in *>(&sa)->sin_port = htons(a_Port);
if (m_IsMainSockIPv6)
{
if (UDPEndpointImplHelper::IsValidSocket(m_SecondarySock))
{
// The secondary socket, which is always IPv4, is present:
NumSent = static_cast<int>(sendto(m_SecondarySock, a_Payload.data(), a_Payload.size(), 0, reinterpret_cast<const sockaddr *>(&sa), static_cast<socklen_t>(salen)));
}
else
{
// Need to convert IPv4 to IPv6 address before sending:
sockaddr_in6 IPv6;
ConvertIPv4ToMappedIPv6(*reinterpret_cast<sockaddr_in *>(&sa), IPv6);
NumSent = static_cast<int>(sendto(m_MainSock, a_Payload.data(), a_Payload.size(), 0, reinterpret_cast<const sockaddr *>(&IPv6), static_cast<socklen_t>(sizeof(IPv6))));
}
}
else
{
NumSent = static_cast<int>(sendto(m_MainSock, a_Payload.data(), a_Payload.size(), 0, reinterpret_cast<const sockaddr *>(&sa), static_cast<socklen_t>(salen)));
}
break;
}
case AF_INET6:
{
reinterpret_cast<sockaddr_in6 *>(&sa)->sin6_port = htons(a_Port);
NumSent = static_cast<int>(sendto(m_MainSock, a_Payload.data(), a_Payload.size(), 0, reinterpret_cast<const sockaddr *>(&sa), static_cast<socklen_t>(salen)));
break;
}
default:
{
LOGD("UDP sendto: Invalid address family for address \"%s\".", a_Host.c_str());
return false;
}
}
return (NumSent > 0);
}
void cUDPEndpointImpl::EnableBroadcasts(void)
{
ASSERT(IsOpen());
// Enable broadcasts on the main socket:
// Some OSes use ints, others use chars, so we try both
int broadcastInt = 1;
char broadcastChar = 1;
// (Note that Windows uses const char * for option values, while Linux uses const void *)
if (setsockopt(m_MainSock, SOL_SOCKET, SO_BROADCAST, reinterpret_cast<const char *>(&broadcastInt), sizeof(broadcastInt)) == -1)
{
if (setsockopt(m_MainSock, SOL_SOCKET, SO_BROADCAST, &broadcastChar, sizeof(broadcastChar)) == -1)
{
int err = EVUTIL_SOCKET_ERROR();
LOGWARNING("Cannot enable broadcasts on port %d: %d (%s)", m_Port, err, evutil_socket_error_to_string(err));
return;
}
// Enable broadcasts on the secondary socket, if opened (use char, it worked for primary):
if (UDPEndpointImplHelper::IsValidSocket(m_SecondarySock))
{
if (setsockopt(m_SecondarySock, SOL_SOCKET, SO_BROADCAST, &broadcastChar, sizeof(broadcastChar)) == -1)
{
int err = EVUTIL_SOCKET_ERROR();
LOGWARNING("Cannot enable broadcasts on port %d (secondary): %d (%s)", m_Port, err, evutil_socket_error_to_string(err));
}
}
return;
}
// Enable broadcasts on the secondary socket, if opened (use int, it worked for primary):
if (UDPEndpointImplHelper::IsValidSocket(m_SecondarySock))
{
if (setsockopt(m_SecondarySock, SOL_SOCKET, SO_BROADCAST, reinterpret_cast<const char *>(&broadcastInt), sizeof(broadcastInt)) == -1)
{
int err = EVUTIL_SOCKET_ERROR();
LOGWARNING("Cannot enable broadcasts on port %d (secondary): %d (%s)", m_Port, err, evutil_socket_error_to_string(err));
}
}
}
void cUDPEndpointImpl::Open(UInt16 a_Port)
{
ASSERT(m_Port == 0); // Must not be already open
// Make sure the cNetwork internals are innitialized:
cNetworkSingleton::Get();
// Set up the main socket:
// It should listen on IPv6 with IPv4 fallback, when available; IPv4 when IPv6 is not available.
bool NeedsTwoSockets = false;
m_IsMainSockIPv6 = true;
m_MainSock = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);
int err;
if (!UDPEndpointImplHelper::IsValidSocket(m_MainSock))
{
// Failed to create IPv6 socket, create an IPv4 one instead:
m_IsMainSockIPv6 = false;
err = EVUTIL_SOCKET_ERROR();
LOGD("UDP: Failed to create IPv6 MainSock: %d (%s)", err, evutil_socket_error_to_string(err));
m_MainSock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (!UDPEndpointImplHelper::IsValidSocket(m_MainSock))
{
err = EVUTIL_SOCKET_ERROR();
m_Callbacks.OnError(err, Printf("Cannot create UDP socket for port %d: %s", a_Port, evutil_socket_error_to_string(err)));
return;
}
// Allow the port to be reused right after the socket closes:
if (evutil_make_listen_socket_reuseable(m_MainSock) != 0)
{
err = EVUTIL_SOCKET_ERROR();
LOG("UDP Port %d cannot be made reusable: %d (%s). Restarting the server might not work.",
a_Port, err, evutil_socket_error_to_string(err)
);
}
// Bind to all interfaces:
sockaddr_in name;
memset(&name, 0, sizeof(name));
name.sin_family = AF_INET;
name.sin_port = ntohs(a_Port);
if (bind(m_MainSock, reinterpret_cast<const sockaddr *>(&name), sizeof(name)) != 0)
{
err = EVUTIL_SOCKET_ERROR();
m_Callbacks.OnError(err, Printf("Cannot bind UDP port %d: %s", a_Port, evutil_socket_error_to_string(err)));
evutil_closesocket(m_MainSock);
return;
}
}
else
{
// IPv6 socket created, switch it into "dualstack" mode:
UInt32 Zero = 0;
#ifdef _WIN32
// WinXP doesn't support this feature, so if the setting fails, create another socket later on:
int res = setsockopt(m_MainSock, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast<const char *>(&Zero), sizeof(Zero));
err = EVUTIL_SOCKET_ERROR();
NeedsTwoSockets = ((res == SOCKET_ERROR) && (err == WSAENOPROTOOPT));
#else
setsockopt(m_MainSock, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast<const char *>(&Zero), sizeof(Zero));
#endif
// Allow the port to be reused right after the socket closes:
if (evutil_make_listen_socket_reuseable(m_MainSock) != 0)
{
err = EVUTIL_SOCKET_ERROR();
LOG("UDP Port %d cannot be made reusable: %d (%s). Restarting the server might not work.",
a_Port, err, evutil_socket_error_to_string(err)
);
}
// Bind to all interfaces:
sockaddr_in6 name;
memset(&name, 0, sizeof(name));
name.sin6_family = AF_INET6;
name.sin6_port = ntohs(a_Port);
if (bind(m_MainSock, reinterpret_cast<const sockaddr *>(&name), sizeof(name)) != 0)
{
err = EVUTIL_SOCKET_ERROR();
m_Callbacks.OnError(err, Printf("Cannot bind to UDP port %d: %s", a_Port, evutil_socket_error_to_string(err)));
evutil_closesocket(m_MainSock);
return;
}
}
if (evutil_make_socket_nonblocking(m_MainSock) != 0)
{
err = EVUTIL_SOCKET_ERROR();
m_Callbacks.OnError(err, Printf("Cannot make socket on UDP port %d nonblocking: %s", a_Port, evutil_socket_error_to_string(err)));
evutil_closesocket(m_MainSock);
return;
}
m_MainEvent = event_new(cNetworkSingleton::Get().GetEventBase(), m_MainSock, EV_READ | EV_PERSIST, RawCallback, this);
event_add(m_MainEvent, nullptr);
// Read the actual port number on which the socket is listening:
{
sockaddr_storage name;
socklen_t namelen = static_cast<socklen_t>(sizeof(name));
getsockname(m_MainSock, reinterpret_cast<sockaddr *>(&name), &namelen);
switch (name.ss_family)
{
case AF_INET:
{
sockaddr_in * sin = reinterpret_cast<sockaddr_in *>(&name);
m_Port = ntohs(sin->sin_port);
break;
}
case AF_INET6:
{
sockaddr_in6 * sin6 = reinterpret_cast<sockaddr_in6 *>(&name);
m_Port = ntohs(sin6->sin6_port);
break;
}
}
}
// If we don't need to create another socket, bail out now:
if (!NeedsTwoSockets)
{
return;
}
// If a secondary socket is required (WinXP dual-stack), create it here:
LOGD("Creating a second UDP socket for IPv4");
m_SecondarySock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (!UDPEndpointImplHelper::IsValidSocket(m_SecondarySock))
{
// Don't report as an error, the primary socket is working
err = EVUTIL_SOCKET_ERROR();
LOGD("Socket creation failed for secondary UDP socket for port %d: %d, %s", m_Port, err, evutil_socket_error_to_string(err));
return;
}
// Allow the port to be reused right after the socket closes:
if (evutil_make_listen_socket_reuseable(m_SecondarySock) != 0)
{
// Don't report as an error, the primary socket is working
err = EVUTIL_SOCKET_ERROR();
LOGD("UDP Port %d cannot be made reusable (second socket): %d (%s). Restarting the server might not work.",
a_Port, err, evutil_socket_error_to_string(err)
);
evutil_closesocket(m_SecondarySock);
m_SecondarySock = -1;
return;
}
// Make the secondary socket nonblocking:
if (evutil_make_socket_nonblocking(m_SecondarySock) != 0)
{
// Don't report as an error, the primary socket is working
err = EVUTIL_SOCKET_ERROR();
LOGD("evutil_make_socket_nonblocking() failed for secondary UDP socket: %d, %s", err, evutil_socket_error_to_string(err));
evutil_closesocket(m_SecondarySock);
m_SecondarySock = -1;
return;
}
// Bind to all IPv4 interfaces:
sockaddr_in name;
memset(&name, 0, sizeof(name));
name.sin_family = AF_INET;
name.sin_port = ntohs(m_Port);
if (bind(m_SecondarySock, reinterpret_cast<const sockaddr *>(&name), sizeof(name)) != 0)
{
// Don't report as an error, the primary socket is working
err = EVUTIL_SOCKET_ERROR();
LOGD("Cannot bind secondary socket to UDP port %d: %d (%s)", m_Port, err, evutil_socket_error_to_string(err));
evutil_closesocket(m_SecondarySock);
m_SecondarySock = -1;
return;
}
m_SecondaryEvent = event_new(cNetworkSingleton::Get().GetEventBase(), m_SecondarySock, EV_READ | EV_PERSIST, RawCallback, this);
event_add(m_SecondaryEvent, nullptr);
}
void cUDPEndpointImpl::RawCallback(evutil_socket_t a_Socket, short a_What, void * a_Self)
{
cUDPEndpointImpl * Self = reinterpret_cast<cUDPEndpointImpl *>(a_Self);
Self->Callback(a_Socket, a_What);
}
void cUDPEndpointImpl::Callback(evutil_socket_t a_Socket, short a_What)
{
if ((a_What & EV_READ) != 0)
{
// Receive datagram from the socket:
char buf[64 KiB];
sockaddr_storage sa;
socklen_t salen = static_cast<socklen_t>(sizeof(sa));
auto len = recvfrom(a_Socket, buf, sizeof(buf), 0, reinterpret_cast<sockaddr *>(&sa), &salen);
if (len >= 0)
{
// Convert the remote IP address to a string:
char RemoteHost[128];
UInt16 RemotePort;
switch (sa.ss_family)
{
case AF_INET:
{
auto sin = reinterpret_cast<sockaddr_in *>(&sa);
evutil_inet_ntop(sa.ss_family, &sin->sin_addr, RemoteHost, sizeof(RemoteHost));
RemotePort = ntohs(sin->sin_port);
break;
}
case AF_INET6:
{
auto sin = reinterpret_cast<sockaddr_in6 *>(&sa);
evutil_inet_ntop(sa.ss_family, &sin->sin6_addr, RemoteHost, sizeof(RemoteHost));
RemotePort = ntohs(sin->sin6_port);
break;
}
default:
{
return;
}
}
// Call the callback:
m_Callbacks.OnReceivedData(buf, static_cast<size_t>(len), RemoteHost, RemotePort);
}
}
}
////////////////////////////////////////////////////////////////////////////////
// cNetwork API:
cUDPEndpointPtr cNetwork::CreateUDPEndpoint(UInt16 a_Port, cUDPEndpoint::cCallbacks & a_Callbacks)
{
return std::make_shared<cUDPEndpointImpl>(a_Port, a_Callbacks);
}